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PREFACE

During the last two decades, well test analysis techniques have changed significantly.
With the introduction of high accuracy pressure measurements and powerful computers,
information that is more accurate and useful is extracted from well tests. The new
interpretation methods, using the derivative of the pressure, magnify the characteristic
features of the many different types of wells and reservoirs, including groundwater
hydrogeology systems. Due to the improved diagnosis of well test data, the number of
theoretical solutions available to the interpretation engineer is expanding all the time.
Today well test interpretation computer programs offer a wide range of complex well
and reservoir configurations for the analysis of pressure transient test responses.

This book covers all aspects of well test analysis for the today’s engineer who has
access to powerful computers. The most recent advanced interpretation models are
presented in detail and their application to field measurements is documented. Practical
analyses of well test data is thoroughly discussed. Should the recorded test data deviate
from the theory due to operational conditions, guidelines are established for proper
analysis. The basic well test analysis technique and the associated theory have been
abundantly discussed in the literature and they are simply summarized here. Focus is
placed on computerized interpretation of complex systems. With this book, well test
interpretation engineers will not only find answers to the different questions
encountered in the course of analysis, but also gain a better understanding of the
physical process involved, and the meaning and limitations of the results.

The interpretation methodology is briefly presented in the two first Chapters. In Chapter
1, the different types of tests are described, several typical well pressure responses are
documented, and the usual well test analysis terminology is introduced. Chapter 2
presents the various interpretation techniques, and defines the limitations of the
different methods.

In Chapters 3 to 5, the basic interpretation models are reviewed for well, reservoir and
boundary conditions. The analysis of interference tests is described in Chapter 6. The
interpretation methods and models are presented from Chapter 1 to 6 for a single-phase
liquid flow (oil or water), tests in gas and multiphase reservoirs are discussed in
Chapters 7 and 8. In Chapter 9, the analysis of different type of tests, such as drill stem
tests, single well vertical interference tests, is explained. Several factors complicating
well test analysis are discussed in the conclusion Chapter 10, together with a summary
of the test interpretation methodology.
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All figures and equations are presented in the usual oil field system of units, which is
still currently used in the industry despite numerous attempts to have a metric system
accepted. In the Appendix, the equations are presented with the practical metric system.

Several field examples presented in this book have been published in technical articles.
The test data and interpretation analysis results are available in the website
http://www.elsevier.com/locate/welltest.

A lot of the material presented in this book is based on discussions with many well test
interpretation specialists during the last 25 years. In particular, | want to thank Alain
Gringarten for the many comments and his encouragement during the preparation of
this work, and Piers Johnson for the complete revision of the book.

Two interpretation software packages have been used for the preparation of the Figures:
PIE of WTS and SAPHIR of KAPPA Engineering.

Paris, December 2001

Dominique Bourdet has worked over 25 years with Oil and Gas Industry. He is the
author of several publications on different aspects of well test analysis. His main
research interest is in the analysis of fissured reservoirs. He developed the pressure
derivative analysis method that became a standard in the Industry. He has been involved
in the research of new well test analysis techniques, in the technical support to field
operations, and in the development of well test interpretation software packages. He is
an Independent Consultant, specializing in the design, supervision, and interpretation of
well tests in unconventional systems. During the last twenty years, he has continuously
taught well test interpretation in the Industry and in Universities.
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CHAPTER ]

PRINCIPLES OF TRANSIENT TESTING

In this first Chapter, the terminology used in well testing and interpretation is presented,
and different testing procedures are explained. In the second part, characteristic well
pressure behavior is illustrated, and the corresponding analysis methods are introduced.
It is shown that well test responses follow chronological characteristic behavior at
different times, depending upon the well and reservoir configuration. The interpretation
techniques are presented in detail in the following Chapter 2.

1.1 INTRODUCTION

1.1.1 Description of a well test

During a well test, a transient pressure response is created by a temporary change in
production rate. The well response is usually monitored during a relatively short period
of time compared to the life of the reservoir, depending upon the test objectives. For
well evaluation, tests are frequently achieved in less than two days. In the case of
reservoir limit testing, several months of pressure data may be needed.

In most cases, the flow rate is measured at surface while the pressure is recorded down-

hole. Before opening, the initial pressure p; is constant and uniform in the reservoir.
During the flowing period, the drawdown pressure response Ap is defined as follows:

Ap=p; - p(t) (1.1

Pressure, p

drawdown build-up

Rate, q

Time, t
Figure 1.1. Drawdown and build-up test sequence.



2 Principles of transient testing

When the well is shut-in, the build-up pressure change Ap is estimated from the last
flowing pressure p(Ar=0):

Ap = p(t) - p(&t = 0) (12)

The pressure response is analyzed versus the elapsed time At since the start of the period
(time of opening or shut-in).

Well test objectives

Well test analysis provides information on the reservoir and on the well. Geological,
geophysical and petrophysical information is used where possible in conjunction with
the well test information to build a reservoir model for prediction of the field behavior
and fluid recovery for different operating scenarios. The quality of the communication
between the well and the reservoir indicates the possibility to improve the well
productivity. Usually, the test objectives can be summarized as follows:

Exploration well: On initial wells, well testing is used to confirm the exploration
hypothesis and to establish a first production forecast: nature and rate of produced
fluids, initial pressure and well and reservoir properties. Tests may be limited to drill
stem testing only.

Appraisal well: The previous well and reservoir description can be refined by testing
appraisal wells to confirm well productivity, reservoir heterogeneities and boundaries,
drive mechanisms etc. Bottom hole fluid samples are taken for PVT laboratory analysis.
Longer duration testing (production testing) is usually carried out.

Development well: On producing wells, periodic tests are made to adjust the reservoir
description and to evaluate the need for well treatment, such as work-over, perforation
strategy or completion design, to maximize the well’s production life. Communication
between wells (interference testing). monitoring of the average reservoir pressure are
some usual objectives of development well testing.

Information obtained from well testing

Well test responses characterize the ability of the fluid to flow through the reservoir and
to the well. Tests provide a description of the reservoir in dynamic conditions, as
opposed to geological and log data. As the investigated reservoir volume is relatively
large, the estimated parameters are average values. From pressure curve analysis, it is
possible to determine the following properties:

Reservoir description:

e Permeability (horizontal k and vertical &),

e Reservoir heterogeneities (natural fractures, layering, change of characteristics),
¢ Boundaries (distance, size and shape),

e Pressures (initial p; and average p).
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Well description:
e Production potential (productivity index PI and skin factor S),
e Well geometry.

By comparing the result of routine tests, changes of productivity and rate of decrease of
the average reservoir pressure can be established.

Test procedure

Drawdown test: the flowing bottom hole pressure is used for analysis. Ideally, the well
should be producing at constant rate but in practice, this is difficult to achieve and
drawdown pressure data is erratic. The analysis of flowing periods (drawdown) is
frequently difficult and inaccurate.

Build-up test: the increase of bottom hole pressure after shut-in is used for analysis.
Before the build-up test, the well must have been flowing long enough to reach
stabilized rate. During shut-in periods, the flow rate is accurately controlled (zero). It is
for this reason build up tests should be performed.

Injection test / fall-off test: when fluid is injected into the reservoir, the bottom hole
pressure increases and, after shut-in, it drops during the fall-off period. The properties
of the injected fluid are in general different from that of the reservoir fluid,
interpretation of injection and fall-off tests requires more attention to detail than for
producers.

Interference test and pulse testing: the bottom hole pressure is monitored in a shut-in
observation well some distance away from the producer. Interference tests are designed
to evaluate communication between wells. With pulse tests, the active well is produced
with a series of short flow / shut-in periods and the resulting pressure oscillations in the
observation well are analyzed.

o
g
3
[
3
& Initial Build-up
shut-in

Clean Variable  Stabilized
o up rate rate
g
©
2 d

Time, t

Figure 1.2. Typical test sequence. Oil well.
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Gas well test: specific testing methods are used to evaluate the deliverability of gas
wells (Absolute Open Flow Potential, AOFP) and the possibility of non-Darcy flow
condition (rate dependent skin factor S’). The usual procedures are Back Pressure test
(Flow after Flow), Isochronal and Modified Isochronal tests.

In Figure 1.2, the typical test sequence of an exploration oil well is presented. Initially,
the well is cleaned up by producing at different rates, until the fluid produced at surface
corresponds to the reservoir fluid. The well is then shut-in to run the down hole pressure
gauges, and reopened for the main flow. The flow rate is controlled by producing
through a calibrated orifice on the choke manifold. Several choke diameters are
frequently used, until stabilized flowing conditions are reached. After some flow time at
a constant rate, the well is shut-in for the final build-up test.

Well completion

Production test: during such tests, the well is completed as a production well with a
cased hole and a permanent completion. The well is monitored at surface, from the
wellhead.

Drill stem test (DST): the well is completed temporarily with a down-hole shut-in valve.
Frequently the well is cased but DST can be made also in open hole. During a DST, the
well is closed down-hole. The drill stem testing procedure is used only for relatively
short tests. The drill string (drill-pipe) is not used any more, and production tubing is
employed.

1.1.2 Methodology
The inverse problem
The objective of well test analysis is to describe an unknown system § (well +

reservoir) by indirect measurements (O the pressure response to | a change of rate).
Solving $=0/l is a typical inverse problem (Gringarten et al., 1979).

l=> | §|=>0

input system output

As opposed to the direct problem (O=Ix8), the solution of the inverse problem is
usually not unique. 1t implies an identification process, and the interpretation provides
the model(s) whose behavior is identical to the behavior of the actual reservoir.
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Interpretation models

The models used in well test interpretation can be described as a transfer function; they
only define the behavior (homogeneous or heterogeneous, bounded or infinite). Well
test interpretation models are often different from the geological or log models, due to
the averaging of the reservoir properties. Layered reservoirs for example frequently
show a homogeneous behavior during tests.

Interpretation models are made of several components, which are relatively
independent, and exhibit different characteristics at different time of the response. Once
all components have been identified, the interpretation model is defined. Analytical
solutions or numerical models are used to generate pressure responses to the specific
production rate history | of the well, and the model parameters are adjusted until the
model behavior O is identical to the behavior of S.

In the case of complex reservoir behavior, several models are frequently applicable to
describe the test pressure response. The non-uniqueness of the inverse problem solution
can be reduced by using additional information, such as geological or geophysical data
for example. In some cases, a new test may be specifically designed in order to
complete or improve an ambiguous test pressure response.

Input data required for well test analysis

Test data: flow rate and bottom hole pressure as a function of time. The test sequence of
events must be detailed, including any operational problems that may affect the well
response. Results of analysis are dependent upon the accuracy of the well test data.
When the production rate has not been measured during some flow periods, it must be
accurately estimated. Errors in rate or pressure data are discussed in Chapter 10.

Well data: wellbore radius r,, well geometry (such as inclined or horizontal well),
depths (formation, gauges).

Reservoir and fluid parameters: formation thickness /4 (net), porosity ¢, compressibility
of oil ¢,, water ¢,, and formation ¢, water saturation S,,, oil viscosity x and formation
volume factor B. The total system compressibility ¢, is expressed as:

¢ =c(,(I*SW)+chw+cf (1.3)

The above reservoir and fluid parameters are used for calculation of the results. After a
first interpretation, they may always be changed or adjusted if needed to refine the
results, for the same theoretical interpretation model.

Additional data can be useful in some cases: production log, gradient surveys, reservoir
temperature, bubble point pressure etc. General information obtained from geologist
and geophysicists are required to validate the well test interpretation results.
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1.2 TYPICAL FLOW REGIMES

1.2.1 Types of flow behavior

The different flow behaviors are usually classified in terms of rate of change of pressure
with respect to time.

Steady state

During steady-state flow, the pressure does not change with time. This is observed for
example when a constant pressure effect, such as resulting from a gas cap or some types
of water drive, ensures a pressure maintenance in the producing formation.

Ly (1.4)

Pseudo steady state

The pseudo steady state regime characterizes a closed system response. With a constant
rate production, the drop of pressure becomes constant for each unit of time.

-

P . constant (1.5)
ot

Transient state

Transient responses are observed before constant pressure or closed boundary effects
are reached. The pressure variation with time is a function of the well geometry and the
reservoir properties, such as permeability and heterogeneity.

o/
Tp =fyzl (1.6)
ot

Usually, well test interpretation focuses on the transient pressure response. Near
wellbore conditions are seen first and later, when the drainage area expands, the
pressure response is characteristic of the reservoir properties until boundary effects are
seen at late time (then the flow regime changes to pseudo steady or steady state). In the
following, several characteristic examples of well behavior are introduced, for
illustration of typical well test responses.
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1.2.2 Wellbore storage

When a well is opened, the production at surface is initially due to the expansion of the
fluid stored in the wellbore, and the reservoir contribution is initially negligible. This
characteristic flow regime, called the pure wellbore storage effect, can last from a few
seconds to a few minutes. Then, the reservoir production starts and the sand face rate
increases unti} it becomes the same as the surface rate. When this condition is reached,
the wellbore storage has no effect any more on the bottom hole pressure response, the
data describes the reservoir behavior and it can be used for transient analysis.

During shut-in periods, the wellbore storage effect is also called afterflow: after the well
has been shut-in, the reservoir continues to produce at the sand face and the fluid stored
in the wellbore is recompressed. The same sequence with three different pressure
behaviors can be observed: the pure wellbore storage effect, transition when the sand
face rate declines, and the end of the wellbore storage effect when the sand face rate
becomes negligible and eventually zero.

After any change in the well flowing conditions, there is a time lag between the surface
production and the sand face rate. The effect of wellbore storage affects well pressure
responses during the first instants of each test period. In the present Chapter, only
drawdown responses are illustrated. Multiple-rate sequences and shut-in periods are
discussed in Chapter 2.

Wellbore storage coefficient
The wellbore storage coefficient defines the rate of pressure change during the pure
wellbore storage regime. For a well full of a single-phase fluid, well bore storage is

represented by a compressibility term (van Everdingen and Hurst, 1949):

AV

C = Xp—:(,’” Vw (17)
a

5

=1

7]

8

a.

o I Q surtace
[ 9 sand face
[\

m 3

Time, t
Figure 1.3. Wellbore storage effect. Sand face and surface rates.
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where :
¢, : liquid compressibility
V., : wellbore volume in Bbl

When there is a liquid level (Earlougher, 1977), the level depth is related to the flow
rate  with AV =V,Ah, and the down hole pressure change is expressed

Ap=pAh(g/g,), where

p: liquid density (Ib/cu ft)
g/g. : gravitational acceleration (Ib¢/lb,)
V. wellbore volume per unit length (Bbl/ft)

C:144L (1.8)
p(gle.)

Specialized analysis

During the pure wellbore regime, the well is acting as a closed volume and, with a
constant surface rate condition, the pressure changes linearly with time. The wellbore
storage coefficient can be estimated on a plot of the pressure change Ap versus the
elapsed time Af time on a linear scale (van Everdingen, and Hurst, [949). At early time,
the response follows a straight line of slope my s, intercepting the origin.

Ap=——At (1.9)

The wellbore storage coefficient C is estimated from the straight-line slope mwgs:

co_ 98 (1.10)
24mWBS

h/@s

Pressure change, Ap

Elapsed time, At
Figure 1.4. Wellbore storage eftect. Specialized analysis on a linear scale.
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Figure 1.7. Radial flow regime. Pressure profile. Stimulated well, negative skin factor.

1.2.3 Radial flow regime, skin (homogeneous behavior)

When the reservoir production is established, the flow-lines converge towards the well
with a radial geometry. In the reservoir, the pressure is a function of the fime and the
distance to the well. As the production time increases, the well bottom-hole pressure p,,
drops, and the circular drainage area of radius »; expands in the reservoir. The radius of
investigation r; is discussed later in this Section.

Skin

In the case of a damaged well, a flow restriction is present at the interface between the
reservoir and the wellbore, producing an additional pressure drop Apy, when the fluid
enters into the well. For a stimulated well, the flowing condition is improved near the
well, and the pressure decline is reduced in a cylindrical near wellbore reservoir region.
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For comparison between wells, the magnitude of the pressure drop near the wellbore
has to be normalized. The same Apyi, can describe a low or very high damage,
depending on the flow rate and the reservoir permeability. The skin factor S is a
dimensionless parameter (van Everdingen 1953), and it characterizes the well
condition: for a damaged well S > 0 and, by extension, S <0 for a stimulated well.

kh
S=—"" Apg, 1.11
141 295z P Skin (1.1h)
Typical examples of a damaged well (S > 0) are poor contact between the well and the
reservoir (mud-cake, insufficient perforation density, partial penetration) or invaded
zone.

Stimulated well (S < 0) behavior is observed when the surface of contact between the
well and the reservoir has been increased compared to the basic cylindrical vertical
wellbore geometry (fractured well, slanted and horizontal well) or acid stimulated zone.

For a given pressure drop in the vicinity of the wellbore, it is shown from Equation 1.11
that the corresponding skin damage is larger in high permeability reservoirs, or when
the fluid viscosity is low. A large skin factor S indicates the possibility of a strong
improvement of the well flowing pressure, or a potential significant increase of the flow
rate. Dimensionless terms are currently used in well test analysis. They are further
discussed in Chapter 2.

In the case of an invaded or stimulated circular zone around the well, the resulting

positive or negative skin can be expressed by the difference between the pressure profile

corresponding to the original reservoir permeability 4, and the actual pressure profile

due to the modified reservoir permeability 4. In the circular zone near the well, the flow

is in steady state regime:

s = Pusio = 141‘2(13#—1n rg 141 .2(/8;11n N (1.12)
koh r, kh P

The skin is expressed :

S:[ki—ljln’i (1.13)

S Py

Figure 1.8. Flow through a circular reservoir region.
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Pressure change, Ap

Log At
Figure 1.9. Radial flow regime. Specialized analysis on semi-log scale.

The equivalent wellbore radius is defined with no pressure loss ( kg = o) in the circular
zone around the well (Brons and Miller, 1961 a):

Ve =rwe”S (1.14)

Specialized analysis

During the radial flow regime in reservoirs with homogeneous behavior, the pressure
changes with the logarithm of the elapsed time from when the well is opened (Miller et
al., 1950). A plot of the bottom hole pressure versus the logarithm of time (called MDH
plot) follows a straight line when all wellbore storage transitional effect are finished.
The slope m of semi-log straight line is used to estimate the reservoir permeability
thickness product kh, and the skin coefficient S is evaluated from the location of the
straight line along the y-axis.

B
Ap:162.6% log Af + log ~3.23+0.87S (1.15)

Puc,r,

Traditionally, the semi-log straight-line location is characterized by the straight-line
pressure at 1 hour (Ap; ).

kh =162.6 984 (1.16)
m

S =115l 2P oK ~+3.23 (1.17)
m duuc,r;

Radius of investigation

As illustrated on Figure 1.5, the pressure distribution in the reservoir is a function of the
time and the distance to the producing well. It can be expressed with the Exponential
Integral function (see Chapter 6):
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Logr

Pus

Figure 1.10. Pressure profile versus the logarithm of the distance to the well.

1412 2
aplat, r)=— 05131208l i dner (1.18)
kh 0.001056kA

For small x, Ei(*.\’): - ln(}/_v): the Exponential Integral can be approximated by a log
(with y= 1.78, Euler's constant).

162.6 4B 0.0002
Ap(Ar,r)= 4 #|:log 00264k At

+0.809 (1.19)
kh Puc,r
(The skin calculation Equation 1.12 is based on Equation 1.19 and, for the semi-log
straight line Equation 1.15 the radial distance is set at » = r,,).

When plotted versus log(r), the flowing pressure profile at a given time is a straight line
until the distance becomes too large for the logarithm approximation of the Exponential
Integral. Beyond this limit, the profile flattens, and tends asymptotically towards the
initial pressure as shown on Figure 1.10 (where the pressure profile of Figure 1.5 is
presented for different production times versus the logarithm of the distance 7).

The radius of investigation r, tentatively describes the distance that the pressure
transient has moved into the formation. Several definitions have been proposed (see
discussion in Section 10.3.3), in general r, is defined with one of the two relationships
(Earlougher, 1977; Muskat, 1934 and Lee, 1982):

0.000264 Ar
__“LA_:LW% (120)

2

duc,r; y

In dimensionless terms, radius are expressed as

rp=— (1.21)
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With the dimensionless time defined in Equation 2.4, Equation 1.20 is simply:
2 1 2 1
’D/’,DZT ortp [rh =~ (1.22)
v 4

This gives respectively,

¥, = 0.029kAt/ guc, (1.23)
and
r; =0.032kAt/ duc, (1.24)

Equations 1.23 or 1.24 are based on the assumption of homogeneous isotropic reservoir
permeability. Permeability anisotropy is discussed in Section 3.1.5, and radial changes
of permeability in Section 4.3.4. It should be noted that the radius of investigation is
independent of the flow rate.

1.2.4 Fractured well (infinite conductivity fracture): linear flow regime

A common well stimulation method consists of creating a hydraulic vertical fracture
from the wellbore to the formation (Russell and Truitt, 1964). The reservoir / well
surface of contact is significantly increased, thus producing a negative skin factor. Two
main types of fractured well behavior are observed: infinite or finite conductivity
fracture. Both are discussed in the Well Model Chapter 3. In the following, fractured
well responses are briefly introduced to illustrate two characteristic flow regimes.

The fracture is symmetrical on both sides of the well and it intercepts the complete

formation thickness. x; is the half fracture length. With the infinite conductivity fracture
model, it is assumed that the fluid flows along the fracture without any pressure drop.

-
\N
T

g

Figure 1.11. Fractured well. Fracture geometry.
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Figure 1.12. Infinite conductivity fracture. Geometry of the flow lines.
Linear and pseudo radial flow regimes.

At early time, the flow-lines are perpendicular to the fracture plane. This is called a
linear flow regime. Later, the reservoir regions at the two ends of the fracture starts to
contribute significantly to the flow, the linear flow regime ends, to change into an
elliptical flow geometry. Ultimately, the well response shows the characteristic radial
flow regime behavior.

During linear flow, the pressure change is proportional to the square root of the elapsed
time since the well was opened (Clark, 1968 and Gringarten et al., 1974 a).

Ap = 40698 KA (1.25)
hx, \ ¢ck

Specialized analysis

The linear flow regime can be analyzed with a plot of the pressure change Ap versus the

square root of elapsed time «Ar : the response follows a straight line of slope m g,
intercepting the origin.

When the reservoir permeability is known from the analysis of the subsequent radial
flow regime, the slope m g of the linear flow straight line is used to estimate the half
Jracture length x; .

Pressure change, Ap

Figure 1.13. Infinite conductivity fracture.
Specialized analysis with the pressure versus the square root of time.
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B
x; =406 | 42 (1.26)
' gck hmyp

1.2.5 Fractured well (finite conductivity fracture): bi-linear flow regime

When the pressure drop in the fracture plane is not negligible, a second linear flow
regime is established along the fracture extension. Before the two ends of the fracture
are reached, this well configuration produces the so-called bi-linear flow regime.

L

wil_ kK 33§ 3 T
frtttteseeettttttesess

Figure 1.14. Finite conductivity fracture.
Geometry of the flow lines during the bi-linear flow regime.

During bilinear flow, the pressure change is proportional to the fourth root of the
elapsed time since the well was opened (Cinco-Ley et al., 1978 a). With w,the width of
the finite conductivity fracture and 4, the permeability in the fracture:

Ap=44.11 984 Iy (1.27)

hk pwp Yduc,k

Specialized analysis

On a plot of the pressure change Ap versus the fourth root of elapsed time M,

pressure response follows a straight line of slope mgf, intercepting the origin, during
the bilinear flow regime

MeLf

Pressure change, Ap

VAt
Figure 1.15. Finite conductivity fracture.
Specialized analysis with the pressure versus the fourth root of time.
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As for the linear flow analysis, provided the reservoir permeability can be estimated
from semi-log analysis of the late time response, the slope mp ¢ of the bilinear flow
straight line is used to estimate the controlling parameter, namely the fracture
conductivity kywy:

krw, =19448
s e k\ hmg g )

1.2.6 Well in partial penetration: spherical flow regime

With a well in partial penetration, the well is connected to the producing interval on one
fraction only of the zone thickness. The reservoir / well surface of contact being
reduced, partially penetrating wells are characterized by a positive skin factor as
discussed in the Well Model Chapter 3. In the following, this well configuration is
introduced to illustrate another example of characteristic flow regime.

The ratio h,/h of the length of the perforated interval to the formation thickness is called
the penetration ratio, ky; and k;- are the horizontal and vertical permeability (Figure
1.16).

In a well in partial penetration, after an initial radial flow regime in front of the
perforated interval, the flow lines are established in both the horizontal and vertical
directions, until the top and bottom boundaries are reached. A spherical flow regime can
thus be observed before the flow becomes radial in the complete formation thickness.

During the spherical flow regime, the pressure changes with l/\/E (Brons and
Marting, 1961 b, Moran and Finklea. 1962).

B )
GBuypuc, (129)

B
Ap=706T22 24529

kors k\‘ ? \/E

Oh, h

Figure 1.16. Well in partial penetration.
Geometry of the flow lines. Radial, spherical and radial flow regimes.
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\3\6‘5 N\

Pressure change, Ap

A\
0
..

1At
Figure 1.17. Well in partial penetration.
Specialized analysis with the pressure versus 1/ the square root of time.

where kg is the spherical permeability defined as
kg =3k ok k. =3 kEky (130)

Specialized analysis

On a plot of the pressure versus the reciprocal of the square root of time 1/ VAL, a

straight line of slope mspy develops during the spherical flow regime. The spherical
permeability ks can be estimated with:

23
Voue, (131)

mgpH

kg =|2452.99Bu

Knowing the horizontal permeability from the late time radial flow regime, the vertical
to horizontal permeability anisotropy is defined as:

3
EL:[k_SJ (1.32)
ki ky

1.2.7 Limited reservoir (one sealing fault)

In the following example, the reservoir is limited in one direction by a vertical plane-
sealing boundary at a distance L from the well. During the production, the radius of
investigation expands until the sealing boundary is reached. Since no flow-lines support
the production on the opposite side of the boundary, the pressure profile for an infinite
reservoir described on Figure 1.5 is distorted as shown on Figures 1.19 to 1.21. The
sequence of pressure regimes is the following:
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Puwr

]
Figure 1.18. One sealing fault. Pressure profile at time ¢,.
The fault is not reached, infinite reservoir behavior.

At carly time, the radius of investigation is smaller than the fault distance L and the
pressure profile in the reservoir corresponds to that of an infinite system (Figure 1.18
and time ¢, on Figure 1.22).

Later, the radius of investigation reaches the fault and the pressure profile deviates from
the infinite reservoir behavior as shown Figure 1.19. On this diagram, the thin dotted
curve corresponds to the theoretical pressure profile in an infinite reservoir. Because of
the reservoir limit, the curve beyond the distance £, on the right side of the boundary, is
reflected back into the producing area like a mirror effect. In the reservoir region
between the well and the sealing boundary, the two pressure drops are combined to
produce the actual reservoir pressure profile (the actual pressure drop is the sum of the
two responses, namely the infinite reservoir curve and the reflected image curve).

p
Pi

Ar L r r

v

pwf

Figure 1.19. One sealing fault. Pressure profile at time #,.
The fault is reached, but it is not seen at the well. Infinite reservoir behavior.

p
p Al -

Pt “.

Figure 1.20. One sealing fault. Pressure profile at time #;.
The fault is reached, and it is seen at the well. Start of boundary effect.
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Pwi

Figure 1.21. One sealing fault. Pressure profile at time ¢,.
The fault is reached, and it is seen at the well. Hemi-radial flow.

t; : the fault is not reached, radial flow
1, : the fault is reached

15 : the fault is seen at the well, transition

ts : hemi-radial flow

Figure 1.22. One sealing fault. Drainage radius.

This pressure regime corresponds to time ¢, on Figure 1.22: the boundary has been
reached and the pressure profile is distorted in the reservoir, but the image curve has
not changed the well flowing pressure. As the flow time increases, the radius of
investigation of the theoretical infinite reservoir curve continues to expand, and the
image curve reaches the well (time ; on Figure 1.22 and Figure 1.20). The well bottom
hole pressure starts to deviate from the infinite reservoir response, and drops faster.

Ultimately, when the well has been flowing long enough, the two profiles tends to
merge (after time #; on Figure 1.22) and the hemi-radial flow regime is reached: the
flow lines converge to the well with a half circle geometry.

Specialized analysis
During the hemi-radial flow regime, the pressure changes with the logarithm of the

elapsed time but the slope of the semi-log straight line is double (2m) that of the infinite
acting radial flow (van Everdingen and Hurst, 1949, Horner, 1951).
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Pressure change, Ap

Log At
Figure 1.23. One sealing fault. Specialized analysis on semi-log scale.

It should be noted that with a consistent system of units (such as cgs Units), the slope of
the semi-log straight line on a Ap versus In(A7) plot is expressed gBu/27 kh during the

infinite acting radial flow regime. For hemi-radial flow, the angle is changed to =

On the semi-log plot, two straight lines are present, with a slope respectively m and 2m.

The time intersect Az, between the two lines is used to estimate the fault distance L
(Gray, 1965).

L=0.01217 /AL (133)

uc,

Interestingly, the radius of investigation at Az, is approximately double the fault distance
(Equation 1.24): the pressure transient reaches the fault 4 times earlier than the
boundary can be observed on the producing well pressure (see discussion Section
10.3.3).

In the next chapters, distances are expressed in dimensionless terms as:

Ly, - L (134)
¥

W

1.2.8 Closed reservoir: pseudo steady state regime

In closed reservoirs, when all boundaries have been reached, the flow regime changes to
pseudo steady state: i.e at any point in the reservoir the rate of pressure decline is
proportional to time.

As long as the reservoir is infinite acting (time f, on the example Figure 1.24 for a
circular closed reservoir), the pressure profile expands around the well during the
production (in case of radial flow, the well bottom hole pressure drops with the
logarithm of time).
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Figure 1.24. Circular closed reservoir, Pressure profiles.

Time ¢,: the boundaries are not reached, infinite reservoir behavior: the pressure profile expands.
Time ¢,: boundaries reached, end of infinite reservoir behavior.

Times #; and ¢;: pseudo steady state regime, the pressure profile drops.

Pi

Pressure, p

Pseudo steady State

SIOpe m*

Time, t
Figure 1.25. Drawdown and build-up pressure responses. Closed system. Linear scale.

When ali boundaries have been reached (after time 1,), the shape of the pressure profile
becomes constant with time, and it simply drops as the reservoir is being depleted
(times #; and f;). During the pseudo steady state regime, the bottom hole flowing
pressure is a linear function of the elapsed time.

During shut-in, the pressure stabilizes in the reservoir and reaches the average reservoir

pressure ; (<p,).

Specialized analysis

During drawdown, the Pseudo Steady State regime is analyzed with a plot of the
pressure versus elapsed time Af on a /inear scale (Jones, 1956). At late time, the straight
line of slope m* is used to estimate the reservoir pore volume ¢ hA.
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B
ap=0234 -5 A 11626982 1og L _log(C )+ 0.351+0.87S (135)
dc,hA ko2
phA = 0234 qB* (136)
¢ m

1.2.9 Constant pressure boundary: steady state regime

The steady state regime is observed in wells near a gas cap or an active water drive: the
high mobility of the fluid is seen as a constant pressure support. Once the constant
pressure boundary is reached. the reservoir pressure profile and the well bottom hole
pressure become constant.

1.3 WELL AND RESERVOIR CHARACTERIZATION

1.3.1 Well responses

A limited number of flow line geometries produce a characteristic pressure behavior:
radial. linear. bi-linear. spherical etc. For each flow regime, the pressure follows a well-

defined time function: log . yAr. A l/v@ etc. A straight line can be drawn on a

specialized pressure versus time plot, to access the corresponding well or reservoir
parameter.

A complete well response is defined as a sequence of flow regimes. By identification of
the characteristic pressure behaviors present on the response, the chronology and time
limits of the different flow regimes are established, defining the interpretation model.
Two basic well test interpretation models examples are presented in the following for
iflustration.

For a fractured well for example, the sequence of regimes is (Gringarten et al., 1974 a):

1. Linear flow

| Hff UJ 2: Radial flow

N @),

Figure 1.26. Fractured well example.
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1. Radial flow
2. Linear flow

HH
H1

Figure 1.27. Example of a well in a channel reservoir.

In the case of a well in a channel reservoir, the same regimes are present but the
chronology is inverse (Larsen, 1987).

1.3.2 Productivity Index

The Productivity Index is the ratio of the flow rate by the drawdown pressure drop,
expressed from the average reservoir pressure p .

q

Pl=p— (1.37)
(p‘pw,/')

The Ideal Productivity Index defines the productivity if the skin of the well is zero
(Matthews and Russell, 1967).

Pl(s-0) =j=—+ (1.38)
(p = Pwr )_ Apskrn

During the infinite acting period ; ~p;, the Transient Productivity Index is decreasing
with time.

PI= kh (1.39)

162.6By[logAt+log —3.23+0.87SJ

ducr,

The Pseudo Steady State Productivity Index is a constant:

Pl = kn (1.40)

162.6B,u[10giz ~log(C,)+0351+ 0.87SJ
I

w
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CHAPTER 2

THE ANALYSIS METHODS

A complete production test is made up of several characteristic flow regimes, initially
wellbore storage and near wellbore conditions, to late time boundary effects. Most of
the recorded pressure data describes transitional behavior from one regime to the next,
and straight lines are difficult to identify on the specialized scale plots described in
Chapter 1. The log-log scale is preferred for well test interpretation: all flow regimes
can be characterized on a single plot, providing a diagnosis of the complete well
behavior and thus defining the appropriate interpretation model(s).

In this Chapter, the curve matching analysis methods are presented. Straight line
methods, briefly described in Chapter 1, have been well documented (Earlougher, 1977;
Bourdarot, 1998) and are not discussed in detail here. The use of pressure type curves
on log-log scales is reviewed and application to multiple-rate and shut-in periods are
discussed. Next, the derivative approach is introduced, the characteristic signatures of
the different flow regimes are illustrated and the application of the method to practical
testing conditions is detailed.

2.1 LOG-LOG SCALE

For a given period of the test, the change in pressure, Ap, is plotted on log-log scales
versus the elapsed time At, as illustrated on Figure 2.1 (Theis, 1935 and Ramey, 1970).
A test period is defined as a period of constant flowing conditions (constant flow rate
for a drawdown and shut-in period for a build-up test, see Figure 1.1). The complete set
of pressure data between two rate changes is used, from very early time to the latest
recorded pressure point. The log-log analysis is a global approach as opposed to
straight-line methods that make use of only one fraction of the data, corresponding to a
specific flow regime.

By comparing the log-log data plot to a set of theoretical curves, the model that best
describes the pressure response is defined.

Usually, theoretical curves are expressed in dimensionless terms because the pressure
responses become independent of the physical parameters magnitude (such as flow rate,
fluid or rock properties). An example of dimensionless term has been discussed in
Section 1.2.3 with skin factor § which is much more meaningful than the actual pressure
drop near the wellbore Apg;,. As shown in Equation 2.1, the dimensionless pressure p;,
and time #;, are linear functions of Ap and A, the coefficients 4 and B being dependent
upon different parameters such as the permeability 4.
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pp=AAp, A= f(kh,..) o
tp=BAt, B=g(kC,S,.) '

On log-log scales, the shape of the response curve is characteristic: the product of one
of the variables by a constant term is changed into a displacement on the logarithmic
axes. If the flow rate is doubled, for example, the amplitude of the response Ap is
doubled also, but the graph of log (Ap) is only shifted by log (2) along the pressure axis.

log p,, =log A+ logAp 22)
logt,;, =log B + log At '

The shape of the global log-log data plot is used for the diagnosis of the interpretation
model(s). It should be noted that the scale expands the response at early time, and
compresses the late time data.

2.2 PRESSURE CURVES ANALYSIS

2.2.1 Example of pressure type-curve: '"Well with wellbore storage and skin in a
homogeneous reservoir'

Log-log analysis technique is illustrated with the basic interpretation model "Well with
wellbore storage and skin in a homogeneous reservoir". The corresponding set of
dimensionless theoretical curves (called fype curves), presented by Gringarten et al. in
1979, is illustrated in Figure 2.2.
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Figure 2.1. Example of log-log data plot.
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Figure 2.2. Pressure type-curve: Well with wellbore storage and skin, homogeneous reservoir.
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Dimensionless terms

The dimensionless pressure and time are defined as:

kh
=l A 2.3)
PO = agBu
(- 0.0002624k N o)
duc,r,

The dimensionless wellbore storage coefficient is

0.8936C
Cp =it @2.5)

Several type curve presentations have been proposed for this interpretation model. For
practical reasons, Gringarten et al. (1979) proposed using a dimensionless time group
defined as:

14
I 00002955 &1 2.6)

Cp u C

The different curves are labeled with the dimensionless group:
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CDeZS _ 0.8936C egg 2.7)

2
gc hry

The curve label e defines the well condition. It ranges from C/)ezs =0.3 for
stimulated wells, up to 10 for very damaged wells.

Two characteristic flow regimes can be present in the response of a well with wellbore
storage and skin in a homogeneous reservoir:

1. Atearly time, during the pure wellbore regime, the relationship Equation 1.9 can be
expressed as:

logAp = log 95 + logAt (2.8)
o 74C o

On log-log scales. the data curve follows a wnit slope straight line as described by the
early time 45° asymptote on the type curve Figure 2.2.

2. When the infinite acting radial flow regime is reached, the pressure response
follows the semi-log relationship of Equation 1.15 that does not produce a characteristic
shape on log-log coordinates, The limit "Approximate start of the semi-log straight line"
has been introduced on the type curve Figure 2.2 for the identification of the radial flow
regime.

Between the two flow regimes. shown by the initial wellbore storage unit slope straight
line and the start of the radial flow regime in Figure 2.2, the response describes a
transitional behavior when the sand face rate changes, as describes in Section 1.2.2.

Log-log matching procedure

The log-log data plot Ap, Ar of Figure 2.1 is superimposed on the set of dimensionless
type-curves py, t;, /Cy, of Figure 2.2. The carly time unit slope straight line is matched
on the "wellbore storage" asymptote but the final choice of the C;,¢** curve is frequently
not unique. In the example presented in Figure 2.3, all curves above C) ¢ =10" provide
an acceptable match (the test data, for this illustrative example used through Chapter 2,
has been published by Bourdet et al. in 1983 a).

Results of log-log analysis

The pressure match defines the displacement between the y-axis of the two log-log
plots, as the ratio PM = p,,/Ap . The permeability thickness product can be estimated

from Equation 2.3;
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Figure 2.3. Build-up example. Log-log match, p, versus ¢,/Cp.
kh =1412gBu(PM) (2.9)

The time match TM = (t, /Cp )/ At gives the wellbore storage coefficient with Equation
2.6:

C= 0.000295ﬁ L (2.10)
4\ TM

The skin factor is evaluated from the C) ¢ label of the selected curve (the curve
match). From Equation 2.5,

~ 28
CDE Match

S=05In .11

D

2.2.2 Shut-in periods

Drawdown periods are in general not suitable for analysis because it is difficult to
ascertain a constant flow rate. The response is distorted, especially with the log-log
scales that expand the response at early time. Preferably, build-up periods are used
where the flow rate is zero, therefore the well is controlled.

Example of a shut-in after a single rate drawdown

Build-up responses do not show the same behavior as the first drawdown in a virgin
reservoir at initial pressure. After a flow period of duration #,, the well shows a pressure
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drop of Ap(t,). In the case of an infinite reservoir, after shut-in it takes an infinite time to
reach the initial pressure during build-up, and to produce a pressure change Apgy(=)
of magnitude Ap(s,). As described on Figure 2.4, the shape of pressure build-up curves
depends upon the previous rate history.

The diffusivity equation used to generate the well test analysis solutions is linear. It is
possible to add several pressure responses. and therefore to describe the well behavior
after any rate change.

This is the superposition principle (van Everdingen and Hurst, 1949). For a build-up
after a single drawdown period at rate ¢ during 1, the rate history is changed by
superposing an injection period at rate -¢ from time 1, to the flow period from time =0
extended into the shut-in times ¢, + Ar (see Figure 2.5).
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Figure 2.5. Equivalent flow history : extended drawdown (dashed line) + injection (plain line).
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Log-log analysis: build-up type curve

Using the superposition principle, build-up type curves can be generated for any
production history. In the case of Figure 2.5 with a single constant rate drawdown of ¢,
before shut-in, the build-up type curve py,(Af);, is simply obtained by subtracting

the quantity [pD (1, +A0)p - pp (AI)DJ from the pressure change at the time of shut-in

Pot,)p.

Poup (A = pp(An)y = pp(t, +A0D) , + pp(E,)) (2.12)

Equation 2.12 shows that the build-up type curves differ from the original drawdown
curve by pp(t,)p—pp(t, +At)),. On a log-log scales, build-up type curves are

below the original drawdown type curve and, when As is large compared to the
production time ¢,, they tend to flatten at p;,(¢,) . As shown in Figure 2.6, the data is

compressed on the y-axis, especially when At >> 1,, thus reducing the definition of the
diagnostic plot.

Semi-log analysis: superposition time

When the pressure response is in radial flow at times #,, A¢ and ¢, + At (at time of shut-
in, during the build-up period and during the extrapolated drawdown), the three pp
terms of Equation 2.12 can be changed into the semi-log approximation. Using the real
pressure Equation 1.15 and grouping the three logarithm functions, the resulting build-
up Equation 2.13 shows that a semi-log plot of shut-in pressure also display a straight
line of slope m when the time is changed into the superposition time (also called
effective Agarwal time, 1980).



32
o 10 Cpe?s drawdwon
o type curv
(]
5 S —
S P (A AR
@ > build-up type curve
[oN
o 5
[2]
Q
C
9
(5]
c
(]
=
0

107 1

10

102

108 10

Dimensionless times, t, / Cp and [ {515 / (t,5 + t5) Cp ]
Figure 2.7. Drawdown and build-up type curves of Figure 2.6 on semi-log scales. The thick curve
describes the drawdown response and the build-up expressed with the effective time.

qgBy
A Ar)=162.6—
pBU( ) h

log ——

-323+0.87S

The analysis methods

(2.13)

With the superposition time, the build-up correction method compresses the time scale.

Horner method

With the Horner method (1951), a simplified superposition time is used: the constant ¢,
is ignored, and the shut-in pressure is plotted as a function of logl(tp + Al)/AtJ. On the

Horner scale, the shape of the build-up response is symmetrical to that of the
superposition plot Figure 2.7, early time data is on the right side of the plot (large
Horner time) and, at infinite shut-in time, (1, + Ar)/Ar =1.
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Figure 2.8. Horner plot of build-up example of Figure 2.1.
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gBu, 1, + M _
= p—162698H10g 0 T (2.14)
Pus =P T A

On a Horner plot of build-up data, the straight line slope m, the pressure at 1 hour on the
straight line Ap(Ar =1hr), and the extrapolated straighi line pressure p* at infinite shut-
in time (Af = o) are estimated. The results of analysis are:

ki = 162.6 954 (1.16)
m
t, +1
S=1151 2P _joe K ~+log L +3.23 2.15)
m ¢/uclrw tl7

In an infinite system, the straight line extrapolates to the initial pressure and p*=p;.

When the production time is large compared to the shut-in time 7,>>A¢, the Horner time
can be simplified with:

tp+At
At

log

~logt, —log At (2.16)

The compression of the time scale becomes negligible, the Horner straight-line slope m
is independent of the production time and the build-up data can be analyzed on a MDH.
semi-log scale such as in Figure 1.9.

Multiple-rate superposition

In the case of a multiple-rate test sequence such as on Figure 2.9, a new flow period is
created for all rate changes (defined with the time at start ¢, and the rate ¢;), and the
complete rate history prior to the analyzed period is used. Each previous period is

superposed with the same principle as on the basic example of Figure 2.5.

At time At of flow period # », the multi-rate type curve is:

Par (A1), Z%[PD’ ~1;)p = pplt, + At - L) 1+ oo (8), (2.17)
i=1 4n-1

For semi-log analysis, the multiple-rate superposition time is expressed:

Dws (A = p; —162. 6 Z log +At—t,—)+(qn — Gl )log(At) (2.18)
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Figure 2.9. Multiple- rate history. Example with 10 periods before shut-in.

Limitations of the time superposition: the sealing fault example

In the example of Figure 2.10, the well is produced 60 hours and shut-in for a pressure
build-up. A sealing fault is present near the well and, at 80 hours (20 hours after shut-
in), the infinite acting radial flow regime ends to change slowly to the hemi-radial flow
geometry.

During the 20 initial hours of the shut-in period (cumulative time 60 to 80 hours), both
the extended drawdown and the injection periods are in radial flow regime. The
superposition time of Equations 2.13 or 2.14 is applicable, and the Horner method is
accurate.

At intermediate shut-in times, from 20 to 80 hours {cumulative time 80 to 140 hours),
the extended drawdown follows a semi-log straight line of slope 2m while the injection
is still in radial flow (slope m). It is not possible to group the different logarithm
functions and, theoretically, the semi-log approximation of Equation 2.12 with Equation
2.13 is not correct.

Ultimately, the fault influence is also felt during the injection and the two periods
follow the same semi-log straight line of slope 2m (shut-in time >> 80 hours,
cumulative time >> 140 hours). The semi-log superposition time is again applicable.

In practice, when the flow regime deviates from radial flow in the course of the
response, the error introduced by the Horner or multiple-rate time superposition method
is negligible on pressure curve analysis results. It is more sensitive when the derivative
of the pressure is considered (see Section 2.3.5).
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Figure 2.10. History drawdown — build-up. Well near a sealing fault.

Time superposition with other flow regimes

The time superposition is sometimes used with other flow regimes for straight-line
analysis. When all test periods follow the same flow behavior, the Horner time can be
expressed with the corresponding time function. For fractured wells, Horner time
corresponding to linear (Equation 1.25) and bi-linear flow (Equation 1.27) is expressed
respectively:

(tl, + At)'/2 ~(ar)? (2.19)

1) +ac) —(ac)? (2.20)

The Horner time corresponding to spherical flow (Equation 1.29) is sometimes used for
the analysis of wireline formation testers pressure data.

(M)~ (e, + Ay 2 @21)

2.2.3 Pressure analysis method

Pressure analysis is made on log-log and specialized plots (Gringarten et al., 1979). The
purpose of the specialized analysis is to concentrate on a portion of the data that
corresponds to a particular flow behavior. The analysis is carried out by the
identification of a straight line on a plot whose scale is specific to the flow regime
considered. The time limits of the specialized straight lines must have been previously
defined by the log-log diagnosis.
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For the radial flow analysis of a build-up period, the semi-log superposition time is
used. The slope m of the Horner / superposition straight line defines the final pressure
match of the log-log analysis:

Ap m

PM

Once the pressure match is defined. the C,e* curve is known accurately. Results from
log-log and specialized analyses must be consistent.

2.3  PRESSURE DERIVATIVE

2.3.1 Definition

With the derivative approach, the time rate of change of pressure during a test period is
considered for analysis. In order to emphasize the radial flow regime, the derivative is
taken with respect to the logarithm of time (Bourdet et al., 1983 a). By using the natural
logarithm. the derivative can be expressed as the time derivative, multiplied by the
elapsed time As since the beginning of the period.

. P (2.23)
dln At d

Ap

As pressure analysis, the derivative is plotted on log-log coordinates versus Ar.

2.3.2 Derivative type-curve: 'Well with wellbore storage and skin in a
homogeneous reservoir"

Radial flow
When the infinite acting radial flow regime is established, the derivative becomes

constant. This regime does not produce a characteristic log-log shape on the pressure
curve, but it can be identified when the derivative of the pressure is considered.

-3.23+0.878 (1.15)

gBu
Ap =162.6——| logAr + log
D o g g

2
duuc,r?



Pressure derivative 37

Log Ap' *, Ap'|= constgnt
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Figure 2.11. Pressure and derivative responses on log-log scales. Radial flow.
qBu
Ap'=70.6—— (2.24)
P ki

In dimensionless terms, the derivative stabilizes at 0.5.

dpp
Py = =05 (2.25)
dIn(t/Cp)
Wellbore storage
qB
Ap = 1= At (1.9)
P 24C
B
Ap'=-22 (2.26)
24C

During the pure wellbore storage regime, the pressure change Ap and the pressure
derivative Ap' are identical. On log-log scales, the pressure and the derivative curves
follow a single straight line of slope equal ro unity (Equation 2.8).

,.'... ..‘. s,
Log Ap' o 7 g Slope 1
.o. e
. 7/
0. Id
3 4
4
Log At

Figure 2.12. Pressure and derivative responses on log-log scales. Wellbore storage
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Derivative of Section 2.2 example

In Figure 2.13, the derivative response of Figure 2.1 example shows at early time a unit
slope log-log straight line during the pure wellbore storage effect, and later a
stabilization when the radial flow regime is reached. At intermediate time between two
characteristic flow regimes. the sand face rate is changing as long as the wellbore
storage effect is acting (see Section 1.2.2), and the derivative response describes a
hump.

Derivative type-curve
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Figure 2.14. "Well with wellbore storage and skin, homogeneous reservoir" Derivative of type-
curve Figure 2.2. Log-log scales, pj, versus 1,,/Cp,. Cpy e¥=10100.3.
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In the derivative type-curve of Figure 2.14 for a well with wellbore storage and skin in a
homogeneous reservoir (Bourdet et al., 1983 a), the two basic flow regimes are
characterized by a unique behavior:

1. Atearly time, all curves merge on a unit slope log-log straight line,

2. During radial flow, the derivative responses stabilize at 0.5.

During the transition between the pure wellbore storage effect and the infinite acting
radial flow regime, the derivative Aump can be used to identify the C), 2% group.
Derivative match

The match point is defined with the unit slope pressure and derivative straight line, and
the 0.5 derivative stabilization.

2.3.3 Other characteristic flow regimes

Except for the radial flow regime, during different flow geometries presented in Section
1.2, the pressure changes with the elapsed time power 1/ :

Ap=4(a))" +B (2.27)
With:
o 1/n=l during the pure wellbore storage and the pseudo steady state regimes,

e 1/n=112 in the case of linear flow,
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e 1/n=1/4 for bi-linear flow,
e 1/n=-1/2  when spherical flow is established.

Taking the logarithm derivative (Equation 2.23) of the general Equation 2.27 yields

! ﬂzﬁ At)l/”

= 2.28
dinAt n (2.28)

Ap

On a log-log coordinate system, the relationship Equation 2.28 corresponds to a
straight-line slope of 1/n.

Infinite conductivity fracture (linear flow)

During linear flow, pressure change and the derivative are both proportional to A2
On log-log scales, the pressure and derivative follow rwo straight lines of slope 1/2
(Alagoa et al., 1985). The level of the derivative half-unit slope line is half that of the
pressure.

gB 7,
Ap = 4.06-— | VA (1.25)
v hx, N oc k

\ gB | u
Ap'=2.03-1= JAr 229
p e, \ gk (2.29)
_ Slope 1/2
y .“..”00
ot o ooo"....
Log Ap' S .“,.«-"
Log At

Figure 2.16. Pressure and derivative responses on log-log scales. Infinite conductivity fracture.

Finite conductivity fracture (bi-linear flow)

With the bi-linear flow geometry, pressure and derivative responses are proportional to

A A log-log straight line of slope 1/4 can be observed on pressure and derivative
curves, but the derivative line is four times lower (Wong et al., 1985).
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Figure 2.17. Pressure and derivative responses on log-log scales. Finite conductivity fracture.

B
Ap = 4411 i Yar (127)

hJkrwy Yuck

Ap'=11.03 984 4 At (2.30)

hyfk pw  §duck

Well in partial penetration (spherical flow)

During the spherical flow regime, the shape of the log-log pressure curve is not
characteristic. The derivative follows a straight line with a negative half-unit slope.

Bu
Ap =706 98K 2457 9 9BHNIHG.

(1.29)
kgrg kg/z\/g
e
el Slope -1/2
Log Ap' M.“""n-.
‘N\.M“

Log At

Figure 2.18. Pressure and derivative responses on log-log scales. Well in partial penetration.
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Closed system (pseudo steady state)
The late part of the log-log pressure and derivative drawdown curves tend to a unif-

slope straight line (Clark and Van Golf-Racht, 1985). The derivative exhibits the
characteristic straight line before it is seen on the pressure response.
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Figure 2.19. Pressure and derivative responses on log-log scales. Closed system (drawdown).
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e hA kho| T ' |

B

Ap'= 023412 A (232)

y H

2.3.4 Build-up analysis

For a shut-in after a single drawdown period (the Hormner method is applicable), the
derivative is generated with respect to the effective Agarwal time given in the
superposition Equation 2.13:

t, + At
Ap'= dpA IRV (2.33)
dIn t, ’, {, dt
tp+At

For a complex rate history, the multiple-rate superposition time is used.
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In all cases, the derivative is plotted versus the usual elapsed time At and matched
against a drawdown derivative type-curve, such as in Figure 2.14 for example. It should
be noted that a log-log build-up derivative curve is dependent upon the rate history
introduced in the time superposition calculations, both the elapsed time and the
superposition time are used in this plot. The derivative response is not a raw data plot.
Errors may be introduced in the case of poor data preparation (see discussion next of the
data differentiation, and the rate history definition in Section 10.1.1).

Limitations if the time superposition: the sealing fault example

When the response deviates from the infinite acting radial flow regime, taking the
derivative with respect to the time superposition does not correct perfectly the build-up
effect, and a distortion can be introduced on the response. On Figure 2.20, the log-log
derivative of the build-up example of Figure 2.10 for a well near a sealing fault is
compared to the drawdown curve. During shut-in, the effect of the sealing fault appears
delayed compared to the theoretical drawdown derivative response.

With well test analysis software, the same treatment is applied on theoretical curves and
on data. The test derivative response is matched on a derivative type curve generated by
differentiating the theoretical build-up type curve with respect to the same time
superposition function as the data, and the data responds in a similar way to the
theoretical type curve (the same distortion is introduced on the data and on the model
curves).

1 04 L T T
- drawdown type curve

—— build-up type curve

103

102

Pressure change, Ap
and Pressure Derivative, psi

107 L 1 L
101 1 10 102 108

Elapsed time At, hours
Figure 2.20. Log-log plot of the build-up example of Figure 2.10. Well near a sealing fault.
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In some cases. the distortion can produce a temporary decline in the build-up derivative
response, and produce a valley shape before the late time response (with heterogeneous
reservoirs or boundary effects for example, see Chapters 4 and 5). When recorded test
data stops at the time corresponding to the downturn in the derivative, and the upturn of
the valley is not seen, interpretation of the late time trend can be difficult. Extrapolation
of a small late time downward trend of the derivative response can be hazardous, it can
simply correspond to the temporary distortion produced by the build-up derivative
calculation or, as discussed next, to the effect produced by smoothing.

2.3.5 Data differentiation

As depicted in Figure 2.21, the data differentiation algorithm uses three points: one
point before (left = 1) and one after (right = 2) the point i of interest. It estimates the left
and right slopes, and attributes their weighted mean to the point i (Bourdet et al., 1983
a). On a p vs. x semi-log plot,

A A
(ﬁ) Ax, +{\pj Ax,
dp_ Ax ), 7 Ax ),

(2.34)
dx Ax) + Ax,

It is recommended to start by using consecutive points. If the resulting derivative curve
is too noisy, smoothing is applied by increasing the distance Ax between the point / and
points | and 2. The smoothing is defined as a distance L, expressed on the time axis
scales. The points | and 2 are the first at distance Ax| »>L.

The smoothing coefficient L is increased until the derivative response is smooth enough
but no more, over smoothing the data introduces distortions. Usual values for the
smoothing coefficient L depends upon the software used to generate the derivative.
Generally, L is less than 0.2 or 0.3.

When a large smoothing is required in order to produce a reasonably well defined
derivative curve, it is recommended to examine the data on semi-log superposition
scales with an expanded pressure definition on the y-axis, such as on the zoomed data
plot inserted in Figure 2.21. Any unusual pressure behavior can be identified and
analyzed, for determination of the best smoothing coefficient L. For example, when the
pressure data is disturbed only during a small subset of the test period, it is best to
ignore this data, and to adapt the derivative smoothing over the remaining good quality
pressure data.

At the end of the test period, point i becomes closer to last recorded point than the
distance L. Smoothing is not possible any more to the right side, the end effect is
reached. This effect can introduce distortions at the end of the derivative response.
Additional problems linked to the derivative calculation are further discussed in Section
10.1.1.



Pressure derivative 45

Pressure change, Ap

RS

LLog (superposition)
Figure 2.21. Differentiation of a set of pressure data. Semi-log scales.

2.3.6 Derivative responses

As discussed in Section 1.2.1, well responses are made up of several flow regimes,
whose chronology defines, from early times to late times, the near wellbore conditions
to the reservoir limits in the case of a long test. The derivative response exhibits a
characteristic shape during all basic flow geometries. By reading the shape of the
derivative response, the sequence of regimes can be established. Frequently only
transitional behaviors between pure regimes are available on the log-log derivative
curve, the diagnosis is not unique and several interpretation models have to be
considered.

2.4 THE ANALYSIS SCALES

The log-log analysis is made with a simultaneous plot of the pressure and derivative
responses of the interpretation period. Time and pressure matches are defined with the
derivative, using respectively the unit slope straight line and the derivative stabilization.
The curve match on pressure and derivative data give access to additional well and
reservoir parameters. In the example for a well with wellbore storage and skin in a
homogeneous reservoir Figure 2.22 (Bourdet et al, 1983 a), the Cpe® group is
identified by the shape of the derivative hump, and by the pressure curve match.

The double log-log match is confirmed with a match of the pressure type-curve on semi-
log scales to accurately adjust the skin factor and the initial pressure. A simulation of
the complete test history is presented on linear scale in order to check the rates any
changes in the well behavior or the average pressure.
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The analysis procedure with the tvpe curve shown in Figure 2.22 is discussed further in
Section 3.1.3. The complete interpretation methodology is presented in detail in Section
10.2 from the diagnosis to the consistency check. Two examples are used to illustrate
that the test history plot is an efficient check of the interpretation model applicability,
over a large time range.



CHAPTER 3

WELLBORE CONDITIONS

In this chapter, the effect of the wellbore conditions on pressure responses is described.
For simplification, the reservoir is assumed to be infinite and homogeneous.

Different wellbore models have been extensively used in the oil industry following the
introduction of type curve analysis. A large catalogue of type curves has been
published, using different groups of dimensionless parameters but, for a given wellbore
condition, they are in most cases derived from the same mathematical solution. Type
curves were designed for manual well test analysis. Today, pressure responses are
analyzed with computer programs, and printed type curves are less used.

For each wellbore model, some representative published type curves are briefly
described when they exist, and the independent groups of variables are defined.
Practical manual analysis is discussed only briefly; type curves are introduced only as a
training tool so that model behavior can be understood fully. Examples of the models
responses are presented on log-log and specialized scale plots, and the influence of the
different parameters is highlighted. Extensions of the models to complex wellbore
conditions are discussed, and guide lines are explained for computerized well test
analysis.

The interpretation methodology using computer programmes is introduced with the
interpretation of a well with wellbore storage and skin in a homogeneous reservoir. A
full discussion of computerized well test interpretation is presented at the end of this
book, in Section 10.2.

3.1 WELL WITH WELLBORE STORAGE AND SKIN

The interpretation model for a well with wellbore storage and skin in an infinite
reservoir with homogeneous behavior is probably the most widely used for transient
pressure analysis. A typical example has been presented in previous Chapter (Figures
2.3 and 2.15).



48 Wellbore conditions

3.1.1 Model description

The well is assumed to be vertical and to penetrate the complete reservoir thickness.
Wellbore storage effect and possibly an infinitesimal skin are present.

Characteristic flow regimes

As discussed in former chapter, two characteristic regimes can be observed with this
model:

1. Wellbore storage effect. with Ap proportional to Ar (Figure 1.4), and a unit slope
log-log straight line on pressure and derivative curves (Figure 2.12). The wellbore
storage coefficient C can be estimated from the corresponding pressure data.

2. Radial flow with Ap proportional to log(Ar) (Figure 1.9), and a constant derivative
response (Figure 2.11). Radial flow analysis yields the permeability-thickness product
kh and skin factor S.

Analytical solutions

The analytical solution is obtained by introducing the wellbore storage effect and an
infinitesimal positive skin on the basic solution to the diffusivity equation for a constant
rate drawdown in a finite radius well (van Everdingen and Hurst, 1949). The solutions
are generated in the Laplace space and inverted with a numerical algorithm (Stehfest,
1970). Negative skins are introduced on the solution at S=0 with the equivalent effective
wellbore radius of Equation 1.14.

3.1.2 Review of pressure and derivative type curves for a well with wellbore
storage and skin in a homogeneous reservoir

The first set of wellbore storage and skin pressure type curves were introduced by
Agarwal et al. in 1970. The dimensionless pressure p;, of Equation 2.3 is plotted versus
the dimensionless time ¢, of Equation 2.4. Several families of curves are presented as a
function of two dimensionless parameters: the dimensionless wellbore storage
coefficient C), of Equation 2.5, and the skin S of Equation 1.11.

Matching with this type curve is difficult since several combinations of (', and S can
produce a similar shape. Different presentations have been proposed (McKinley, 1971;
Earlougher and Kerch, 1974) but the most widely used is the Gringarten et al. type
curve of Figure 2.2 (1979) with the dimensionless pressure p, is presented versus the
dimensionless time group #;, /C;, of Equation 2.6. The shape of the dimensionless
pressure curves being a function of the Cje™ group of Equation 2.7, this independent
variable is used to define the model responses.
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It is interesting to note that, assuming a strictly radial geometry around a vertical well,
0.5 is the theoretical lower limit for the dimensionless Cj,e* group (Gringarten et al.,
1979). Considering that an acid stimulation treatment can be described as an infinite
permeability circular zone of radius rg around the well (see Figure 1.8 with k= o), the
stimulated zone participates to the storage effect, and the apparent wellbore storage
coefficient is changed from C to Cy (in bbl/psi):

Cy=C+ 567146( r2) g, ER))

Combining Equations 1.14 and 2.7 yields

|- 25
(3.2)

(CDe ) =Cpe 2%y

whose minimum is 0.5. Strictly speaking, the acid penetrates the formation by opening
channels, and the circular stimulated model with infinite permeability is only a rough
description of the near wellbore condition for an acid stimulated well (see discussion of
the natural negative skin in fissured reservoir, Chapter 4). The 0.5 limit is approximate.

On the Gringarten et al type curve of Figure 3.1, the different Cp ¢ curves are
classified in terms of well conditions. The curves above Cpe* =1000 defines a
damaged well, between 1000 and 5 the curves correspond to approximately a zero skin
condition, from 5 10 0.5 to an acidized well and, below 0.5 to a fractured well (on this
set of type curves, the wellbore storage and skin solution has been replaced by the
solution for an infinite conductivity fracture with wellbore storage presented next, in
Section 3.2). The different limits are approximate but they indicate that the shape of the
log-log pressure response describe qualitatively the type of wellbore condition.
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Figure 3.1. Wellbore storage and skin pressure type curve. Log-log scales, p, versus #;/C),. Graph
courtesy A.C. Gringarten.
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Subsequently, the derivative of the pressure was introduced with the type curves shown
in Figure 2.22 of Bourdet et al. (1983 a). The dimensionless parameters are the same as
on Figure 3.1, and both the pressure and the derivative responses are superimposed on
the same log-log scales. Only the radial flow model to a vertical well is presented on
this set of type curves, fractured wells are not accounted for.

As discussed in Section 2.3.2, the derivative curves merge at early and late times (first
on the unit slope straight line during wellbore storage effect and on the 0.5 horizontal
line during radial flow). At intermediate times. the shape of the derivative hump defines
the Cppe® parameter.

Several variations of the wellbore storage and skin pressure and derivative type curves
have been proposed. In addition to the usuval pressure and derivative, the pressure
derivative of the second order, and the pressure integral have also been considered. The
type curves are presented with various ratios of the pressure function, its derivatives and
integral (Duong, 1987; Onur and Reynolds, 1988; Blasingame et al., 1989; Blasingame
et al., 1990). Bourgeois and Horne (1991) proposed dimensionless wellbore storage and
skin type curves in the Laplace space, and not in the usual time space, for the
identification of the interpretation model and the estimation of well and reservoir
parameters.

3.1.3 Matching procedure on pressure and derivative responses

The matching procedure with the wellbore storage and skin model has been described in
Chapter 2. In the following, two characteristic model responses are used for illustration
of the model behavior.

Figure 3.2 presents on log-log scales the pressure and derivative responses generated
with respectively Cpe®® =10°" and 0.5. On Figure 3.3, the same pressure curves are
plotted on semi-log scales. Cpe™ =10 corresponds to a severely damaged well

whereas 0.5 can describe the response of a well with negative skin.

On the log-log plot Figure 3.2, the pressure and derivative curves for the high Cp e
value follow the unit slope wellbore storage straight line at early times. Whereas, when
Cpe® = 0.5, the pure wellbore storage regime finishes earlier and the curves starts its
transition between pure wellbore storage and a radial flow regime. When the well is
damaged (Cpe®™ =10%%), this intermediate time flow regime is described by a very
characteristic hump on the derivative response but not when S<0 (there is no
maximum if the well is not damaged or stimulated).

During the radial flow regime, the vertical distance between the derivative and the
pressure curves gives an indication of the welibore damage. With no skin, the pressure
curve is one log cycle or less above the derivative stabilization. For a highty damaged
well, the distance between the two curves can be more than two log cycles as illustrated
by the example Cp, ¢* =10,
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Figure 3.2. Responses for a well with wellbore storage and skin in an infinite homogeneous
reservoir. Log-log scales, py, versus #,/Cp. Cp =10 and 0.5.

Comparing the two responses of Figure 3.2 shows that the start time of the radial flow
regime, defined by the derivative stabilization at 0.5, is a function of both the wellbore
storage coefficient C and the skin factor S. With damaged wells, the effect of wellbore
storage lasts longer and the start of the semi-log straight line is delayed. The lower the
skin factor, the fuster the reservoir response is reached.

When matching test data on a computer software package, real variables are used in
place of dimensionless parameters. Both the test data and the theoretical model are
presented with the pressure and derivative responses Ap, Ap’ versus the elapsed time Av.
The model parameters are adjusted until a good fit is obtained.

1. As discussed in Section 2.2, the permeability thickness product &% defines the
pressure match PM = p,, /Ap. From Equation 2.3, increasing the kh product in the

model parameters displaces the theoretical curves downwards on the log-log plot, but
the shape of the curve is not changed.

2. Once the derivative stabilization is correctly matched, the skin factor S can be
evaluated. The pressure curve is preferably used for skin adjustment rather than the
derivative transition between the pure wellbore storage and the radial flow regime (the
derivative response is frequently noisy during this intermediate time period.
Furthermore, it can be distorted by changing wellbore storage effect, see Section
10.1.2).

3. The last parameter to be determined is the wellbore storage coefficient C from the
early time response. Increasing C displaces the unit slope line (and the derivative hump)
towards /ater times on the computer generated curves.

When several periods are available for analysis, by normalizing the pressure axis by the
flow rate (with Ap/q and Ap’/q), the different periods can be compared on the same log-
log plot. This is a very efficient diagnosis tool, especially with noisy data. As the
derivative becomes independent of the skin parameter after the end of wellbore storage
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effect, the derivative curves must overlay after the early time response and, during the
radial flow regime, all responses merge on the same derivative stabilization. If not, the
flow rate data must be checked (see Section 10.1.1). Once the derivative responses are
consistent, the difference between the pressure curves reveals any change in the well
condition such as wellbore storage. skin damage or rate dependent skin (discussed in
Chapter 7, Figure 7.11 for example).

If the test stops before radial flow has been reached and the derivative stabilization is
not available, an approximate analysis can be attempted on the pressure and derivative
transition responses. In general the solution is not uniquely defined but, when the
derivative is not severely distorted by noise or changing wellbore storage effects, upper
and lower limits can be estimated for the permeability thickness product k4 and the skin
factor S.

3.1.4 Associated specialized plot straight line and interpretation procedure

Wellbore storage and radial flow analyses have been presented in Chapters 1 and 2 for
drawdown and multiple rate test sequences. Today, straight-line methods are not
considered to provide accurate results as curve fitting on pressure and derivative
responses. Straight-line analysis can be attempted for a quick estimate of the
parameters, or for consistency check of the interpretation results. Before specialized
analyses, the time limits of the various regimes must have been identified by matching
the pressure and derivative responses on the type curves of Figure 2.22.

More importantly, specialized scales are used with computerized interpretation to refine
the log-log analysis results. Once the log-log match is accurately defined, the model
parameters are turther adjusted on a semi-log plot such as Figure 3.3. This scale is not
appropriate for C and k4 fine-tuning, but it is more sensitive to small skin errors than the
log-log system of coordinates.

50

o

0 C,e?s =10%
g oaof Slope m )

2]

3 .
& 30

§ A skin
g 20
2

QE) 0r CDGZS =0.5
a Slope m

0 . . l
10 1 10 102 10 10¢

Dimensionless time, t,/C,
Figure 3.3. Semi-log plot of Figure 3.2.
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The next step is to generate a test simulation plot on linear scales. The interpretation
model is applied to the complete sequence of flow and shut-in periods, to produce the
theoretical response during the well rate history. With the test simulation, the theoretical
model is compared to the measured pressure data on a longer time interval than during
the analysis of a single period. The test simulation is used to determine the initial
pressure at start of the test, and will illustrate clearly any change of well condition or
flow rate errors. By extrapolating the model beyond the initial diagnosis period,
possible inconsistencies in the model can be identified (see Section 10.2.3).

3.1.5 SKkin discussion

Tests are sometimes interpreted with the model for a well with wellbore storage and
skin in a homogeneous reservoir when the well or reservoir configuration is known to
be different. Wells in partial penetration or slanted wells for example frequently show a
typical wellbore storage and skin response, and the well geometry only affects the skin
calculated from the match. In the first case, the skin can reach values higher than 30 (see
discussion Section 3.4.3), whereas deviated wells can show a slightly negative skin
(Section 3.5.2).

When the properties of the near wellbore reservoir region have been changed after
drilling or stimulation, an apparent positive or negative skin can be observed as a rcsult
of the radial composite reservoir condition (Section 4.3.2). In his discussion of the two
usual approximations for the skin effect, namely the infinitesimal skin thickness and the
equivalent wellbore radius concept, Daviau (1986) concludes that the homogeneous
reservoir model is applicable to most skin configurations, unless the wellbore storage
coefficient is extremely low.

As discussed in Section 4.1.5, wells in naturally fractured reservoirs also can show a
homogeneous behavior, associated possibly to a natural negative skin and to a very
large wellbore storage coefficient. Reservoirs with horizontal permeability anisotropy as
well, generate a small natural negative skin on test responses. The different possible
skin components are summarized at the end of this Chapter, in Table 3.7.

Permeability anisotropy

In the case of a reservoir with horizontal permeability anisotropy, the pressure response
of a producing well can be described by an equivalent isotropic reservoir model of
average radial permeability (Earlougher, 1977). With the maximum K. and the
minimum k;, permeability oriented 90° apart, the average permeability is:

k =k . k (3.3)

max “min

An equivalent transformed isotropic system can be used to describe the pressure
behavior of the reservoir by changing the dimensions in the two main directions of
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permeability. The transformation of variables is, respectively for the maximum and the
minimum permeability directions:

R L LT (3.4)
knm\ kmzlx
k Kipas

}7':}' — =y —_max (3.5)
kmln kmln

In the cquivalent isotropic system, the wellbore is changed into an ellipse whose major
axis, in the low permeability direction, is 7, 4/k oy /kmis - In the high permeability

direction, the minor axis is r,. Y& /A -
The area of the well is the same in the original and transformed systems, but the

perimeter is increased. The elliptical well behaves like a cylindrical hole whose
equivalent radius is the average of the major and minor axes (Brigham, 1990):

]
r\iL‘ = ;).H [Vkl“lﬂ /kmax +</kmax /klﬂln ] (36)

Since the analysis results are calculated with reference to the actual wellbore radius r,,
the reservoir anisotropy produces an apparent negative skin component:

Yk K T K Tk
‘Swylm — —ln\/ min max \/ max / mn
) 2
(3.7)
- In Vkmin +\/kmax
2k
With typical permeability anisotropy values in the horizontal plane, the negative
geometrical skin effect is low. For horizontal wells (see Section 3.6), the effect of

permeability anisotropy between the vertical and horizontal directions can be much
larger, and apparent negative skins of S,; =-1 may be observed.

Table 3.1. Anisotropy skin S,

kmax / kmin 10 100 1000

Semi -0.157 -0.55 -1.06
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3.2 INFINITE CONDUCTIVITY OR UNIFORM FLUX VERTICAL
FRACTURE

The hydraulic fracturing technique has been used from the 1950's to improve the
productivity of damaged wells, or wells producing from low-permeability reservoirs. By
injecting fluid into the formation, a vertical plane fracture is created and filled with
propping agents to prevent closure.

Fractured well models for high and low conductivity, and the corresponding specialized
analysis, have been presented in Sections 1.2.4 and 1.2.5. Log-log pressure and
derivative responses are illustrated in Figures 2.16 and 2.17 (Section 2.3.3). The high
conductivity fracture model is discussed in this Section, fractures with a low
conductivity are considered in Section 3.3.

3.2.1 Model description

The well intercepts a symmetrical vertical plane fracture of half-length x,(Figure 1.11).
The well and the fracture penetrate totally the reservoir thickness and there is no
pressure loss along the fracture plane. Wellbore storage effects can be present in the
well, and the fracture can be affected by a skin damage.

Characteristic flow regimes

Two characteristic regimes can be observed after the wellbore storage early time effect,
as illustrated on Figure 1.12:

1. Linear flow, with Ap proportional to Ar’* and a half unit slope straight line on
pressure and derivative log-log curves (Figure 2.16). The linear flow regime defines the
k(x/)2 product, and therefore the fracture half-length x,.

2. Pseudo-radial flow regime when the flow lines converge from all reservoir
directions. During the pseudo-radial flow regime, the pressure follows a semi-log
straight-line behavior, as during the usual radial flow regime towards a cylindrical
vertical well. The fracture influence is then described by a geometrical negative skin
and the pseudo-radial flow analysis provides the permeability thickness product k# and
S(;.

172

Analytical solutions

The analytical solutions for fractured wells have been developed by Gringarten et al.
(1974 a, 1975 a) for the uniform flux and the infinite conductivity fractures. With the
uniform flux solution, the flow per unit of fracture surface is assumed constant along the
fracture length, while the infinite conductivity model is based on the assumption that the
pressure is uniform in the fracture. The solutions are obtained by dividing the fracture
length into M segments, and using the Green's function and product solution method
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(Gringarten and Ramey, 1974 b). When uniform flux is established along the fracture
extension, each segment produces at the same rate. The uniform flux solution was
designed as a first approximation of the behavior of a fractured well, and is the exact
solution only at early times (when the flux in an infinite conductivity fracture is
uniform).

Gringarten et al. (1974 a) obtained the infinite conductivity model by measuring the
pressure drop at the point x;, = x/x, = 0.732 in the uniform flux fracture. The authors
showed by numerical simulation that, in infinite conductivity fractures, the flux
distribution changes after the early time response, and reaches a stabilized profile along
the fracture length. During the pseudo-radial flow regime, the two ends of the fracture
arc the most productive segments. as it will be shown also for horizontal wells (see
Section 3.6). The shape flux distribution for the different fractured well models is
discussed further in Section 3.3.6.

3.2.2 Review of pressure and derivative type curves for a well with infinite-
conductivity fracture

In the mid 1970's, the catalog of available pressure type curves was extended to the
fractured well condition. The curves offer the possibility of identifying the nature of the
wellbore stimulation, and to quantitatively analyze the effect of fracturing on well
responses. In addition to the permeability. the analysis provides information concerning
the fracture characteristics. and possibly the distance to boundaries. Different type curve
presentations have been proposed, they are briefly summarized as follows.

Gringarten (1978) presented a pressure type curve for a well with an infinite-
conductivity fracture at the center of a closed rectangle, shown in Figure 3.4. The
dimensionless pressure p;, of Equation 2.3 is expressed as a function of the
dimensionless time 1, , defined with respect to the half fracture length x;:

0.000264%
ly =——— Al (3.8)
puuc, )
No skin damage and no wellbore storage effects are assumed. The permeability
thickness product is obtained from the pressure match (Equation 2.9), the fracture half-
length x; from the time match:

2
x; = 0.000264k 1 (3.9)
puc, T™M

The type curves of Figure 3.4 can be used for the analysis of fractured well limit testing
("A" is the area of the rectangular reservoir, x, the half-length of the reservoir in the
direction parallel to the fracture, and y, the half-width of the reservoir). In addition,
several build-up type curves are presented for the infinite reservoir case.
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Figure 3.4. Pressure type curve for an infinite conductivity vertical fracture at the center of a
closed rectangle. Log-log scales, py, versus ;. Graph courtesy A.C. Gringarten.

When wellbore storage dominates the early times response, the type curve of Figure 3.1
with p, versus the dimensionless time group ¢, /Cp, can be used. On this type curve,
values of C},¢™ smaller than 0.5 are generated with the infinite conductivity fracture
model and wellbore storage effect.

A match on a low Cj,e* curve yields the permeability thickness product k4 from the
pressure match, the wellbore storage coefficient C from the time match and the
geometrical skin Spxr from the curve match. From equation 3.12, the geometrical skin
can be used to estimate the fracture half-length x,.

The pressure derivative behavior for uniform flux and infinite conductivity fractures has
been investigated in 1988 by Tiab and Puthigai by differentiating the pressure with
respect to time. In the following text, the logarithmic derivative presented in Chapter 2
is considered, with the Alagoa et al. type curves (1985).

These type curves combine the pressure and derivative presentations. The effect of
wellbore storage is considered, the various curves are expressed with p;, versus 5, and
they are labeled in terms of Cp,.

0.8936C
(3.10)

Cpy =———
. ¢c,hx?

The matching procedure is similar to p, versus ¢, the Gringarten’s type curves, and the
wellbore storage coefficient C can be estimated from Cpyand x;.



58 Wellbore conditions

10
[=]
o
v _o
5 Q
gg 1 0.5 line
ad®
0w 2
NG
@ 5 —  Uniform flux
C
.g 102 — Infinite condutivity
a . )

104 102 102 101 1 10 102 108
Dimensionless time, ty,

Figure 3.5. Responses for a well intercepting a high conductivity fracture. Log-ltog scales. pp
versus 77~ No wellbore storage effect. C;, = 0. Infinite conductivity and uniform flux models.

The type curves for the infinite conductivity model and for the uniform flux fracture
solution exhibits the same characteristic shapes during the three typical behaviors and,
in fact, present very similar log-log pressure response curves. Only the derivative curves
show some difference during the transition from linear to radial flow as discussed next.

3.2.3 Matching procedure on pressure and derivative responses
Infinite conductivity and uniform flux models

In practice, wellbore storage is short lived in fractured wells, and frequently is not
observed on the recorded data: the response starts to follows the half unit slope pressure
and derivative straight lines from early time as illustrated on the examples Figure 3.5
where the curves are generated with C;= 0. The two high conductivity fracture models
are slightly different at intermediate times, between linear flow and radial flow. With
the uniform flux model, the transition from the half unit slope straight line to the 0.5
line is shorter, and the angle between the two regimes is more pronounced. The pressure
curve is slightly higher.

When matching test data against a high conductivity fracture model such as on Figure
3.5, the derivative stabilization during the pseudo radial flow regime is used to
determine the pressure match (giving the permeability thickness product k#). The
location of the half unit slope pressure and derivative straight lines provides the half
fracture length x, with Equation 3.9 (the longer the fracture, the later the start of the
pseudo radial flow regime).

When the log-log match is adjusted with a well test interpretation software package, the
pressure and derivative data curves are presented versus the elapsed time Az, and the
theoretical model is graphed on the same scale. /ncreasing the fracture half length x, of
the model displaces its half unit slope straight lines toward later times, to the right of the
plot (Equations 1.25 and 2.29).
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Effect of wellbore storage

On Figure 3.6, wellbore storage effect is introduced on infinite conductivity fracture
responses (Cp of Equation 2.5 is used). For Cp values of 10° or above, the wellbore
storage effect is indicated by a deviation below the half unit slope lines, before linear
flow becomes evident. In case of high C),, the wellbore storage effect masks the half
unit slope pressure and derivative straight lines, the choice between a high or a low
conductivity model (Section 3.3) is difficult, and x; is not uniquely defined from early

time data analysis.
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Two types of damaged fracture have been considered (Cinco-Ley and Samaniego-V,
1981). Either an infinitesimal skin is located around the fracture (when a zone of
reduced permeability has been created around the fracture by fracturing fluid loss), or
the damaged region is located within the fracture near the wellbore (this configuration is
called choked fracture).

With damaged fractures, the duration of the wellbore storage effect is extended and the
response follows a unit slope straight line at early time, as illustrated in Figure 3.7.
Later. the derivative describes a hump until the sand face rate is fully established. Then,
the reservoir response shows the linear. followed by the pseudo radial flow,
characteristic derivative behaviors.

3.2.4 Associated specialized plot straight lines

The limits of the various regimes are identified from the straight-line portions of
pressure and derivative curves of Figures 3.5 to 3.7. The first straight line, with unit
slope. is usually not seen on non-damaged fractured well data: wellbore storage analysis
Is in most cases not justified.

Linear flow analysis

Linear flow specialized analysis (Section 1.2.4) is carried out on the data points
matching the pressure and derivative tvpe curves on the two half unit slope straight
lines: a plot of the same points with Ap versus the square root of Ar exhibits a straight
line passing through the origin (Figure 1.13). The slope ms is used to provide an
estimate of the fracture half-length v, If & is known from radial flow analysis,

Ho gB

¥, =4.06
’ pc, k hmy

(1.26)

When the first points of the well response are affected by the wellbore storage, the data
plot does not follow linear flow behavior at very early time: it reaches the straight line
only when all well bore storage has become negligible. On the specialized square root
of time scale. both the data plot and the straight line of slope m; pass through the
origin, but the data plot curves below the straight line until wellbore storage has died
out,

In the case of a shut-in period when the previous drawdown was stopped during the
linear flow regime, the Horner time for linear flow of Equation 2.19 can be used.
Pseudo-radial flow analysis

After linear flow, the response exhibits a pseudo radial flow behavior that displays the
usual semi-log straight line behavior. Strictly speaking, flow lines to the fracture are not
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radial, and this regime is affected by the near wellbore condition as illustrated on Figure
3.8. Cinco (1982) reports the drainage becomes approximately circular when the radius
is more than 3 times the fracture length.

In a vertical cylindrical well, the flow lines converge with a radial geometry until the
fluid enters into the wellbore. With fractured well, the flow is distributed along the
fracture length, and the density of flow lines is therefore reduced in the near wellbore
region. By breaking the formation, the communication between the reservoir and the
well is improved and less pressure loss occurs in this reservoir region: fractured wells
exhibit a negative geometrical skin S; during radial flow.

This geometrical skin Sg is related to the fracture half-length x, (Gringarten et al., 1975
a). For the uniform flux solution, the geometrical skin Sygy is:

X = 2.718}*We_SUFF (3.11)
For the infinite conductivity solution, Syxr is expressed:
X, = 2rwe*SHKF (3.12)

Values of skin for fractured wells can be as low as —6 or —7.

In can be noted that, for an infinite conductivity fracture, the effective we[l radius r,,, of
Equation 1.14 is exactly one-fourth the total fracture length, the Cpe® parameter is
related to Cp, of Equation 3.10 with:

Cpe™ =C), =4C), (3.13)

In Equation 3.13, Cp, is the dimensionless wellbore storage calculated by using the
effective wellbore radius instead of ,, in Equation 2.5.

W
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Figure 3.8. Flow line geometry near a fractured well.
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3.3  FINITE CONDUCTIVITY VERTICAL FRACTURE

When the pressure gradient along the fracture length is not negligible, the low
conductivity fracture model has to be used for the analysis of hydraulically fractured
wells. This may happen for example when the permeability of the fracture is not very
high compared to the permeability of the formation, especially when the fracture is
long.

3.3.1 Model description

With the finite conductivity fracture model (Cinco-Ley et al., 1978 a), linear flow is
produced within the fracture. in addition to the linear flow regime from the pay zone
into the fracture plane. The fracture geometry is defined on Figure 1.14: the well
intercepts a symmetrical vertical plane fracture of half length x;, w,is the width, 4, is the
fracture permeability and kp, is the fracture conductivity.

Characteristic flow regimes

Three characteristic regimes (Cinco-Ley. and Samaniego-V., 1978 b) can be observed
after the wellbore storage effect:

I. At early times. as long as the fracture tips have not been reached, the combination
of fracture linear flow and reservoir linear flow produce the so-called bi-linear flow
regime. The pressure change is then proportional to the fourth root of the elapsed time

YAl and, on the log-log plot, both the pressure and derivative responses follow a
quarter unit slope straight line (Figure 2.17). When present, the bi-linear flow regime
gives access to the fracture conductivity kav, (the wellbore pressure is independent of
the fracture half-length x, during bi-linear flow).

2. Later, the pressure behavior becomes equivalent to that of an infinite conductivity
fractured well. A /linear flow regime can be observed, characterized by the usual
pressure and derivative half unit slope log-log straight lines. The fracture half-length x;
can be estimated.

3. Pseudo-radial flow regime, with the derivative stabilization is observed next, to
give the permeability thickness product &4 and the geometrical skin Sg;.

Analytical solutions

Cinco-Ley et al. (1978 a) used a semi-analytical approach to derive low conductivity
fractured well responses. They broke up the fracture into several uniform flux segments,
solve a set of equations to generate the flux profile along the complete fracture, and
finally estimate the wellbore pressure.
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Several extensions of the basic finite conductivity fractured well model have been
considered: wellbore storage effect, skin damage on the fracture walls or choked
fracture (Cinco-Ley and Samaniego-V, 1981), variable conductivity and length (Bennet
et al., 1983), etc.

3.3.2 Review of pressure and derivative type curves for a well with finite-
conductivity fracture

Cinco-Ley et al. (1978 a) presented a set of type curves with the dimensionless pressure
pp expressed as a function of the dimensionless time tpy of equation 3.8 for different
values of the dimensionless fracture conductivity kpwyp, expressed as:

kpw,

k pywy, =——"=
LAy

(3.14)

Equation 3.14 shows that kpwy, is directly proportional to the fracture conductivity and
inversely proportional to the reservoir permeability and fracture half-length. It can be
concluded that the effect of low conductivity in the fracture is magnified when the
reservoir permeability is high, or the fracture long (large & x; product). The authors
indicate that the infinite conductivity assumption is valid when the dimensionless
fracture conductivity kjpwy, is greater than 300. For lower values, the wellbore pressure
is affected by the fracture conductivity and, as a result, the geometrical skin Syxr is less
negative than for an infinite conductivity fracture.
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Figure 3.9. Pressure type curve for an finite conductivity vertical fracture (Cinco-Ley et al., 1978
a). Log-log scales, p;; versus . Graph courtesy A.C. Gringarten.



64 Wellbore conditions

0.5

X 107k
$

[

102 . . .
10 1 10 102 108
Dimensioniess fracture conductivity, kyw,s

Figure 3.10. Effective wellbore radius for a well with a finite conductivity fracture. Log-log
scales.

Other type curves presentation have been proposed, including wellbore storage and
fracture skin effects. The derivative of finite conductivity fractured wells with wellbore
storage has been considered by Wong et al. (1985).

3.3.3 SKkin discussion

For a finite conductivity fracture. the skin is defined by two terms (Cinco-Ley and
Samaniego-V, 1981): the geomerrical skin Syyxy assuming an infinite conductivity
fracture (Equation 3.12), and a correction parameter G to account for the pressure
losses resulting from the low fracture conductivity.

ke ) o,
+In—= (3.15)
X/ .\”/

Sixr =G

. . N . : =SixF
On Figure 3.10, the ratio of the effective well radius of Equation 1.14 (r,, =r,e "MK
to the fracture half-length x,. is presented on log-log scales as a function of the
dimensionless fracture conductivity &, w, /kx, . When k, w, [kx, s greater than

300, the fracture behaves as an infinite fracture, S;«r = Sykr and rw/x, =0.5. For

lower conductivities. the skin is less negative and rw/x, is smaller.

3.3.4 Matching procedure on pressure and derivative responses

On Figure 3.11, an example of a low conductivity fracture response is presented with p),
versus f,/Cp. The wellbore storage effect is not visible on this example, and three
subsequent flow regimes can be identified:
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Figure 3.11. Response for a well intercepting a finite conductivity fracture. Log-log scales, pp
versus £,/Cp. No fracture skin, kpwy, = 25.

1. At early times, during bilinear flow, pressure and derivative curves follow two
parallel straight lines of slope 1/4.

2. During the linear flow regime, two other parallel straight lines of slope 1/2 are
evident.

3. When radial flow is reached, the derivative stabilizes on 0.5 (in dimensionless
scales).

The distance between the two quarter-unit slope straight lines is log (4), and the distance
between two half-unit slope lines is log (2).

For large fracture conductivity kpwyp, the bilinear flow regime is short lived and the 1/4
slope pressure and derivative straight lines are moved downwards. The behavior tends
to a high conductivity fracture response.

Conversely, when the dimensionless fracture conductivity is low (curve kgpywy =1 on
Figure 3.12), the linear flow regime is not present and the response changes directly
from bi-linear flow to the pseudo radial flow regime, through a transition that never
describes the half unit slope line. In such configuration, the pressure loss in the fracture
is large, and two segments of the fracture near the fips are not participating to the flow.

With real test data (Ap, Ap® vs. Ar), when all flow regimes are clearly defined, the match
against a low conductivity fracture model such as on Figure 3-11 provides the ik
product from the pressure match, the fracture half-length x,and the fracture conductivity
kw, from the location of the half unit and quarter unit slope derivative straight lines
respectively.

The example response of Figure 3.11 is displayed over 6 time log-cycles (¢,/C), from
10" to 10°). Frequently, log-log plots of actual build-up data describe the response
during a smaller time range, and the match is performed only on a fraction of the
‘complete model response. Matching is then difficult and the solution non-unique:
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Figure 3.12. Response for a well intercepting a ftinite conductivity fracture. Log-log scales. pp
versus #,/C,. No fracture skin. ;e = 1. 10 and 100.

e With some fractured well responses, it may take several months to reach the start of
the pseudo radial flow regime but in practice the data do not go beyond the bilinear or
linear flow period.

s Depending upon the wellbore storage and fracture parameters, the different regimes
can overlap, and some of them are not shown clearly. When the response is similar to
the infinite fracture example with wellbore storage of Figures 3.6 or 3.7, the choice of
the type of fracture response. and the resulting fracture parameters, are not uniquely
defined.

When a long fracture is planned. it is recommended to test the well before fracturing, in
order to obtain an estimate of the permeability thickness product. After fracturing, this
parameter may not be defined by transient pressure analysis.

3.3.5 Associated specialized plot straight lines

The three regimes described on the example response of Figure 3.11 can be analyzed by
straight-line methods. The time limits of the specialized analysis straight lines are
defined by the type curve match. using in particular the improved definition of the
derivative presentation. At early time. a fourth regime, corresponding to wellbore
storage, can possibly be present.

The three or four typical regimes cannot be expected to be present in a single response,
only one or two are in general developed enough for specialized analysis. In some
cases, long responses only present transitional behaviors from one regime to the next,
and no straight-line analysis can be performed.
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Bilinear flow analysis

The quarter unit slope log-log straight line corresponds to a plot of Ap versus the fourth
root of the elapsed time At (Section 1.2.5): the bilinear flow regime is characterized by a
straight line passing through the origin (Figure 1.15). When the formation permeability
is known, the slope mgi gives the fracture permeability-width product from Equation
1.28:

2
kpwp =1944.8 ! 9Bu (1.28)
guc k\ hmg)

Linear and Pseudo-radial flow analyses

Specialized analyses of linear and pseudo-radial flow are performed as described in the

previous Section 3.2, for a high conductivity fracture. On a Ap, \/E scale, the straight
line passing through the origin is used to estimate Ioc/»2 (Equation 1.26). When radial
flow has been reached after the initial fracture flow regimes, the semi-log straight line
can be used to estimate the permeability thickness product &k and the negative
geometrical skin Spxr of Equation 3.15.

3.3.6 Flux distribution along the fracture
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Figure 3.13. Stabilized flux distribution. Uniform flux, Infinite conductivity (kpwy, > 300) and
Finite conductivity fracture (kpwy = 0.5 and 5) models.
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When the pseudo radial flow regime is reached, the distribution of the flux entering the
fracture stabilizes. Figure 3.13 (Cinco-Ley and Samaniego-V, 1981) presents the
dimensionless flux distribution for the uniform flux, infinite conductivity and finite
conductivity fracture models. The flux per unit of fracture length being g(x, Af),

qg(x, At)x
4 :2—7—’ (3.16)

With the uniform flux model. g;, =1. In case of infinite conductivity fracture (kpwy,
>300). the fluid enters the fracture mostly in the region near the tips. When the fracture
conductivity is decreased. the fracture section near the wellbore becomes more
productive.

3.3.7 Field example

Figure 3.14 presents the pressure and derivative responses of in a well intercepting a
low conductivity fracture. During this two day build-up test, only the bilinear flow
regime is evident with a long quarter unit slope straight-line. At very early time, the data
is apparently affected by the end of wellbore storage but, on the late time data, no
transition towards the linear or the radial flow regime can be identified.

The test is too short for estimating the reservoir permeability and only the group
\/;(k,w,) can be accessed from the analysis of the bilinear flow regime (with

Equation 1.28).
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Figure 3.14. Build-up test in a well intercepting a low conductivity fracture. Log-log scales.
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3.4 WELL IN PARTIAL PENETRATION

In the case of limited entry or partial penetration, the well communicates with only a
fraction of the producing zone thickness. This could be due to plugged perforations for
example, but partial penetration is also sometimes decided on for production efficiency.
This happens when a gas cap or a bottom water drive is active at the upper or lower
boundary, the well being perforated as far away as possible from the constant pressure
surface. A discontinuity in the upper or lower sealing boundaries, which create
communications between the open interval and another zone, also produces partial
penetration behavior. This latter configuration can be analyzed with the two-
permeability solution (Chapter 4).

Partial penetration corresponds to a reduction of the surface of contact between the well
and the reservoir, as opposed to the other wellbore conditions discussed in this chapter,
such as fractured wells, slanted and horizontal wells. They all increase this contact, and
are characterized by a negative geometrical skin. Partial penetration effects produce a
positive geometrical skin, resulting from the distortion of the flow lines when
converging towards the perforated interval (see Figure 1.16).

3.4.1 Model description

A schematic of a well with limited entry is shown in Figure 3.15. The interval open to
flow has a thickness 4., which is a fraction of the reservoir thickness 4. The center of
the open interval is at a distance z,, from the lower reservoir boundary. The permeability
is ky in the horizontal direction and £ in the vertical direction.

Characteristic flow regimes
When the lower and upper boundaries are impermeable such as on the flow diagram of

Figure .16, three characteristic regimes can be observed after the wellbore storage
early time effect:

|
s\iEE kaH
it

Figure 3.15. Geometry of a partially penetrating well.
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1. Radial flow over the open interval 4,, with Ap proportional to log(Af) and a first
derivative plateau. Analysis of the initial radial flow regime yields the permeability-
thickness product for the open interval &, 4, and the infinitesimal skin of the well, S,,.
2. Spherical flow with Ap proportional to Ar'? and a negative half unit slope straight
line on the derivative log-log curve (Figure 2.18). The spherical flow regime lasts until
the lower and upper boundaries are reached. Analysis yields the permeability anisotropy
ki ky (Section 1.3.6).

3. Radial flow over the entire reservoir thickness with Ap proportional to log(Af) and a
second derivative stabilization. The reservoir permeability-thickness product &y %, and
the total skin Sy can be estimated from the second radial flow regime

If the top or bottom boundary is a constant pressure interface, the pressure stabilizes and
the derivative drops after the spherical flow regime.

Analytical solutions

The partial penetration solution for uniform flux and infinite conductivity wellbore was
presented by Gringarten and Ramey (1975 b), using the same approach as for the
fractured well models (see Section 3.2). When there is no pressure loss in the wellbore,
the infinite conductivity well is obtained from the uniform flux partial penetration
solution by computing the wellbore pressure at an effective point located at 0.732 of the
half-length of the producing interval.

3.4.2 Model responses, sealing upper and lower limits

Due to the lack of distinguishable features on pressure responses, no type curves for
wells in partial penetration are currently used, although some have been presented in the
literature (Kuchuk and Kirwan, 1987). The derivative is firstly used for the analysis of
limited entry wells, and a computer program is required for generating and matching the
model.

Influence of k-7 ky

Typical responses of partial penetration in a reservoir with sealing upper and lower
limits are presented in Figures 3.16 with the usual p;, versus #/C; dimensionless
variables. Only 20% of the thickness is communicating with the well and the producing
segment has no skin and is centered in the formation. Three permeability anisotropy are
considered with &,/ k, =107, 102 and 107
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Figure 3.16. Responses for a well in partial penetration with wellbore storage. Log-log scales, pp
versus t/Cp. h/h = 1/5 in center of the interval, Cp = 33, S,=0, ky/ky = 0.1, 0.01 and 0.001.

During the final radial flow regime for the complete interval thickness, the derivative
stabilizes at 0.5 whereas it stabilizes at 0.5 4/A, during the first radial flow regime in
front of the perforated segment. The negative half-unit slope straight-line transition
between the two derivative plateaus defines the quality of the vertical communication in
the reservoir. With Jow k- /kg, vertical flow is limited and the spherical flow regime is
seen late. On the example ky /k;; = 107, the first stabilization is well developed before
the subsequent negative half-unit slope line. More frequently, partially penetrating well
responses are similar to curve ky /ky = 107, where the first stabilization does not exist
and spherical flow is reached as soon as the wellbore storage effect ends.

With low vertical permeability, a significant pressure drop is created when the flow
lines converge towards the producing segment, generating a large positive geometrical
skin Spp. The total skin S;-, measured during the final radial flow regime, combines the
well infinitesimal skin S,,, and the additional completion skin Spp with :

S,:—h—SW+SPP (3.17)

W

On Figures 3-16, the largest geometrical skin Spp corresponds to &y /ky =10: this
pressure curve is above that for &y Jky; =107 during the final radial flow. The different
skin factors for limited entry wells are further discussed in Section 3.4.3.

Influence of z,/h

If the perforated segment is not centered in the producing formation, the spherical flow
regime ends when the closest upper or lower boundary is reached. A hemi-spherical
flow geometry is then developed, until the second boundary is seen.
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As shown on Figure 3.17, the derivative also follows a negative half-unit slope straight
line during the hemi-spherical flow regime, but displaced above the first corresponding
to spherical flow. A similar behavior has been discussed for radial flow in Chapter 2
with the sealing fault example in Figure 2.20. In the case of spherical geometry, the
hemi-spherical flow regime shows the characteristic behavior of spherical flow, but the
apparent permeability is half the true kg of Equation 1.29.

The example response of Figure 3.17 with a centered perforated segment (z,/4 = 0.5) is
used in the Section 9.4.2. for the vertical interference test discussion.

3.4.3 SKkin discussion

Several methods have been proposed to estimate the geometrical skin Spp from the
system parameters. Gringarten and Ramey (1974 b) and Streltsova (1979) use infinite
series, Brons and Marting (1961 a) presented several graphs, and Odeh proposed an
empirical equation (1980).

In 1987. Papatzacos derived a formula, using the penetration ratio h, /h, the

dimensionless reservoir thickness-anisotropy group 4, and the distance z,. from the
center of the open interval to the lower or upper boundary:

hy,

Sy = o ln(;zh,) LN (:w+/1w/’4)(/1—:w+h‘,/4) (3.18)
hw 2 hw 24 ],L‘L (:w _}111‘,’/4)(/7 -y "hw/4)

h

where
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k
Iy _n i (3.19)
r, \ ky

In 1991, Vrbik proposed another approximation:

Spp = [ﬁ - 1](1 2704~ Inpy )~ [{’;ﬂ 7(0)- fL__hhﬁj N
Ao osE ) osf Bt

where

I

mhy

SO =ylny+2-y)InQ2-y)+ ln[sinz(ny/2)+0.1053/h,2)] (3.21)

Equations 3.18 and 3.20 provide a good approximation of Spp for typical partial
penetration well configurations (Papatzacos indicates that /,, /h and (h,, [r, Wk [k

should not be very small). Ding and Reynolds (1994) extended the equations 3.18 and
3.20 to a multi-layer case, and compared the resulting skin approximations to the skin
estimated with a finite-difference simulator. They confirmed the limits of validity of the
approximations, but they concluded that Equation 3.18 seems to give accurate results
for a wider range of parameters.

In the following tables, the geometrical skin Spp is estimated for a reservoir of thickness
h =1000r,. Two well locations are envisaged and different penetration ratios and
permeability anisotropies are considered. The tables present firstly results from
Equation 3.18 and secondly results from Equation 3.20.

Table 3.2, Geometrical skin Spp for a centered partial penetration well (z,, /4=0.5).

ki ! kyy 1 107 107 10°
hy, h=0.1 36.8-35.3 47.1-45.4 57.5-55.7 67.9-66.0
h, 1h=0.25 14.3-13.6 17.7-17.0 21.2-204 24.7-23.9
by, 1h=0.5 5.2-4.7 6.3-5.9 7.5-7.0 8.6-8.2

Table 3.3. Geometrical skin Spp for an off-centered partial penetration well (the perforated interval
is on top or at bottom).

kil ky ] 107 107 107
h, 1h=0.1 415413 519515 62.3-61.8 72.6-722
hy, 1h =025 15.8-15.6 19.2-19.0 22.7-22.4 26.1-25.9

h, 1h=0.5 5.6-54 6.7-6.6 7.9-7.7 9.0-8.9
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The two tables show that, even with a small penetration ratio, the geometrical skin Spp is
seldom larger than 30 or 50. If the producing segment is in addition damaged, the
product (#/h,)S,, of Equation. 3.17 can be very large, and the total skin S; can reach
values of several hundreds. On limited entry wells, wellbore damage is amplified.
Removing a wellbore damage S,, by acid stimulation, can significantly increase the
productivity of a limited entry well.

For a fully penetrating damaged well. S could be as high as 30, but not significantly
above. If a well shows a skin value higher than 30, partial penetration should be
envisaged even if the derivative response does not display the characteristic behavior of
a limited entry well.

3.4.4 Matching procedure on pressure and derivative responses

When matching test data from a partially penetrating well, reservoir and well
parameters can be estimated provided the three characteristic flow regimes are clearly
defined. The pressure match, adjusted with the final derivative stabilization during the
radial flow regime over the complete thickness, is used to determine the permeability
thickness product k4 # and the total skin S;. The wellbore skin S, and the penetration
ratio A,/h are estimated from the first radial flow (derivative plateau at 0.5 h/h, in
dimensionless terms). Once the k;, 4 product is fixed, reducing h, /h moves upwards the
first derivative plateau Ap |y san:

/7\1 _ Aandslab

(3.22)
h Apls( stab

The permeability anisotropy &, /ky and location of the open interval are estimated from

the spherical flow match on the -1/2 slope straight-line. Decreasing ky 'k displaces the

negative half unit slope straight lines toward /are times, on the right of the plot.

In practice, partial penetration responses rarely exhibit the three individual flow
regimes.

o  The first radial flow is often masked by wellbore storage effect. In such cases, 4, /h
and S,.. are not uniquely defined.

e The transition does not always follow a pure spherical flow behavior. It can for
example start in spherical geometry, and change to a hemi-spherical regime when the
well is not centered in the zone thickness and one of the sealing horizontal limits is
reached before the other. The definition of z./& from the spherical flow transition
between the two derivative plateaus is in many cases approximate.
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Discussion of the match results

When the relationship Equation 3,22 is used to estimate the penetration ratio 4,/A, a
constant permeability is assumed along the reservoir thickness. If the permeability
varies with the depth, the apparent perforated interval length A, estimated from the
partial penetration match is effectively longer or shorter than the real producing
segment when the well is perforated in front of a high (low) permeability interval. A
layered reservoir model can be used to refine the analysis (Section 4.2.3).

Similarly, the permeability anisotropy &; /ks estimated from the derivative match is the
ratio of the average vertical permeability to the average horizontal permeability. In the
vertical direction, permeability is averaged with a harmonic mean (see discussion of
Equation 3.56, Section 3.6.11). In case of low vertical permeability streaks in the
formation, the vertical permeability resulting from the match can be significantly lower
than the average vertical permeability estimated from core analysis. Values of &k, /&y as
low as 10 are not exceptional in transient test analysis results.

3.4.5 Associated specialized plot straight lines

After the usual wellbore storage regime, each of the three characteristic regimes of a
limited entry well can be analyzed by straight-line methods, provided the derivative data
plot indicates that they are well defined and not dominated by transitional behaviors
from one regime to next. The following Figures 3.18 and 3.19 are the radial flow and
spherical flow specialized plots of the three examples Figure 3.16.

Radial flow analysis

The two radial flow regimes can be analyzed on the usual semi-log scales. The first
radial flow relative to the open interval is frequently poorly defined as shown by the
examples in Figure 3.18 and semi-log analysis is mostly made on late time data, during
the radial flow regime over the complete reservoir thickness.

The analysis of the first semi-log straight line provides an estimate of the permeability
thickness product 4y A, and the wellbore skin coefficient S,. For shut-in periods, this
straight line extrapolates to a value higher than the initial pressure. The true
extrapolated build-up pressure p* is estimated from the second semi-log straight line,
which also defines the permeability-thickness product 4, A for the complete reservoir
thickness and the total skin Sy of Equation 3.17.
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Figure 3.19. Spherical flow analysis of Figure 3.16 examples. l/\/ At plot.

Spherical flow analysis

During spherical flow. the pressure is proportional to the inverse of the square root of

time. In some cases, the 1/\/A1 time scale of the specialized plot significantly

compresses the data, and the spherical flow straight line can be difficult to identify, as
illustrated in Figure 3.19. With the curve k; /k; = 107 for example, the derivative curve
shows that the spherical flow regime is established between ¢,,/C, =2*10" and 2*10°.

The limits of the straight line are therefore l/ t,,/C;, =0.002 and 0.007. With the
curve kytky = 10', the straight line, between l/,/t,) /Cpr, =0.02 and 0.07, is easier to
identify.

When the open interval is in the middle of the formation, the slope mspy of the spherical

flow straight line gives the permeability anisotropy from Equations 1.31 and 1.32. If the
open interval is close to the top or bottom-sealing boundary, flow is hemi-spherical and
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the slope mgpy must be divided by two in Equation 1.31. The intercept of the spherical
flow straight line with the pressure axis is not used.

3.4.6 Influence of the number of open segments

When the open interval is distributed in several segments, the ability of vertical flow is
improved compared to the single segment partially penetrating the well with the same
h,.. On the examples Figure 3.20 with 1, 2 and 4 segments, the negative half unit slope
straight line is displaced towards early rime when the number of segments is increased.
The geometrical skin of the single segment curve is Spp =17.9 (18.5 and 17.7 with
Equations 3.18 and 3.20), but it is respectively 15.9 and 13.9 with 2 and 4 segments.

3.4.7 Constant pressure upper or lower limit

In the example Figure 3.21, the bottom boundary, corresponding to a water / oil contact,
behaves like a constant pressure surface. No final radial flow regime develops after the
spherical flow regime, the pressure stabilizes and the derivative drops (Abbaszadeh and
Hegeman, 1988).

The effect of a gas cap or a bottom water drive on well responses is further discussed in
the boundaries Chapter, Section 5.10.3.
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Figure 3.20. Responses for a well in partial penetration with wellbore storage. Log-log scales, pp
versus 1,,/Cp. hy/h = 1/4, one, two or four segments. Cp = 100, S,,=0, k;7ky = 0.01, one segment
centered, two or four segments uniformly distributed in the interval.
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Figure 3.21. Responses for a well in partial penctration with a bottom constant pressure boundary.
Log-log scales. p;, versus 7,/Cpy. ho/h = U3, ) = 1000, S,=0. &;-k;; = 0.003. one scgment on top.
The dotted derivative curve describes the response with sealing upper and lower boundaries.
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Figure 3.22. Build-up test in a partially penetrating well. Log-log scales.

3.4.8 Field examples

In the following section, two partial penetration build-up examples are briefly
discussed. For the example shown in Figure 3.22, the well is shut-in at surface. The
response describes a long wellbore storage unit slope straight-line, followed by the
characteristic derivative hump, and by a negative half unit slope straight line. No
derivative stabilization is seen, neither of the two radial flow regimes is present on the
well response.
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The spherical flow regime starts after 15 minutes of shut-in, and is not finished at the
end of the two days build-up test. During the long spherical flow regime, the derivative
drops from 10° to 10 psi. Clearly, the penetration ratio /,/h must be less than 107", The
horizontal and vertical permeability cannot be estimated from this test data, only the
spherical permeability of Equations 1.29 and 1.30 can be evaluated.

For the 10 hours build-up example of Figure 3.23 the well was shut-in down hole. The
wellbore storage effect ends after one minute, a long declining derivative transition
follows immediately, and the final stabilization for radial flow is reached at the end of
the test response. The shape of the derivative curve suggests a partial penetration
behavior but, it does not follows the negative half unit slope straight line. The response
is in transition between the two theoretical derivative stabilizations (the first is masked
by the wellbore storage hump). The penetration ratio is large (A,//#=0.3).

With this test, the vertical and horizontal permeability are defined, only the perforated
interval thickness 4,, and the wellbore skin S,, are approximate.
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Figure 3.23. Build-up test in a partially penetrating well. Log-log scales.

3.5 SLANTED WELL

With directional drilling, many wells are not vertical when the formation is reached. In
the following section, we discuss the influence of the angle of slanted wells on pressure
behavior. We assume that the reservoir is homogeneous, the slanted well penetrates and
is perforated over the full formation thickness. The well deviation is defined by the
angle & with respect to the vertical plane.
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3.5.1 Behavior

Two radial flow regimes can be expected on slanted well responses: the first, at early
times. is in the plane normal to the slanted well. The second, after a transition period,
corresponds to horizontal radial flow in the producing zone. In practice, except when
the angle &is very large, the first regime is masked by wellbore storage effects and the
well behavior is similar to the response of a vertical well. In case of a fully penetrating
stanted well. the surface area exposed to flow is increased compared to a vertical well,
thus the slant produces an apparent geometrical negative skin. For very large angles, the
response tends towards a horizontal well response (Abbaszadeh and Hegeman, 1988).

3.5.2 SKkin discussion

Several components are contributing to the total skin factor Sy estimated during the
horizontal radial flow regime: the wellbore skin S, the negative skin due to anisotropy
between vertical and horizontal permeability S,; (see discussion of permeability
anisotropy Section 3.1.5), and the geometrical skin effect S,.

Cinco-Ley et al. (1975) give an approximated equation for the geometrical skin Sy:

2.06 1.865
6, 0,y k
Sy = f( . log h % (3.23)
41 \ 56 1007, \ k-

where 4, "is an equivalent angle. for the transformed isotropic system :

0, '=tan™ 5 tano (3.24)
kH

Equation 3.23 shows that the larger the thickness, the more negative is the geometrical
skin. The authors report that the approximation is valid when 0°<8,’ <75°.

After transformation of the vertical distances to correct the permeability anisotropy,
Abbaszadeh and Hegeman (1988) express the skin S,,; describing the elliptical wellbore
as:

1+ l,/\/coszﬁ“ + (k\- kyy )sin2 o,
n
2

S, =-I

ant

Pucknell and Clifford (1991) define the total skin factor Sy :
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cosb,
Sy = z (Sw + Salxi)+ Se (3.26)

\/coszé’w+ (ky /ky )sin? 6,

For usual angles, the skin Sy is not less than -2 or -3. For very large angles, the response
tends towards the horizontal well response, and S, can be lower. When the vertical
permeability 4 is Jow compared to &, 6,’is small and the geometrical skin Sy becomes
negligible. In such cases, the effect of the anisotropy is more pronounced and S,,; can be
more negative than Sy.

In the following tables, geometrical skin S, and S,,; are estimated in a reservoir of
thickness 4 =1000 r,,.

Table 3.4. Geometrical skin Sy

kel ky I 107 107 107
6=30° 0.8 0.1 0 0
H=60° 3.3 0.9 -0.1 0

Table 3.5. Anisotropy skin Sy,

k! ky ] 107 107 10°
8=30° 0 0 0.1 0.1
8=60° 0 0.3 0.4 0.4

3.5.3 Associated specialized plot straight lines

In theory, the two radial flow regimes can be analyzed using semi-log straight line
techniques. The first defines the average permeability in the plane normal to the well,
multiplied by the well penetration length. In practice, only the second regime,
corresponding to horizontal flow from the producing interval, is seen. Semi-log analysis
yields the permeability thickness product k A of the producing zone and the total skin
factor S; .

3.6 HORIZONTAL WELL

Advances in drilling and completion technologies have placed horizontal wells among
the techniques used to improve production performance. For example in the case of gas
cap or bottom water drive, horizontal wells prevent coning without introducing the flow
restriction seen in partial penetration wells. Horizontal drilling is also efficient to
increase the well surface area for fluid withdrawal, thus improving the productivity.
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3.6.1 Model description

In this section, we consider first the pressure behavior of horizontal wells in
homogeneous reservoirs with sealing upper and lower boundaries. As shown in Figure
3.24 the well is strictly horizontal, the penetration half-length is L and z, defines the
distance between the drain hole and the bottom-sealing boundary. The vertical part of
the well is not perforated, there is no flow towards the end of the well and the well
conductivity is infinite. k;, and ;- are the horizontal and the vertical permeability.

Characteristic flow regimes

In an infinite system, the geometry of the flow lines towards a horizontal well produces
a sequence of three typical regimes, as depicted in Figure 3.25. On the corresponding
pressure and derivative response illustrated in Figure 3.26, three characteristic behaviors
are displayed after the wellbore storage unit slope straight line:

1. The first regime is radial flow in the vertical plane. On a log-log derivative plot,
the wellbore storage hump is followed by a first stabilization. During this radial flow

regime, the permeability-thickness product 2./k;-k, L is defined with the average

permeability in the vertical plane, and the well effective length 2L.

2. When the sealing upper and lower limits are reached, a /inear flow behavior is
established. The derivative follows a half-unit slope log-log straight line.

3. Later, the flow lines converge from all reservoir directions towards the well,
producing a horizontal radial flow regime. The derivative stabilization corresponds to
the infinite acting radial flow in the reservoir, the permeability-thickness product is &y
A.
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Figure 3.25. Flow geometry to an horizontal well.

Extensions of the model

In practice, the well geometry is not as simple as in the ideal configuration described on
Figure 3.24. Most horizontal drain holes are not straight and parallel to the upper and
lower boundaries, but show several oscillations over the formation thickness.
Frequently, the skin is not uniform along the drain hole and in many cases the well does
not produce on the complete length but in one or several segments. When the pressure
gradient in the wellbore become large, the infinite conductivity hypothesis is not
applicable and the horizontal well shows a finite conductivity behavior.
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Figure 3.26. Horizontal well with wellbore storage and skin, homogeneous reservoir. Log-log
scales, pp versus t,y/Cp. Cp=1000, S,, =0, L =1000ft, ~ =1001t, r, =0.251t, z,, /h =0.5, k- /ky; =0.1.
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The basic horizontal well model is presented in details Sections 3.6.1 to 3.6.7.
Variations from the ideal horizontal well geometry are discussed in Section 3.6.9,
fractured and multilateral horizontal well responses are described in Sections 3.6.10 and
3.6.12. In Section 3.6.11, the influence of changes of reservoir properties in the
horizontal or vertical directions, or change of fluid properties in the formation, are
briefly reviewed. It is shown that when the basic horizontal well model depicted in
Figure 3.24 is used to describe complex well or reservoir configurations, the effective
well Tength and the average vertical permeability 4 resulting from analysis can be
significantly in error. With complex wellbore conditions, 4, is frequently under-
estimated whereas it can be over-estimated in layered systems with semi-permeable
interbeds.

Analytical solutions

The first analytical solutions for uniform flux and infinite conductivity horizontal well
responses have been derived in the mid 80's: Daviau et al. (1985), Clonts and Ramey
(1986) and Rosa and Carvalho (1989) have used source and Green's functions whereas
Goode and Thambynayagam (1987) and Kuchuk et al. (1991 a) obtained a solution by
application of Laplace and Fourier transforms. With the infinite conductivity horizontal
well model. the pressure is assumed constant along the wellbore. This is obtained by
measuring the pressure of a uniform flux horizontal drain at an equivalent point in the
well (Daviau. Clonts, Rosa). or by averaging the pressure along the length of the well
(Goode, Kuchuk). The effect of pressure drop within the horizontal section, and the
validity of the infinite conductivity assumption are discussed in Section 3.6.9.

Horizontal well solutions are approximate. They are generated using the line-source
solution, which is valid only when 7,/ r,.” >25. For large negative skin, this condition is
not satisfied at early time. Furthermore, when the anisotropy between vertical and
horizontal permeability is large, small discrepancies can be observed between different
horizontal well solutions. With the uniform flux distribution, the pressure is not uniform
around the wellbore circumference. and the choice of the reference point on the
wellbore can influence the result slightly.

Dimensionless variables

For a horizontal well with wellbore storage and skin, the dimensionless variables are
defined with respect to the total formation thickness. Equation 2.3 gives the
dimensionless pressure.

In the case of permeability anisotropy between vertical and horizontal directions, an
equivalent isotropic solution is used by introducing the anisotropy term k- /ky in the
definition of the dimensionless vertical distances (see discussion of horizontal
permeability anisotropy Section 3.1.5): when the vertical permeability &, is low, the
apparent vertical distances are increased. The apparent open interval thickness 4, and
position of the horizontal drain hole with respect to the lower boundary of the zone z,,
are defined respectively :
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(3.27)

(3.28)

The circular section of the horizontal well is changed into an ellipse and the horizontal
well behaves like a cylinder with the apparent larger equivalent radius r,, of Equation
3.6. With large anisotropy &y /ky , ry. can be 2 or 3 times larger than the actual wellbore
radius and the resulting anisotropy skin S, clearly negative (see Table 3.1).

Several skin coefficients are defined for horizontal wells: the mechanical infinitesimal
skin S,,, the anisotropy skin S,,;, the apparent skin during the vertical radial flow regime
Stv, the geometrical skin S; and the total skin during the horizontal radial flow Sy. The
definitions of all skins are presented in detail in the subsequent sections.

In the definition of the dimensionless terms, several well parameters can be used for the
reference length, considering the wellbore radius r, or, by analogy with wells
intercepting a fracture of half-length x, (see Section 3.2, Equation 3.8), with the well
half-length L. For the dimensionless time for example, 1, can be expressed by Equation
2.4 or by:

1) = 0'0002624kAt (3.29)
guc,L

No group of independent variables has been identified to provide a universal description

of horizontal well responses, as it has been possible with most well models. Many

authors use the ratio 4, of the apparent thickness 4, of Equation 3.27, by the well half

length L, as a leading parameter of horizontal well behavior (similar to Equation 3.19):

h
P L7 (3.30)
L LVk

In the following examples, the wellbore radius r, is used in the dimensionless
parameters definition. The dimensionless wellbore storage coefficient and the
dimensionless time group f, /Cp, are given respectively in Equation 2.5 and 2.6. All
examples presented below are generated with 4 = 100 ft and r, = 0.25 ft and the
dimensionless pressure pp, is presented versus the dimensionless time group £, /Cp.

The question of the reference in the definition of the dimensionless terms is further
discussed in subsequent sections for the different skin parameters estimated on
horizontal well responses.
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3.6.2 Equations for the characteristic regimes

In the following sections, the different limiting forms of the Kuchuk et al. (1991 a)
solution are presented, and the different skin coefficients defined from horizontal well
responses are described.

Radial flow in the vertical plane

During the vertical radial flow regime, the equation of the semi-log straight line is
expressed (Kuchuk, 1995):

162.64B kyky At h
- 28 Flog VEE2I 73.23+0.87S“—2logl 4| (3:3D)
2k ky L duc,r, 2\ Wk ki

The second logarithm of Equation 3.32 corresponds to the negative anisotropy skin Sy,
resulting from the equivalent wellbore radius r,. of Equation 3.6. The total skin factor
Sty measured from the early time radial flow analysis combines the wellbore
mechanical skin factor S, and S,,;.

i/kl',/kH *i/kn [ky
ani = S\«' —In
5

L

Srv=S8,+8

(3.32)

In the following text, it is assumed that the wellbore mechanical skin factor S,. is
uniform along the well length. The influence of non-uniform damage is discussed in
Section 3.6.9.

Linear flow regime

During the linear flow regime, the pressure changes as the square root of the elapsed
time:

8.128g8 | uAl  141.2¢B 141298
Ap =298 | ML RO g AP (3.33)
2Lh gcky 2 /kl'kHL ki h

LR

The first term of Equation 3.33 is similar to Equation 1.25 for a well intercepting a fully
penetrating vertical fracture. With a horizontal well, the flow lines have to converge
towards the well located at =, in the formation thickness. This partial penetration effect
produces a pressure drop, expressed with the skin S,. During the linear flow regime, the
two skin effects S,, and S, are additive.
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k , k 7z,
S.=-1.151]-2% ﬁlog s 1+ (=2 |sin ! (3.34)
: ky L | h kyy h

Equation 3.34 is approximate and only valid when the length of the well is long
compared to the apparent thickness (Equation 3.30, A, <2.5).

Pseudo-radial flow from the reservoir

Using the well half-length L as the reference for semi-log analysis of horizontal radial
flow, Kuchuk et al. define:

B kAt 141.2¢B 141.2¢B
ap=16261K 10g “H 9551 T g TS (3.35)
kyh| ~ guc,L 2Jkyky L ki h
where S, is ¢
k ? z 2
S, =8, LN DL (3.36)
: : ky 12\3  ho p?

In practice, the efficiency of horizontal wells is frequently described by the total skin
Sty defined with reference to a fully penetrating vertical well of radius r,. With the
usual radial flow relationship,

B kAt
Aap=162.6 T2 | log 1= ~323+ 0878y, (3.37)
Ky guc,ry,

the total skin factor Sy combines the wellbore mechanical skin factor S, and the
geometrical skin Sg. Comparing Equations 3.35 and 3.37,

ho kg
7 (3.38)
k
SR s 1151 0704 210g T2
2L\ ky L

the horizontal well geometrical skin S is expressed as :
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S, =081-Int 5.,
,.

W

g k- ol
08111512 log L+ k—Hﬁlog(m“ L+ —[Wsin(” v ) (3.39)
Fy ki L L h kHJ k h J
2

In Equation 3.39. the term [O,81~In(L/r“ )] is very close to the pseudo-skin of a

fractured well (Equation 3.12) and S.; (Equation 3.36) describes the pressure drop due
to the convergence of the flow lines before reaching the well. This term disappears
when 4, of Equation 3.30 is very small, for example in the case of a long well and high
vertical permeability k,. The geometrical skin S;; of horizontal wells is further discussed
in Section 3.6.4.

3.6.3 Derivative behavior
Description

Due to the complex behavior of pressure and derivative responses, no type curves are
available for horizontal wells. The derivative log-log curve is used for the identification
of the characteristic flow regimes, but the analysis is made by generating pressure and
derivative responses with a computer or, when applicable, by using specialized plot
straight lines.

In the example of a horizontal well response of Figure 3.26, the last derivative
stabilization (on the 0.5 line) corresponds to pseudo radial flow in the producing zone
whereas the first stabilization describes the initial radial flow in the vertical plane. The
average permeability in the vertical plane is defined as the geometric mean of &, and &y

and the permeability thickness product is 2./k, £, L . In dimensionless terms, the level

of the first stabilization is expressed with the dimensionless apparent thickness 4,

< chok
(Aplsl stab )1) = 0'23}1/) = 023—2 /(—H (3.40)

i

When both the upper and the lower boundary have been reached, there is no vertical
contribution to the flow any more, and expansion of the drainage volume becomes
strictly horizontal. If the length of the well is significantly larger than the reservoir
thickness, most of the production is due to /inear flow in front of the horizontal drain,
and the flow contribution from the two ends of the well are negligible. During this
intermediate time linear flow regime, the derivative follows a half-unit slope straight
line.
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Figure 3.27. Horizontal well. Influence of L. Log-log scales, pp versus #,/Cp.
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Once the linear flow regime has started, horizontal wells behave like wells intercepting
an infinite conductivity vertical fracture of half-length x,= L (Section 3.2). The presence
of an initial vertical radial flow regime before linear flow is simply seen as a skin on the
equivalent fracture model (Equations 3.34 during linear flow and 3.39 during pseudo-
radial flow).

Influence of L and k,/ ky

With the #, /C), time scale, the location of the half unit slope straight line indicates the
effective well half-length L. When L is doubled, the line is displaced by a factor of 4
along the time scale and, as the first derivative stabilization is an inverse function of L,

APy sap. 18 twice as low (Figure 3.27).

In the examples of Figures 3.28 and 3.29, three well lengths are considered but the
permeability anisotropy &, /k; is adjusted in order to keep the same derivative
stabilization during the vertical radial flow regime. With Figure 3.28, the vertical
permeability 4y is relatively large and (Ap,st stab.)/') =0.223 is below the radial flow 0.5

line. In such cases, the horizontal drain produces a negative geometrical skin (See
discussion of the geometrical skin Sections 3.6.4 and 3.7).
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Figure 3.28. Horizontal well. Influence of L, (Ap)g qav)p= 0.223. C;; =100, S,, =0, ky- /k;; =0.2,
L =2501t; ky Ik =0.05, L =3001%; k) /ky =0.0125, L =10001t; h =100ft, r, =0.25ft, z, /2 =0.5.
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Figure 3.29. Horizontal well. Influence of L. (Ap g qav)p =1. Cp =100, S,, =0, &;-/ky; =0.01,
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Conversely, when k;- is low, the first derivative stabilization is above 0.5
((Apm stab )n =1 on the examples Figure 3.29), and the horizontal well behavior tends

to be equivalent to a well in partial penetration (Section 3.4). In the case of low vertical
permeability, short horizontal wells exhibit a positive geometrical skin, and therefore an
overall damaged well behavior. This is an important point and demonstrates that not all
horizontal wells will increase productivity.

Influence of z,. /I

The first vertical radial flow lasts until one of the upper or the lower boundary is
reached. If the horizontal well is not centered in the zone thickness (z,. /A # 0.5), a hemi-
radial flow regime can develop when only the closest limit is seen. As long as the
second sealing boundary is not reached, the shape of the derivative curve is similar to
that of a vertical well near a sealing fault (Section 5.1). The second derivative
stabilization is at a level twice the first (of Equation 3.40), as illustrated on the examples
of Figure 3.30.
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Figure 3.30. Horizontal well. Influence of z,. Log-log scales, pp versus £p/Cp,.
Cp=1000, S,, =2, L =15001t, ky /k;; =0.02, h =100ft, r,, =0.25ft, z,, /h =0.5, 0.25, 0.125.
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The influence of z, /4 on horizontal well responses is further discussed next and in
Section 3.6.6, with a semi-log plot of Figure 3.30 examples.

3.6.4 SKkin of horizontal wells

Since several distinct flow regimes are observed during horizontal well responses,
several skin parameters can be defined to describe the different flow geometries, even
though the infinitesimal skin damage S, is constant at the wellbore. Furthermore, since
the skin factors are a dimensionless pressure drop, several references can be used to
normalize the different Apg,. In the following, we summarize the influence of the well
and reservoir parameters on the three skins usually estimated from analysis. We show
that, in the presentation of the analysis results, the reference used to express the skin
parameters must be clearly defined.

Mechanical skin S,,
As an extension of the total horizontal radial flow skin concept Sty used in Equation
3.37, the infinitesimal wellbore skin S, is sometimes also defined with reference to a

vertical well of radius r,, and a permeability k. The resulting skin parameter S°,, does
not define the completion quality as does S,, of Equations 3.31 and 3.32.

S;&,:O.Sh,)SW:—h— ’k—H‘SW (3.41)
BV

Geometrical skin S

ko = 1, 01, 001,  0.001

' ' '
[+2] B N (=)

Geometrical skin, S
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Figure 3.31. Semi-log plot of the geometrical skin S¢; versus L /r,. Influence of ky /ky.
h/r,=1000, z,, /h =0.5 and 0.1.
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ky thyy =01, 2, /h=0.5 and 0.1,

On Figures 3.31 and 3.32, the geometrical skin S, of Equation 3.39 is graphed versus
log(L/r,). With Figure 3.31, several hypothesis of permeability anisotropy k- /k; are
considered, assuming a constant formation thickness A/r,. When the vertical
permeability is very large (k;- — o), the partial penetration term S.; cancels out, and the
negative geometrical skin S; is a linear function of log(Z/r,). When a vertical pressure
drop is introduced as on the examples ;- / k;; <1, the geometrical skin is less negative,
and the curves reach the infinite vertical permeability behavior only when the drain hole
is very long.

For a given permeability anisotropy &;-/ k;, increasing the formation thickness A/r,. also
produces more partial penetration skin effect as shown on Figure 3.32. Again, when the
horizontal well becomes very long, the adverse effect of the vertical pressure drops on
the geometrical skin S;; is reduced. Ozkan and Raghavan (1989) indicate that the late
time response of horizontal wells tends to be equivalent to that of vertically fractured
ones when 4, <0.25.

The dotted curves on Figures 3.31 and 3.32 show the geometrical skin when the well is
not centered in the formation thickness. With z,. /4 =0.1, a small additional pressure
drop is introduced on the response, and S, is slightly less negative (see discussion of
Figure 3.33 in Section 3.6.6).

Total skin Sty

As shown on Equation 3.38, the total skin Spy; estimated on horizontal well responses
combines the geometrical skin S of Equation 3.39 and the mechanical infinitesimal
skin S, normalized by /4, (to give S°,, of Equation 3.41). For long horizontal drain holes,
hp 1s in general smaller than unity and the effect of a wellbore damage is reduced. The
opposite effect is observed on partially penetrating wells, where a mechanical skin
damage S, 1s amplified in the total skin (Equation 3.17).
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3.6.5 Matching procedure on pressure and derivative responses

Frequently, horizontal well responses do not exhibit the three individual flow regimes.
Horizontal wells involve large wellbore volume, therefore a large wellbore storage
coefficient and the wellbore storage effect lasts in general longer than in vertical wells.
For this reason, the first radial flow may be difficult to identify. The last derivative
stabilization is not always present within a normal test duration: the linear flow
transition, before pseudo-radial flow regime, can last several log cycles on the time
scale. The log-log diagnostic indicates the different flow regimes present on the
response, and which parameters, or groups of parameters, can be estimated and which
are not defined. Manual log-log analysis is not appropriate with horizontal wells, the
match is performed on a computer-generated response.

When the complete sequence of flow regimes is identified on the derivative response,
the early time unit slope straight line and the final stabilization are used to define the
time and pressure matches, yielding the permeability-thickness product kg% from
Equation 2.9 and the wellbore storage coefficient C from Equation 2.10. The
intermediate time linear flow regime is used to estimate the effective well half-length Z,
by adjusting the match of the generated curve on the half unit slope straight line. &y and
L being defined, the first derivative stabilization determines the permeability anisotropy
ky /| ky. The match of the pressure curve during the initial vertical radial flow regime
gives the mechanical skin S, (or Sty). The geometrical skin Sg;, and therefore the total
skin Sty are defined from the estimated well and reservoir parameters (Equations 3.39).
When the analysis is consistent, the theoretical pressure curve matches the data during
the complete response.

Frequently, some segments of the well do not produce and the effective length 2L
resulting from analysis is smaller than the drilled length. In Section 3.6.9, it is shown in
the discussion of Figures 3.37 and 3.38 that, when several sections opened to the flow
are distributed along the complete drain hole, a good match is frequently obtained by
assuming the total drilled length. Then, the estimated vertical permeability 4, can be
greatly under estimated.

When the vertical radial flow regime is masked by wellbore storage, the permeability
anisotropy &, /k;; cannot be assessed. The late time data give the total skin Sty but, since
the geometrical skin S;; is not defined, S,, is not reliable. Different hypothesis of &y /ky
can change S, from negative to positive values.

If the test data ends before the final derivative stabilization is reached, the horizontal
permeability ky and the total skin Sty are not fixed, but the half unit slope straight line
gives ky L° (see Equation 3.33). In such case, the vertical permeability &, can be
estimated from the vertical radial flow derivative stabilization, if present. Again, the
permeability anisotropy ky /ky and the mechanical skin S, are not accurately defined,
but the error on S, is in general small.
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Figure 3.33. Semi-log plot of Figure 3.30 examples.

3.6.6 Associated specialized plot straight lines

Four specialized analyses are possible, depending upon the type and the duration of the
regimes defined by the derivative log-log plot. The wellbore storage analysis is the
same as for vertical wells (Section 1.3.2). In the following section, straight-line analysis
methods are presented for the vertical radial flow. linear flow and the horizontal pseudo
radial flow regimes.

-

Figure 3.33 is a semi-log plot of the Figure 3.30 examples for three different well
locations z,, /4. When the well is centered (z,. /4 =0.5), the response exhibits two straight
lines on semi-log scale and, as the permeability thickness product during the initial
vertical radial flow is larger than & A. the first slope myrr is lower than the final straight
line slope myry. When the well is off-centered, an intermediate time straight line of
slope 2 mygr can be observed during the hemi-radial flow in the vertical plane (curve z,
/h =0.125). In such case, the final semi-log straight line is displaced upwards, because
of the influence of z, /& on the geometrical skin S;; of Equation 3.39. A similar effect on
late time semi-log straight lines can be observed in reservoirs with multiple boundaries
(Figure 5.13 of Chapter 5 for example).

Frequently, after wellbore storage. horizontal well responses only show transitional
behaviors between the characteristic flow regimes, and no specialized analysis is
possible. Furthermore, with build-up data, the Horner or multiple-rate superposition
methods used on the specialized plots can distort the characteristic straight lines, as a
result of the changes of flow behavior during the response (see Section 2.3.4). Except
for the final horizontal radial flow regime. the straight-line methods presented in the
following are seldom used.
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Radial flow in the vertical plane

During the first radial flow regime in the vertical plane, the equation of the semi-log
straight line is expressed in Equation 3.31. The slope mygy gives the product of average

permeability in the vertical plane 4/ k,, , multiplied by the perforated half-length L:

ﬂkl/kHL:?“l*;)q—Bﬁ (342)

MyRF

When L and the permeability anisotropy &, /k; are known, the skin Sy measured from
the first semi-log straight line is used to estimate the infinitesimal skin S,. From
Equation 3.31,

Ihr)- p(ar=0 Jkok ko [k
S, =1.151 plibr)- pl )—log ALENPTINL 4/—"+4{—H +3.23 (3.43)
MyRE duic,r2 2\Vky Yky

Provided the \/k,k, L product is correctly estimated from mygg, the dependence of S,

on the anisotropy k) /ky and on the effective well half-length L are logarithmic. The
calculation of the infinitesimal skin with Equation 3.43 is not very sensitive to an error
on ky /ky or L (in Section 3.1.5, it is shown that S,y is in general between 0 and -1).

When the nearest upper or lower sealing boundary is reached, the flow regime changes
to hemi-radial flow and the response deviates from the semi-log slope mygy to follow a
semi-log straight line of slope 2nygy. The time of intercept between the mygr and 2myge
straight lines can be used to estimate the vertical permeability &, with a relationship
similar to Equation 1.33 for a sealing fault (see section 5.1.3). Kuchuk et al. (1991 a)
propose to use the time Aty of end of the initial vertical radial flow (i.e. when the
derivative deviates from the first stabilization, and not the mid point of the derivative
transition as in section 5.1.1) with :

puc,

-l 2
=—  miny,,(h-z, 3.44
0.0002647A¢,,, { (h=2) } 349

W

12

For a build-up analysis, the first straight line extrapolated pressure is not used, p* is
estimated from the horizontal radial flow regime (Section 3.6.7).

Linear flow regime
This flow regime results of the influence of the two sealing upper and lower limits. As

already mentioned, the horizontal well behaves like an infinite conductivity fractured
well, but the linear flow regime can also be described as a boundary effect. In fact, by
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rotating the horizontal well through 90°, the configuration is similar to a vertical well
between two parallel sealing faults (Chapter 5.2). As opposed to a fractured well and
channel responses, described by Figures 3.5 and 5.4 for example, none of the curves
presented in Figures 3.26 to 3.30 present a long derivative half unit slope straight line.
On horizontal well responses, the vertical radial and hemi-radial flow regimes dominate
the early time data. Later, the transition between linear flow and the final pseudo radial
flow regime is long, a flow contribution from the reservoir region at both ends of the
well is felt a long time before the start of the final radial flow regime, and the pure
linear flow regime is short lived. In order to see this characteristic regime, the distance
between the two derivative stabilizations must be large. From Equation 3.40, it can be
seen that the well length 27 must be very long compared to the apparent thickness /, of
Equation 3.27 (small /,,. Kuchuk et al.. 1990).

When the half unit slope derivative straight line is clearly established, the corresponding
pressure points are analyzed on a plot of the pressure versus the square root of the
elapsed time, as for a fractured well or a channel reservoir (see Sections 3.2 and 5.2).
From Equation 3.33, the slope m ¢ of the straight line gives &y L

,

, B Y

kLt =165 12| A (3.45)
myh ) g,

The intercept p(Ghr) of the linear flow straight line at time O can theoretically be used to
estimate the infinitesimal skin S, (Kuchuk et al., 1990):

2 Jkky, L : 5 :
S, =Y ey - prar= 0} 2.303 log] 2| 1 P [sin| o (3.46)
141.2g8u h W h

Alternatively, when S, is known from previous vertical radial flow regime, z,. /4 can be
estimated from Equation 3.46 in the same way as, for channel reservoirs, the intercept
p(0hr) defines the well location between the faults (see Section 5.2.5). It can be noted
that the linear flow partial penetration skin effect S. of Equation 3.34 has the same form
as the geometrical skin of channel reservoir (Equation 5.8), discussed in Section 5.2.5.

Pseudo-radial flow from the reservoir

The analysis of the pseudo-radial flow regime is identical to the semi-log analysis of a
vertical well response (Equation 3.37). The straight line slope mygy gives the horizontal
permeability thickness product &y 4, the straight line intercept at 1 hour is used to
estimate the total skin coefficient Syy; and, for a build-up periods, the extrapolation to
infinite shut-in time gives p*.

kyh=——""2 (3.47)
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thr)— p(At =
Sy =1.151 plinr) - plar 0)»10g ki 4303 (3.48)
Myry ¢;uclrw

Either the mechanical skin S, or the geometrical skin S; can be estimated from
Equations 3.38 and 3.39.

3.6.7 Build-up analysis

On horizontal well responses, the flow geometry changes from early time to late time
and three different characteristic regimes can be observed, as illustrated on previous
derivative examples. For shut-in periods, the Horner and time superposition methods
used for straight line and derivative analysis are based on the assumption that all
superposed periods follow the same flow regime (see Section 2.2.2 and 2.3.4). In the
case of complex responses, it is likely that the extrapolated periods follow different
behaviors, and the multiple-rate superposition method is theoretically invalid.

The resulting build-up derivative can be distorted (see discussion Figure 2.20 for
example) but, since the log-log match of horizontal well responses is made on a
computer generated multiple-rate pressure and derivative curves, the use of
superposition time does not introduce error in the results,

With straight-line methods, it is found in practice that unless the production time is very
short and the well has been closed during the vertical radial flow regime, the
superposition methods are applicable for all flow regimes.

The semi-log superposition function can be used for radial flow analysis. As the
producing time ¢, is generally significantly greater than Ar during the early time vertical
radial  flow regime, the Horner time can be  simplified with
log(tp +A1/At)z log?, —log At (Equation 2.16), and the result becomes independent

of the production history. On a Horner plot of horizontal well response, the first straight
line gives the correct WL product with Equation 3.42. The first straight line

extrapolated pressure is not used, the pressure at infinite shut-in time p* is estimated
from the second straight line during the horizontal radial flow regime, if present.

When the linear flow regime is clearly established, build-up responses can be analyzed
with the Horner or multiple-rate superposition time corresponding to this flow regime
(Equation 2.19). If the previous drawdown had reached the horizontal pseudo radial
flow at time of shut-in, ¢, >> Ar then the method remains applicable.
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3.6.8 Field examples

In Figures 3.34 and 3.35. two examples of horizontal well build-up tests are presented.
For the example in Figure 3.34, the response describes the wellbore storage unit slope
straight-line, followed successively by the characteristic derivative hump, a first
derivative stabilization during the vertical radial flow, an increase of derivative near 10
hours, and the final derivative stabilization during the horizontal radial flow. This well
shows a usual horizontal well behavior similar to the responses in Figure 3.26, all
reservoir and well parameters can be estimated. The geometrical skin of this horizontal
well is negative.

A completely different response is obtained on the 100 hours build-up example of
Figure 3.35. After a short wellbore storage effect, the derivative stabilizes during the
first hour, and later it declines slowly until the end of the build-up test. No final
derivative stabilization is seen; the horizontal radial flow is not reached. The overall
behavior is similar to the low %, examples of Figure 3.29: the geometrical skin is
positive. Straight-line analysis of this horizontal well response is only applicable during
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the vertical radial flow regime, to provide \/kyk, L and S,. When the data is matched

against a computer-generated model, a relatively unique analysis is obtained. The
mechanical skin S,, is negative (no derivative hump is seen before the stabilization).

3.6.9 Discussion of the horizontal well model

In the following, several variations of the basic horizontal well model are considered.
With finite conductivity wells, or when the skin is non-uniform along the well length,
and with partially open horizontal wells, a pressure gradient is introduced in the
reservoir along the well length. These wellbore conditions can distort the pressure

response, especially at early time, and produce an under estimated /k, k, L product

when they are ignored. In case of non-rectilinear wells, the response is affected at
intermediate times, with little effect one the estimated parameters.

Finite conductivity horizontal wells

In the previous discussion, the horizontal drain is assumed to be of infinite conductivity.
Frequently, highly productive horizontal wells are completed with small diameters and
the pressure gradients along the well length cannot be neglected, particularly when the
flow becomes turbulent. Several authors have considered the effect of pressure drop in
the wellbore on horizontal well responses (Dikken, 1990; Ozkan et al., 1995; Ozkan and
Raghavan, 1997).

Using the same approach as Cinco et al. (1978 a) for finite conductivity fractured wells,
Ozkan et al. express the pressure drop with an equivalent wellbore permeability in the
case of laminar flow. The conductivity of the horizontal well is defined as an inverse
function of the well length 2. They describe the flux distribution along the wellbore as
follows, for high and low conductivity wells:

e  When the pressure gradients in the wellbore are negligible compared to the pressure
gradients in the reservoir, the well shows a high conductivity behavior. At early time,
the flux distribution is uniform along the weltbore. When the flow tends towards the
horizontal radial flow regime, the rwo ends of the horizontal drain are the most
productive sections, and the flux profile along the well length is described by a U-
shaped symmetric distribution, similar to the flux towards a well with an infinite
conductivity fracture (Figure 3.13).

e Inthe case of a low drawdown (such as when the reservoir permeability is high, the
thickness small and the horizontal section long), when the wellbore radius is not large
enough, the pressure drop in the wellbore can be comparable to the pressure drop in the
reservoir. The well behavior deviates from the infinite conductivity response. Due to the
pressure gradients in the low conductivity well, most of the fluid enters near the heel of
the well, resulting in a distortion of the flux profile from the uniform or U-shaped
distribution, into an asymmetric shape.
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As for the finite conductivity fracture model of Cinco et al., the effect of a finite
conductivity horizontal well is more pronounced at early times. The presence of high
pressure gradients in the wellbore can distort the pressure response during the vertical
radial flow and linear flow regimes. since the flow in the reservoir becomes three
dimensional (with a component parallel to the well axis). For low conductivity
horizontal wells, the derivative is above the vertical radial flow stabilization of Equation
3.40. The effect of wellbore friction is the highest in non-damaged horizontal wells, and
it tends to be reduced when the mechanical skin factor S, is large (Ozkan and
Raghavan. 1997).

By neglecting wellbore hydraulics. the product 2,/4;-k,, L can be underestimated by a

factor of 3 or more, but the permeability-thickness product &y /4 should be accurately
defined. In the analysis results, both the vertical permeability 4;- and the effective well
half-length L are too low, whereas the estimated mechanical skin factor S, is too large.

During the horizontal radial flow regime, the authors explain that the wellbore pressure
gradients simply introduce an additional pressure drop and the response of a low
conductivity horizontal well becomes similar to that of a damaged infinite conductivity
horizontal well (with a less negative total skin Sry).

Bourgeois et al. (1996 a) propose to approximate the effect of wellbore friction on the
total skin Sqy; by a rate dependent skin effect similar to the non-Darcy skin of gas wells
(Section 7.2.4). The total skin of Equation 3.38 is then changed into :

ho |k
Sti = — (S, + Dg)+ S, 3.49
TH= o, klv( 1)+ S (3.49)

where Dg describes the friction skin during the horizontal radial flow regime.

Non-uniform mechanical skin

Ozkan and Raghavan (1997) investigated the influence of a non-uniform mechanical
skin on infinite conductivity horizontal well responses. They concluded that, in early
time response, a change of skin damage along the well length tends to move the
derivative above the vertical radial flow stabilization of Equation 3.40. During the
horizontal radial flow regime, the derivative stabilization can be used to estimate the
kyh product but the well productivity (or the total skin Sry) is slightly influenced by the
skin factor distribution. Syy; is more negative when the two ends of the horizontal drain
are not damaged, and the mechanical skin is mostly located in the central section of the
well. No damage at the heel and ioe of the well improves the productivity because of
the U-shaped flux profile discussed earlier for high conductivity horizontal drains. As
described next, a similar conclusion is obtained with partially completed horizontal
wells.
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On Figure 3.36, three examples of non-uniform skin distributions are compared to the
response of a well with a constant mechanical skin factor S, = 4. The well length is
divided into four equal segments and each segment is affected by a skin factor S,,; such
as the arithmetic mean of S,; is constant at 4. In one case, the skin is linearly decreasing
from one end to the other and, in the two other cases, the damage is either located on the
two external segments or on the central sections. The examples Figure 3.36 confirms
that, when the ends are not damaged, the total skin of the well Syy is slightly more
negative than on the three other responses (Syy = -6.4 instead of -6.2). The authors
conclude that stimulation treatments of horizonta! wells should preferably concentrate
on the Aeel and the toe.

Partially open horizontal wells

Frequently, some sections of the horizontal drain are not contributing to the flow and
the effective well half-length L estimated by analysis is smaller than the length of the
drilled well. It is shown in the following that the pressure behavior of partially open
horizontal wells depends not only upon the effective well half-length L, but also upon
the number and the distribution of the open sections along the well-drilled length
(Goode and Wilkinson, 1991; Kamal et al., 1993; Yildiz and Ozkan, 1994).

On Figure 3.37, three different repartition examples of the productive segments are
compared. For all completion scenarios, the same effective well half-length is assumed
with L,~1/4L of the total drilled length (the response corresponding to the fully open
horizontal well is shown with the thin dotted curves). When only one section is
producing, the response corresponds to a horizontal well with half-length L, (thin solid
curves).
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Whatever is the repartition of the open sections, only the total length of the producing
intervals influences the response during the initial vertical radial flow. At early time, the
pressure and derivative curves generated for several producing intervals shows the same
behavior as the single producing interval with similar L., Later, when the distances
between the open intervals are large, each segment acts as a horizontal well, and a
horizontal radial flow geometry develops around the different producing sections.
Kamal et al. (1993) showed that, during this intermediate time radial flow regime, the
derivative stabilizes at 0.5 divided by the number of open segments. When only the heel
and toe of the well are producing (thick dashed pressure and derivative curves), the
derivative stabilizes at 0.25 and. when four segments are open to flow, it stabilizes at
0.125 (thick sohid curves).

Once the interference effect of neighboring segments is felt, the intermediate radial flow
regime changes into linear flow and the derivative response reaches that of a single
horizontal drain hole whose length corresponds to the distance between the two ends of
the external open segments. During the final horizontal radial flow, the total skin Sy is
slightly more negative when the open section is more distributed: with 4 segments,
Sty = -6.7 on Figure 3.37 whereas Sty = -6.3 in case of two segments and Sty = -5.4
with only one segment.

When analyzing the example with four segments of Figure 3.37, the horizontal
permeability is defined from the final derivative stabilization. The half unit slope
derivative straight line gives access to maximum external distance of the open
segments, which is 4 times the effective well length in this example. By assuming that
100% of the well length is producing with a single horizontal drain model, Kamal et al.
(1993) noted that the vertical permeability value resulting from the vertical radial flow
analysis of the first derivative stabilization is under estimated (by a factor of 16 in the
example).
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Figure 3.38 shows the influence of the penetration ratio for a horizontal well with four
uniformly distributed segments of equal length. The ratio of the total length of the open
segments to the length of the drilled well is respectively 12.5, 25, 50 and 100%. As
already observed on Figure 3.37, all derivative curves merge at late time, during linear
and pseudo radial flow, on the fully penetrating horizontal well response. Before, the
derivative is displaced upwards. In case of low penetration ratio such as on the example
12.5%, the flow is three-dimensional at early time (Yildiz and Ozkan, 1994) with a
decreasing derivative trend. Assuming no mechanical skin damage, the total skin Sty of
the fully penetrating horizontal well of Figure 3.38 is Sty =-7.9. With a penetration ratio
of 50, 25 and 12.5%, Sy is still very negative with respectively —7.4, -6.6 and —5.1.

Yildiz and Ozkan (1994) presented a general selectively completed infinite conductivity
horizontal well model. They observed that the rate profile and the pressure response are
affected at early time by a non-uniform skin distribution between the productive
segments and use of vertical radial flow analysis is not possible. They concluded that it
is not possible to estimate length and distribution of the open interval from use of
transient analysis.

Non-rectilinear horizontal wells

Horizontal wells are in general not parallel to the top and bottom sealing interfaces. In
Figure 3.39, two examples of non-rectilinear horizontal well responses are compared to
the straight horizontal drain hole model. Two symmetric geometries are considered: half
of the well length is either centered in the formation thickness (z,, =0.5k) or close to
upper or lower sealing boundary (z,, =0.05%4). The other half, distributed in two equal
segments at the heel and toe, is close to a boundary in the first case (z, =0.05k), and
centered in the other. The linear horizontal well, shown with a thin pressure and
derivative curve, is located at the average distance with z, =0.275A.
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When some segments of the horizontal well are closer to the upper or lower boundary,
the vertical radial flow regime ends earlier than when the well is a single linear segment
at the average vertical distance. The transition from the first derivative stabilization to
the half unit slope straight line is slightly distorted but, as shown Figure 3.39, the three
derivative responses are very similar. The pressure curves are not distinguishable (the
total skin Sy being slightly less negative when the two ends of the well are off-
centered).

3.6.10 Fractured horizontal wells

When fracturing horizontal wells. the fracture direction with respect to the wellbore
depends upon the orientation of the well compared to the least principal stress. If the
well is drilled in the direction of the least stress, several vertical fractures transverse to
the well may be created along the well length. When the well is perpendicular to the
least stress, the fractures are parallel to the well.

Soliman et al. (1990) presented an approximate analytical solution for horizontal wells
in the direction of the least stress, with circular finite conductivity transverse fractures.
Larsen and Hegre (1991) investigated both circular transverse, and rectangular
longitudinal. finite conductivity fractures. They assume the horizontal wellbore is not
perforated outside the fractured segments.

With a transverse fracture, the flow at early time is linear from the formation to the
fracture, and radial inside the fracture to the wellbore. Larsen and Hegre (1994 a) note
that this radial-linear flow geometry is similar to that of transient double porosity
reservoirs, slab matrix blocks with a semi-log straight line of slope half that of the radial
flow in the fissure system (Section 4.1.3). With transverse fractures, the radial-linear
flow regime is characterized by a semi-log straight line of slope mgr half that of the
pure radial flow in the fracture. Therefore, the slope is only a function of the fracture
conductivity kwy:
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B
Mgy = 813924 (3.50)
Yy

With a longitudinal fracture, a bilinear flow regime develops at early time, as for a

vertical well intercepting a finite conductivity fracture. On a pressure versus % plot,
the slope mpr, similar to Equation 1.27, is a function of the fracture half-length x,along
the horizontal well direction. When the reservoir permeability 4y is known, mg.r also
gives access to the fracture conductivity kw,

qBu <
(3.51)
gk e

mprF = 4411

In the case of a single fracture, the radial-linear or bilinear flow regime is followed by
the formation linear flow, and finally the pseudo-radial flow towards the horizontal

well. During the linear flow regime, the slope mf of the pressure versus «/E straight

line can be used to estimate the fracture extension if the formation permeability is
known. For a transverse circular fracture of radius ry, the authors express myr as:

mp=s51798 |_# (3.52)
hry \ deky

For a rectangular fracture of horizontal extension 2x; a relationship similar to Equation
3.45 is obtained:

myy = 40625 |_# (3.53)
hx_/ ey

On a log-log derivative plot, the sequence of characteristic straight lines is, after
wellbore storage,

1. first stabilization in case of transverse fracture (radial-linear flow) or quarter unit
slope with longitudinal fracture (bilinear flow),

2. half unit slope during formation linear flow

3. final stabilization during formation pseudo radial flow.

The fracture conductivity determines the location of the first derivative straight line
(stabilization or 1/4 slope). For high conductivity fractures, the derivative response is
low during the radial-linear or bilinear flow regimes, the corresponding early time
straight line is moved down on the log-log scale, and the formation linear flow develops
early. It is shown in Section 3.6.3 that for non-fractured horizontal wells, the linear flow
1/2 slope defines the effective well length. In the case of fractured horizontal wells, it
gives the horizontal extension of the fracture. With long fractures, the 1/2 slope
derivative straight line is displaced towards late times.
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For multi-fractured horizontal wells, the different fractures produce independently until
interference effects between neighboring fractures are felt. Then, a compound linear
flow develops before the final pseudo radial flow regime.

At early time, if the independent fractures have similar characteristics, the response is
directly proportional to the number of fractures and can be analyzed with a single
fracture model by dividing the flow rate by the number of fractures (Larsen and Hegre,
1994 a; Raghavan et al.. 1997). Radial-linear (transverse fractures) or bilinear flow
regimes (longitudinal fractures) can be analyzed on such multi-fractured horizontal well
responses. Later, linear flow and pseudo radial flow around the different fracture
segments (when the distance between the fractures is large) can also be identified. Once
the interference between the fractures is felt, the response deviates like in the case of
partially open horizontal wells presented in Section 3.6.9. The end of the compound
linear flow regime, and start of the final pseudo radial flow, is independent of the
number of fractures but depends only on the distance between the outermost fractures.

3.6.11 Horizontal wells in reservoirs with changes of permeability

In the following, it is shown that two types of reservoir heterogencities affect the
analysis results of horizontal well responses, even though the overall well behavior is
apparently homogeneous. The influence of horizontal permeability anisotropy is first
discussed. In layered reservoir, changes of permeability in the vertical direction can
reduce the ability of vertical flow during the early time response.

Horizontal permeability anisotropy

With horizontal wells, it takes frequently a long time before the final horizontal radial
flow regime is established. In the case of horizontal permeability anisotropy, the well
response is sensitive to the well orientation (Goode and Thambynayagam, 1987; Kamal
etal., 1993).

With the three directions of permeability defined on Figure 3.40, the characteristic
regimes of an horizontal well response are controlled by a different permeability:

1. Atearly time, the average permeability during the vertical radial flow is /kzk). .

2. During the linear flow regime, only the permeability &, normal the well orientation
is acting.
3. The final horizontal radial flow regime defines the average horizontal permeability

ky = (k. &, of Equation 3.3.

When the isotropic horizontal permeability model is used for analysis, the vertical
permeability 4, is unchanged but the apparent effective half-length is:
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Figure 3.40. Horizontal permeability anisotropy.
Effective permeability during the three characteristic flow regimes towards a horizontal well.

L, =4k, [k, L (3.54)

Equation 3.54 shows that, if the horizontal well is in the minimum (maximum)
permeability direction, apparent effective length increased (decreased).

Horizontal wells in vertically heterogeneous reservoirs

Even though the homogeneous reservoir model is currently used for many well test
analysis, most reservoirs are stratified and permeability varies with depth. In most cases,
variations of horizontal permeability with depth do not alter significantly the horizontal
radial flow regime (see Section 4.2) but, as horizontal wells responses are also sensitive
to vertical flow, the changes of vertical permeability over the producing thickness affect
the response.

In the following, the horizontal well model of Kuchuk and Habashy (1996) for a multi-
layer reservoir with crossflow is used to evaluate the effect of vertical changes of &y. It
is shown that when the heterogeneity between the different layers is moderate, the
homogeneous reservoir model can be used to provide average permeability in both
horizontal and vertical directions. Conversely, when horizontal wells are completed in
formations with several interbeds of reduced permeability between the main layers, the
single homogeneous layer model considered in the previous sections is not appropriate
for accurate analysis (Suzuki and Nanba, 1991). Finally, as horizontal drilling is a
common practice in reservoirs with a gas cap or lower water drive to prevent coning or
cresting, the effect of a constant pressure upper or lower boundary is discussed.

On the example Figure 3.41, the reservoir is described as a three-layer system. The
horizontal well is centered in layer 2, layers properties are defined in Table 3.6.

Table 3.6. Layered system of Figure 3.41

Layer h ki ky; (k! kyp)i
1 30 15 1.2 0.08
2 30 10 0.5 0.05
3 40 8 0.24 0.03
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Figure 3.41. Horizontal well in a three layers reservoir with crossflow. Log-log scales, p;, versus
i, Cp. Cp =100 L =10001t. S, =0. & =100t (30* 30+40). r, =0.25ft. =, /h =0.55. ky,ky-=1.5.
Kz kiy2=0.8. (hy ki) =0.08. (k) iky)s=0.05. (k-7 ky)3=0.03.

The thin curves of Figure 3.41 describe the response of the same horizontal well in the
equivalent homogeneous layer. The two model responses appear very similar, the use of
the homogeneous laver approximation is acceptable. For a » layer system, the average
horizontal permeability is defined (Section 4.2.5) as:

ki =Y kh [ h, (3.5%)

For the vertical flow, the changes of permeability are acting in series. The resulting
average vertical permeability estimated during the vertical radial flow is defined with
the average vertical permeability above, and below the horizontal drain. If the well is
centered in layer ; :

( - "
Zh/ +h, 12 Zh, +h, /2
| 7+l

ki =0.5 = +— (3.56)
hjk,+h, 2k, Y hik +h, 2k,
1

J+1

Equations 3.55 and 3.56 are applicable to the example Figure 3.41 with »=3 and j=2:
ku =10.7 and k- =0.5(0.82 + 0.28)= 0.55.

On Figure 3.42, a low permeability zone is inserted in the producing interval: the
horizontal well is located in layer 3, below the semi-permeable wall (layer 2). The
response shows first the vertical radial flow regime around the wellbore in layer 3 and,
when both the bottom boundary and the low permeability interbed are reached, it tends
to deviates into a linear flow regime as if layer 3 was isolated (the thin dashed curves
describe the response of the horizontal well if layer 2 is sealing). Later, a crossflow is
established through the semi-permeable wall and layer 1 participates to the production.
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The derivative deviates below the half-unit slope straight line in a transition, and finally
reaches the stabilization when the flow becomes horizontal pseudo-radial.

A match of the stratified reservoir response with an equivalent homogeneous model is
presented with the thin curves. The average horizontal permeability is defined by
Equation 3.55. Due to the early deviation above the first derivative stabilization when
the semi-permeable wall is reached, the effective well length used for this match is only
55% of the true length. L being under estimated, the vertical permeability resulting from
the vertical radial flow stabilization is foo large (3.8 times the vertical permeability in
layers 1 and 3, and 6.7 times the average vertical permeability of Equation 3.56).

The presence of interbeds with very low k,, in a otherwise homogeneous reservoir,
affects the shape of horizontal well response curves and consequently the productivity.
On the stratified reservoir example Figure 3.42, the total skin Sty of the horizontal well
is Sty =-6.48. In case of a non-rectilinear well with a segment of L /2 in layers 1 and 3,
the total skin would be lower at Sy =-6.53 and, without layer 2 (homogeneous
reservoir) it is Sy =-6.78.

Kuchuk and Habashy (1996) use the layered reservoir model to describe the influence
of a gas cap or bottom water drive on horizontal well responses. Since in the model
boundaries between layers are horizontal planes, they assume that the interface between
the fluids is not moving or distorted by cresting during the production. In the example
of Figure 3.43, the horizontal well is located at the bottom of a layer overlaid by a gas
cap. The sequence of regimes is vertical radial flow and hemi-radial flow until the gas
interface is reached. Later, due to the large mobility and compressibility of the top gas
region, the pressure tends to stabilize and shows the influence of a constant pressure
boundary similar to the partial penetration example of Figure 3.21. If the thickness of
the gas cap is not large enough, the response deviates from the constant pressure upper
boundary behavior, and finally stabilizes to describe the total mobility of the oil and the
gas zones.
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Figure 3.42. Horizontal well close to a low permeability interbed. Log-log scales. Cp =100,
L =1000tt, S,, =0, h =100ft (45+5+50), r, =0.25f%, z,, /h =0.25, kyy;=kp3=100 kg, (kylk)70.1.
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and Derivative p'y,
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Figure 3.43. Horizontal well in a reservoir with gas cap. Cp, =100. L =1000ft. S, =2, h,;=100ft,
Fu =250 2, Mg =0.20 (hy ) 701 hgag 10y = 0.2 Tand 3. gty o =0.01, €4g0/C1on =10.

Fleming et al. (1994) observed that many build-up tests from horizontal wells in a
fissured reservoir with a large gas cap show several oscillations on the late time
derivative response. They explain this phenomenon by the changes of saturation as the
gas recedes during shut-in. The gas movement within the fracture network can be
stepping. with intermittent liberation of gas pockets. Horizontal wells in double porosity
reservoirs are further discussed in Section 4.1.4. In addition, multiphase reservoirs are
presented in Chapter 8.

3.6.12 Multilateral horizontal wells

In single layer homogeneous reservoirs, the behavior of wells with multiple horizontal
drain-holes follows a logic similar to partially open and multi-fractured horizontal
wells, discussed in previous sections:
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Figure 3.44. Multilateral horizontal well. Log-log scales, pp versus t/Cp. Cp =100, L =1000ft
(500+500 and 250+250+250+250), S,,; =0, & =100ft, r,, =0.25ft, ky,/ ky =0.1, z,,/ K =0.5.
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e  Atearly time, the different branches produce independently and, when the different
drain-holes have the same skin, the behavior is equivalent to a single horizontal well
with a total effective length defined as the sum of the lengths of all branches.

e Later, the response deviates due to interference effects between the different
horizontal sections. The flow geometry is a function of both horizontal and vertical
distances between the branches, and orientation. An analytical simulator is required to
properly interpret the well response.

e Finally, pseudo radial flow towards the multilateral horizontal well can develop.

On Figure 3.44, two examples of multilateral horizontal well responses are compared to
the horizontal well of similar total length. The drain-hole sections are perpendicular
with two and four branches (L and + shape). At intermediate time, the interference
effects produce an increase of the pressure response, and the derivative deviates above
the half unit slope straight line of the single drain horizontal well curve. No mechanical
skin damage is assumed on the three curves. The total skin Sty of the horizontal well is
Stu =-6.8 whereas for the multilateral well examples Sty is respectively -6.6 and -6.2

with the L and + geometries.

For a given total effective length, increasing the number of intersecting branches does
not improve the productivity of horizontal wells in reservoirs with isotropic horizontal
permeability (Larsen, 1996 a; Salas et al., 1998). When the horizontal perforated
segments do not intersect, Larsen shows that the total skin Syy can be expressed as a
function of the dimensionless distance r; between the segments, with a decreasing
function of In 5. On the examples Figure 3.45 where the distance between the two
producing segments is large enough, the response becomes independent of the
orientation of the branches and the total skin of the two multilateral horizontal wells is
Sty=-7.1 (more negative than Sty=-6.8 with one branch). The responses Figure 3.45
tend to be equivalent to the example with two segments of Figure 3.37.
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Figure 3.45. Multilateral horizontal well. Log-log scales. Cp =100, L =1000ft (500+500), S, =0, 4
=100ft, r, =0.25ft, ky /ky =0.1, z,, /h =0.5. The distance between the 2 parallel branches is 2000ft,
on the second example the intersection point is at 1000ft from the start of the 2 segments.
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3.7 SKIN FACTORS

3.7.1 Components of the total skin

The different components contributing to the total skin S; measured on well test
responses are summarized on table 3.7 below.

Table 3.7. Components of the total skin S,

Name Description Type
S, Infinitesimal skin at the wellbore. Positive or
negative
Se; Geometrical skin due to the streamline curvature (fractured, partial Positive or
penetration, slanted or horizontal wells). negative
Sai Skin factor due to the anisotropy of the reservoir permeability. Negative
Sre Skin factor due to a change of reservoir mobility near the wellbore Positive or
(permeability or fluid property, radial composite behavior). negative
S, Skin factor due to the fissures in a double porosity reservoir. Negative
D.g  Turbulent or inertial effects on gas wells. Positive

The geometrical skin S;; has been discussed in previous Sections for various well
configurations. In the following, the relationship between S;; and derivative curves is
demonstrated by comparing three simple example responses. Negative skin produced by
natural fissures is discussed in the double porosity Section 4.1.5, and turbulence effects
are described in the gas well Chapter 7.

3.7.2 Geometrical skin and derivative curves

The magnitude of the geometrical skin is easy to visualize when the derivative response
is considered. This can be illustrated by the theoretical response of three wells of radius
7w, producing in the same homogeneous reservoir (Figure 3.46). Well A is a fully
penetrating vertical well. well B is in partial penetration, and well C is a horizontal
well. For the three wells, the infinitesimal skin S, is set to 0.

A B C

Figure 3.46. Configuration of well A, B and C.
A = fully penetrating vertical well, B = well in partial penetration and C = horizontal well.
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Figure 3.47. Pressure and derivative responses of well A (vertical), B (partial penetration) and C
(horizontal). Log-log scales, pp, versus £5/C),.

In Figure3.47, the derivative response of the vertical well shows the usual stabilization
when the wellbore storage is over. In the case of partial penetration well B, a first
derivative stabilization is seen during the radial flow in front of the perforated interval.
The derivative response is above that of the vertical well until ¢, /Cp =10*, the area
between the two curves is a measure of the positive geometrical skin. The larger this
surface, the larger is the skin due to partial penetration. In terms of pressure response,
the partial penetration curve B is above the curve for the vertical well.

For the horizontal well C, the derivative response stabilizes at a low level during the
vertical radial flow and the resulting geometrical skin is negative. The longer is the
horizontal well, the larger is the area below the vertical well derivative response, and
the more negative is the total skin.
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Figure 3.48. Semi-log plot of Figure 3.47 examples.

The influence of the geometrical skin on the pressure response of wells A, B and C is
illustrated on semi-log scale Figure 3.48.
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CHAPTER 4

EFFECT OF RESERVOIR HETEROGENEITIES
ON WELL RESPONSES

Heterogeneous reservoir models have attracted a lot of attention in the last twenty years.
The first solutions were presented in the 60's, but these only became commonly used
much more recently.

Reservoir heterogeneities are identified by variations in the pressure response.
Sometimes the pressure data deviates from the homogeneous behavior only during the
first minutes of the test period under investigation, in other cases it takes from several
hours to several days before the heterogeneity becomes evident. The introduction of
high accuracy pressure measurements and computerized log-log analysis technique
explains today's recent use of heterogeneous interpretation models. In addition, the
derivative of pressure exaggerates the characteristic features of the response.

In this chapter, the different heterogeneous reservoir models used in well test analysis
are discussed. It is assumed that the well is affected by wellbore storage and skin only,
but other wellbore conditions presented in Chapter 3 can be encountered in
heterogeneous formations. An infinite reservoir is considered; all outer boundary effects
are presented in Chapter 5.

The basic heterogeneous solutions assume two different behaviors are combined in the
reservoir response. They are described as double porosity models (restricted or
unrestricted interporosity flow), double permeability models and composite systems
(radial or linear interfaces). These three basic models are thoroughly presented in this
chapter. The influence of the different parameters is described, and the analysis of
build-up tests in heterogeneous formations is discussed.

For each model, the extension of the basic solution to a larger number of elementary
behaviors is considered (multi-porosity systems for changing matrix blocks sizes, multi-
layer systems and multi-composite formations). The double porosity matrix skin theory
is also discussed in detail. In the final section of the Chapter, different combinations of
heterogeneous solutions are presented for fissured-layered systems and composite
fissured or layered formations.
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41 FISSURED RESERVOIRS

Among the different heterogeneous interpretation models, the double porosity solutions
have been the most frequently discussed in the technical literature. They assume the
existence of two porous regions within the formation. One region, of high conductivity,
is called the fissures whereas the other, of low conductivity, is called the matrix blocks.
As described in Figure 4.1, the concept of double porosity is representative of the
behavior of fissured and multiple-layer formations, when the permeability contrast
between layers is high (the "fissure system" describes the high permeability layers, and
the "matrix blocks" the tight zones).

The double-porosity model was first introduced by Barenblatt et al. in 1960: a low
permeability porous system. the matrix blocks. is surrounded by a fissure network of
high permeabilitv. The matrix blocks are not producing to the well, but only to the
fissures. Several variations of this model are available (Warren and Root, 1963; Odeh,
1965; Kazemi, 1969 a; de Swaan. 1976: Najurieta, 1980; Streltsova, 1983) for refined
descriptions of the heterogeneous response. In all cases, the fissure network provides
the mobility, and the matrix blocks supply most of the storage capacity. A double
porosity response depends upon the storativity contrast between the two reservoir
components, and the quality of the communication between them.

The basic assumptions used for the double porosity solutions are discussed in Section
4.1.1. Two types of flow from matrix to fissures are considered, depending upon the
presence of minerals in the fissure network that reduce the flow from matrix to the
fissures. The restricted interporosity flow hypothesis, also called the Warren and Root
model. or pseudo-steady state interporosity flow model, was first available for transient
test analysis. This model is discussed in Section 4.1.2 for a well with wellbore storage
and skin. The wnrestricted interporosity flow hypothesis is then presented in Section
4.1.3.

In Section 4.1.4, double porosity behavior is discussed in case of flow regimes other
than radial flow, and extensions of the model to matrix skin and to multiple block size
are considered. The double porosity models have also been extended to different well
conditions presented in Chapter 4 (Housé et al., 1998, for infinite conductivity fracture;
Cinco-Ley and Menh, 1988, for finite conductivity fracture and, for horizontal well,
Carvalho and Rosa, 1988; Aguilera and Ng, 1991; Du. and Stewart, 1992). The effect of
a sealing fault (Khachatoorijan et al., 1995) and other reservoir boundaries are reviewed
in Chapter 5.

—— Matrix

| _——— Fissure

Vug

Figure 4.1. Example of double porosity reservoir, fissured and multiple-layer formations.
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4.1.1 Double porosity models

Fissured reservoirs are complex. The density of the fissure network can vary with
position in the reservoir, as a function of the rock stresses due to curvature of the
formation. The orientation of the fissures can induce permeability anisotropy. The
mathematical models for fissured reservoirs use a simplified description of the
heterogeneous system. The parameters resulting from the interpretation define the
idealized model, but they do not describe the geological configuration in detail. In the
following, we summarize the different assumptions used in the equations for the
models, and present the resulting dimensionless variables.

Basic assumptions

1 - The dimensions of the matrix blocks are small compared to the reservoir volume
involved in the test. Each point in the reservoir is associated with two pressures, namely
pythe pressure of the fluid in the fissures, and p,, the pressure of the fluid in the matrix
pore volume.

2 - The tluid flows to the well through the fissure system only; the matrix blocks are not
connected (or the radial permeability of the matrix system is negligible, &,, ¢ = 0). The
isolated matrix blocks are described as source terms in the fissure element, and the
mobility measured during the test corresponds to the fissure system alone.

3 - Most of the reservoir fluid is stored in the matrix blocks porosity, the storage of the
fissure network is only a small fraction of the reservoir storage.

4 - Three matrix block geometries are usually considered, depending upon the number »
of fissure plane directions.

For n = 3, the matrix blocks are cubes (spheres are also described with three directions
of fissure planes) but n = 2 (cylinder matrix blocks) and » = 1 (slab matrix blocks) can
also be envisaged.

5 - Two different types of matrix to fissure flow have been considered:

In the first solution, as described by Barenblatt et al. in 1960, it is assumed that the flow
of fluid from blocks to fissures occurs under pseudo-steady state conditions. The model
was extended in the present form by Warren and Root (1963). Moench (1984) and
Cinco-Ley et al. (1985) demonstrated later that it describes a restricted interporosity
flow condition, when there is a skin effect between the matrix and the fissures, making
the pressure gradient in the matrix blocks negligible.

The second type of interporosity flow described by several authors (Kazemi, 1969 a; de
Swaan, 1976; Najurieta, 1980; Streltsova, 1983), considers transient flow in the matrix
blocks. There is no flow restriction at the matrix - fissure interface, and the matrix
blocks response starts earlier.
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6 - In the double porosity models, all matrix blocks are homogeneous, and they have the
same size. Other multiple porosity solutions consider different matrix block sizes, either
uniformly distributed in the reservoir, or organized according to several possible
geometries. They are discussed in Section 4.1.4 and 4.4.

Behavior

When a well is opened in a fissured reservoir, a rapid pressure response occurs in the
fissure network due to its high diffusivity. A pressure difference is created between
matrix and fissure, and the matrix blocks start to produce into the fissures. The pressure
of the matrix blocks p,, decreases as flow progresses and, finally, tends to equalize with
the pressure of the surrounding fissures p;.

Definitions

In the permeability thickness product kA, an equivalent permeability is used. From
condition 1. the fissure system is assumed to be uniformly distributed in all the reservoir
thickness but, in practice. the fissures involve only a fraction of the pay zone thickness
h. The equivalent distributed permeability (bulk fissure permeability) k; is a function not
only of the actual fissures thickness and intrinsic permeability, but also of the fissure
network characteristics (such as tortuosity and fissure connectivity when material
separates individual fractures).

kh=kh, (.1)

Two porosities are defined in double porosity systems. We call ¢ and ¢, the ratio of
pore volume in the fissures (or in the matrix), to the total volume of the fissures (of the
matrix). V; is the ratio of the total volume of the fissures to the reservoir volume, and V,,
that of the total volume of the blocks to the reservoir volume (¥, + V,, = 1). The average
reservoir porosity ¢ is given by:

¢ = ¢/'V_/' +¢me (4'2)

In fissured formations. both ¢, and V,, are close to 1. The average porosity of Equation
4.2 can be simplified as:

6=V, +4, (43)
Frequently, V,is called the fissure porosity.

The storativity ratio @ expresses the contrast between the two porous systems:
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o= (¢VC, )f _ (¢Vc, )_/ (4.4)

(¢ Ve, )}/ + (¢Vct )m <¢ch )‘/‘+m

@ defines the contribution of the fissure system to the total storativity. Usual values for
 are in the order of 10" for multiple-layer systems down to 107 or 107 for fissured
formations: the fissures provide only a fraction of the total storativity.

In case of multiple-layer systems, matrix blocks and fissures are represented by
horizontal slabs. 4, and A, being the cumulative thickness of the "matrix" and the
"fissure" layers, the volume ratios of Equation 4.2 are V= hy/ (hy+ h,) and V,, = hy [ (hy
+ h,,). In Equation 4.1, the equivalent permeability is expressed as k = &, Vy:

A second heterogeneous parameter, called interporosity flow coefficient 4, is used to
describe the ability of the matrix blocks to flow into the fissures. A, as expressed by
Warren and Root (1963), is a function of the matrix blocks geometry and permeability
ko

k
A=ard (4.5)
k

w

where « is related to the geometry of the fissure network. It is a function of the number
n of families of fissure planes:

n(n+2)
a= 5
Vo

(4.6)

r,; 1s the characteristic size of the matrix blocks. It is defined as the ratio of the volume
" of the matrix blocks, to the surface area 4 of the blocks with:

=n— 4.7

If the matrix blocks are spheres (of radius r,) or cubes (of side 2r,), n=3, and « is
expressed:

a=— (4.8)

For n =2, the matrix blocks are cylindrical of radius r,, and:

o= 4.9)

8
2
P
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for n=1, the matrix blocks are slabs of thickness 27,,, and « is:

[ o

(4.10)

~

A defines the communication between the matrix blocks and the fissures. When 4 is
small, the fluid transfer from matrix to fissure is difficult, and it takes a long time before
the double porosity model behaves like the equivalent homogeneous total system. Such
behavior is obtained for example. when the matrix is tight, and the permeability %, is
small. Low density of fissures is another example of poor matrix communication: the
cha4racterislgic block size r,, is large, and « is smail. Usual values for A are in the range of
107 to 107,

In the definition of A Equation 4.5. the matrix skin is not considered. In case of
restricted interporosity flow, A does not describe completely the matrix flow condition
and an effective interporosity flow parameter A should be used (Equation 4.39 of
Section 4.1.4).

Dimensionless variables

The definition of the dimensionless pressure is the same as for homogeneous reservoirs
(Equation 2.3). The reference thickness corresponds to the total zone, and the
permeability is the equivalent permeability & introduced in Equation 4.1:

kh A 23)
= > p .
v 141.2gBu
The porosity is included in the definitions of the dimensionless time Equation 2.4 and
the dimensionless wellbore storage of Equation 2.5. Depending upon the reference
selected. two definitions of these dimensionless parameters are used.

When the dimensionless time is expressed with the fissure system permeability and
storativity, ¢, is:

0.0002644
Ly = A (@11
(pve, ), ur!

When the reference is the total system, the dimensionless time £, is:

0.000264k
l/)/+l}l = 2 Ar (412)
(¢VCI)/'+m'urW
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For the dimensionless wellbore storage coefficient, the two definitions of the storativity
give respectively:

0.8936C

Dy = W (4.13)
7 _ 0.8936C @)
Df +m _( e )‘/m o’

w correlates the definitions of dimensionless time and wellbore storage:

Ipfem = @lpy (4.15)

Cppim =0Cpy (4.16)

4.1.2 Double porosity behavior, restricted interporosity flow model (Wellbore
storage and skin )

In 1963, Warren and Root presented the double porosity solution described in this
section. The flow from matrix blocks to the fissures is assumed to be pseudo-steady
state regime.

In the original Warren and Root model, no wellbore storage effect was considered. It
was introduced by Mavor and Cinco-Ley in 1979 and, Bourdet and Gringarten (1980)
presented a pressure type-curve expressed in terms of independent variables (Figure
4.2), extended on Figure 4.6 to the derivative approach (Bourdet et al, 1983 b, 1989).

Moench demonstrated in 1984 that the apparent pseudo-steady state flow regime in the
matrix blocks is the result of damage at the surface of the blocks. The fissures are
partially plugged by mineral deposition or by chemical precipitation, but they include
some channels allowing the fluid to flow towards the well. The matrix feed the
channels, but the flow first has to cross the thin low permeability deposit layer on the
walls of the fissures.

The matrix skin theory (also called interporosity skin) provides a link between the
pseudo-steady state matrix flow condition discussed here and the transient interporosity
solution presented in Section 4.1.3: the different mathematical approaches describe two
limiting cases of the same reservoir configuration. The influence of the matrix skin S, is
further discussed in Section 4.1.4 of this chapter. It is shown that, for large interporosity
skin S,,, the pseudo-steady state hypothesis of Warren and Root's (1963) is a realistic
approximation of the matrix flow condition (Moench, 1984; Cinco-Ley et al., 1985;
Stewart and Ascharsobbi, 1988).
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In the following section, we assume strictly pseudo-steady state matrix flow: the
corresponding restricted interporosity flow model provides an effective interporosity
flow parameter A given in Equation 4.39, and not A of Equation 4.5. (note that the
effective interporosity flow parameter A g is called A for purpose of conciseness).

Behavior

With restricted interporosity flow, three different regimes can be observed on a
producing well response:

1. First a fissure flow, when the matrix contribution is negligible. This corresponds to
a homogeneous behavior, where only the fissure system is producing.

2. At intermediate times, during a transition regime, the response deviates from the
fissure homogeneous behavior as the matrix blocks start to produce into the fissures.
The pressure tends to stabilize to a constant value.

3. Later, the pressure of the matrix blocks equalizes with the pressure of the
surrounding fissures. A new homogeneous behavior is reached, called the rotal system
flow regime,

All the fluid flows to the wellbore through the fissures alone: the two homogeneous
behaviors are characterized by the permeability thickness product 44 of the fissure
system (Equation 4.1). The first homogeneous regime corresponds to the fissure
storativity, whereas the second involves the total storativity of Equation 4.2. The
transition between the two homogeneous behaviors describes an increase of storativity
(see also Sections 4.3.2 and 10.2.2), the pore volume of the fissures being a small
fraction of the total.

During the two homogeneous regimes, the pressure response can exhibit a straight-line
behavior on semi-log scale. The first straight line corresponding to fissure flow, the
second to the total system regime. The permeability thickness k4 being the same during
the two homogeneous regimes, the lines are parallel (Figure 4.4).

More frequently. tests in fissured reservoirs do not show the characteristic "two parallel
semi-log straight lines": either the first line is masked by wellbore storage effect, or the
test period is too short to show the second. Many examples of analysis with double
porosity type curves show that the occurrence of parallel semi-log straight lines is in
fact exceptional. Furthermore, the characteristic features of double porosity responses
can be identified in other regimes than the infinite acting radial flow (see discussion
Section 4.1.4).

Pressure type-curve

The Bourdet and Gringarten type-curve of Figure 4.2 (1980) describes drawdown
responses for a well in a reservoir with double porosity behavior, restricted interporosity
matrix to fissure flow. The well can be damaged (positive skin) or stimulated (using the
equivalent wellbore radius concept) and it is affected by a constant wellbore storage
effect.
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Figure 4.2. Pressure type-curve for a well with wellbore storage and skin in a double porosity
reservoir, pseudo steady state interporosity tflow. Log-log scales, pp versus ¢,/Cp.

Independent variables

On the type-curve of Figure 4.2, the same groups of independent variables as on
homogeneous reservoir type-curve (Figure 2.2) are used. The dimensionless pressure pj,
of Equation 2.3 is expressed versus the dimensionless time group #,/Cp:

fo L tor_ foren g o005 K AL (4.17)
C

Ch Cl)/ C/)_/ +m H

The pressure match and the time match are independent of the storativity. On a log-log
plot, the same match point describes the two homogeneous regimes, fissure and total
system flow.

Three curves are needed to define the different regimes of a double porosity response.
The corresponding independent parameters are:

1-(Cp ez‘v)_,' at early time, during fissure flow

) 28
(Cl)e% )/v = 0.8936Ce™ (4.18)

(¢Vc,)fhrvf

28 . .. . .
2 - Ae’™ during transition regime, between the two homogeneous behaviors

3-(Cp ezs)/»,,,, at late time, when fotal system flow behavior is reached
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0.8936Ce>"

= 4.19
)/ +m (¢VC/ )‘/ o /’Ii”‘f ( )

.2s
(C,)e

Description

On the pressure type-curve of Figure 4.2, rwo families of curves are superimposed: the
28 . :

C), e curves describe the fissure and the total system homogeneous regimes, the dashed

.08 . .

Ae™ curves describe the transition.

From the definition of the C, e™ parameter (Equations 4.18 and 4.19), a double porosity
response goes from a high value (C,)el‘\)/ when the storativity corresponds to fissures, to
a lower value (C}, ez‘\),.,,, when total system is acting.

The type-curve of Figure 4.2 describes the components of a double porosity response,
not the actual curve. For illustration. two examples of double porosity responses are
presented on the type curve Figure 4.3. With example A, the response follows first the
fissure homogeneous curve (C,e™), =1, then a transition on Ae™ =3x10 and finally it
reaches the total system homogeneous behavior on (Cjy¢™), ,, =107

On the pressure type-curve, the limit "approximate start of the semi-log straight line" is
shown by a dashed line. Figure 4.3 indicates that example A shows a semi-log straight
line during each of the two homogeneous behaviors as illustrated on the semi-log plot
Figure 4.4. The two semi-log straight lines are parallel.
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Figure 4.3. Examples for a well with wellbore storage and skin in a double porosity reservoir,
pseudo steady state interporosity flow. Log-log scales, pp versus tp/Cp.
A (Cpey=1,(Cpe™ym=0.1, 0=0.1, 2™ = 3x10™,
B : (Cpe™)=10°, (Cpe™)nm=10", 0=0.1, 2 =107.
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Figure 4.4. Semi-log plot of Figure 4.3 examples.

On example B, the pressure response goes from (C,)ez‘g),» =10° to (Cp ezS)_/-‘,,,, =10
through a transition on Ae”™ =107, When the fissure regime ends, the storage effect is
still present: response B shows only one semi-log straight line, during the second
homogeneous regime when the total system is acting (Figure 4.4).

Pressure type-curve analysis

As for the homogeneous reservoir type-curve of Figure 2.2, analysis with the double
porosity type-curves of Figure 4.2, yields:

1. the permeability thickness product k4 from the pressure match,
kh=141.2AqBu(PM) 2.9)
2. the wellbore storage coefficient C from the time match,

C= 0.000295ﬁ(——1——) (2.10)
™

17

3. the skin factor S from one of the two homogeneous curves. In general, the total
system regime is used:

C €2S
S:OSM££L—LﬂL (4.20)
Df+m

The two heterogeneous parameters are estimated from the curve match.

4. comparing the two Cpe® values gives the storativity ratio o :
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(C/)ez‘\')
/+I77
53 (4.21)

C,e™ ;

o =

5. during transition, the Ae™ curve describing the pressure stabilization defines the
interporosity flow parameter.

A= (z’te'z‘\' )ezs (4.22)

Frequently, the transition between the two homogeneous Cpe™ curves is too short to
reach a stabilized pressure behavior. The choice of the Ae”” curve is then defined on the
middle point of the transition.

Derivative type-curve

The two double porosity examples A and B are presented on Figure 4.5 with the
pressure and derivative. During the fissure flow, this homogeneous regime is described
on the derivative response by a ), ¢> curve and, when semi-log radial flow is reached,
the derivative stabilizes on 0.5 in dimensionless terms. At transition time, the flattening
of the pressure curve is changed into an obvious valley on the derivative response.
Later, the derivative returns to the 0.3 stabilization during the total system equivalent
homogeneous behavior.

e  With example A, the wellbore storage effect ends during fissure regime, and a first
radial flow is seen before the start of transition. Two parallel semi-log straight lines are
present on the semi-log plot Figure 4.4. On Figure 4.5, the derivative reaches the 0.5
line, both before and after the transition valiey.
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Figure 4.5. Pressure and derivative examples of Figure 4.3 for a well with wellbore storage and
skin in a double porosity reservoir, pseudo steady state interporosity flow. Log-log scales.
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e  With example B, storage is still present when the transition starts: the semi-log
curve of Figure 4.4 shows only one straight line, during total system flow. On Figure
4.5, the derivative response goes directly from the wellbore storage hump to the
transition valley, and the first 0.5 plateau is not seen.

The two examples of Figure 4.5 illustrate that, as opposed to the log-log pressure
curves, the derivative emphasizes the small variations of behavior characterizing double
porosity responses. The pressure and derivative type curve for a well with wellbore
storage and skin in a double porosity reservoir, restricted interporosity flow, is
presented Figure 4.6 (Bourdet et al., 1983 b).

Description

With the pressure type curve of Figure 4.2, a double porosity response is defined by

three components: (Cpe™), Ae™ and (Cp ezs)[_w On the type curve Figure 4.6, the
derivative requires four components: the (Cp ezs)/ curve and the 0.5 line are used for the
homogeneous behaviors but, at transition time, two other curves are needed.

After wellbore storage, the derivative valley during transition can be expressed as:

lcl,)fﬂn i_j| _{j’cl)fwn ti:l
a)(l—a)) CD _ (1_0)) CD } (4.23)

P ltn/Cp)= 05{ 1 +€_{
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Figure 4.6. Pressure and derivative type-curve for a well with wellbore storage and skin in a
double porosity reservoir, pseudo steady state interporosity flow. Log-log scales, p;, versus £,/Cp.
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The early transition curve, corresponding to the decreasing derivative trend, is labeled
(ﬂ.CUHm )/[(u(l—m)] on Figure 4.6, When the derivative returns to 0.5, the /ate

transition curve is defined with the (&C‘,),w )/(] ~w) group.

With the example B of Figure 4.5, the transition starts when the response is still under
the influence of wellbore storage and the double porosity curve deviates from the early
transition curve (A1C,, )/[a)(l~(u)] (at 1.11x107). Storage being over at late transition

times, the example matches on the (1C}, )/(1- @) curve (1.11x107),

Matching procedure with the pressure and derivative type curve

As for the type-curve for homogeneous system with storage and skin, the derivative
straight lines are used to select the match point on the type-curve Figure 4.6: the unit
slope line during wellbore storage, and the 0.5 line during radial flow. From the
pressure and time matches. kk and C are estimated (Equations 2.9 and 2.10).

A type-curve match is defined by six components curves: three components for the
pressure response [(C),e™), Ae™ and (C),e™),.,,], and three derivative curves: (Cpe™),

(ACDH,,, )/[a)(l - a))] and (lC,)/W )/(1 - (0) .

The match is adjusted by trial and errors, until consistency is achieved between pressure
and derivative results:

e A first check is made on the early time fissure flow analysis: the (C, e™), parameter
of the pressure and derivative curves must be the same.

Loy 2y
(C/)e )/ PRESSURE —(C,)e )/ DERIVATIVE

e  The storativity ratio is estimated from the two transition curves of the derivative
match. It is compared to w found with Equation 4.21.

@ = late transition /early transition
AC) / G (4.24)

o The interporosity flow parameter is preferably calculated from the late transition

curve. It has to be in agreement with A estimated from pressure response (Equation
4.22).

1= /ICD_/'+m (1 —a))
(1 —f‘)) Chpam

(4.25)
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In general, double porosity responses do not follow perfectly the component curves,
except for short periods of time: the responses show fransitional behavior between one
component curve to the next. Matching on the pressure and derivative type-curve of
Figure 4.6 is performed by interpolation between component curves, and frequently
reiterations are needed before the final solution is reached. With some experience, the
adjustment converges quickly, and no more than two or three tentative are necessary.

Discussion of double-porosity parameters

In this section, we describe the influence of the two heterogeneous parameters « and 4
on log-log and semi-log curves. This shows how the shape of a double porosity
response curve can be adjusted on actual data, when the match is made by computer.

Influence of w

The storativity ratio defines the contrast between the fissure regime and the total system
regime. It relates the two homogeneous pressure curves (Cp ezS)_/' and (Cp ez‘g)f;m. With
small @ values, the two curves are very different and, on pressure curves, the transition
regime from (C) ezs)/to (Cp ezs)/a‘ = 18 long and flat.

Figure 4.7 and 4.8 presents on log-log and semi-log scales three examples of curves
generated for different values of @ (107, 107 and 107), Cppims S and A being the same.

On the derivative responses of Figure 4.7, the depth of the characteristic valley is a
function of the transition duration. For small @ values, long tramsition regimes
correspond 1o deep valleys on derivative. The minimum of the valley is given, from
Equation 4.23, by:
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Figure 4.7. Influence of w on pressure and derivative log-log curves, pp versus ¢p/Cp.
Cl)f* m=1,8=0, A1 0"7, w :]O-], 10-2 and 10_3
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Figure 4.8. Influence of @ on semi-log plot of the Figure 4.7 examples.

]

For a given total system curve (C},¢™), . a decrease of @ value produces an increase of
the fissure curve parameter (Cj,¢™),. On the semi-log plot Figure 4.8, the first semi-log
straight line is displaced upwards. the horizontal transition between the two parallel
lines is longer.

)%
Py (l,)/Cu)—O{ I+o me) g 1w —l (4.26)

Influence of A

The interporosity flow parameter defines the ability of the matrix blocks to produce into
the fissure system. The previous example Figures 4.7 and 4.8 are generated for the same
value of A: as shown by the log-log and semi-log curves, A determines the time of end of
the transition, and the start of the equivalent homogeneous total system flow regime.
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Figure 4.9. Influence of 4 on pressure and derivative log-log curves, pp versus £,/C).
Cryem =100, 5 =0, ©=0.02, A =10"%, 107 and 10”.
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Figure 4.10. Influence of 2 on semi-log plot of the Figure 4.9 examples.

On Figures 4.9 and 4.10, the three curves are generated for A =10, 107 and 10®. The
smaller is A, the later the start of total system flow. On the pressure curves, the
transition regime occurs at a higher amplitude and, on the derivative responses, the
transition valley is displaced towards late times.

Associated specialized plot straight lines

Once the match is defined, the different flow regimes are identified, and specialized
analysis can be carried out on selected time intervals.

Wellbore storage analysis

A Cartesian scale is used for wellbore storage analysis (Section 1.2.2): the slope of the
early time straight line gives, by Equation 1.10, an estimate of the wellbore storage
coefficient.

As for homogeneous reservoirs discussed in Chapter 3, wellbore storage analysis in
fissured formations is in general feasible only on damaged wells, when data points
match the unit slope log-log straight line.

Radial flow analysis

On semi-log scale, the presence of two parallel straight lines has been considered as the
characteristic feature of double porosity responses (Figure 4.4, example A). In fact,
experience shows that this configuration is exceptional, the wellbore storage effect
frequently masks the first semi-log straight line during fissure flow (Figure 4.4, example
B). When the first line is present, the fissure flow regime lasts a relatively long period,
and the test often stops before the second radial flow regime is reached.



132 Reservoir heterogeneities

Even when the first semi-log straight line is not present, a semi-log plot exhibits a
characteristic "S" shape (Figures 4.4, example B and 4.10, high A value), indicating a
heterogeneous response. This characteristic shape is illustrated on Figure 4.11: the
double porosity curve crosses the semi-log straight line, as opposed to the curve for a
homogeneous response.

The semi-log analysis of two parallel straight lines is valid only when both radial flow
regimes are clearly identified from the log-log analysis. During fissure flow, the first
line is expressed, from Equation 1.15:

B
Ap=162.6 24 1og Ar 4 log— 32310875 (4.27)
kh ((/ﬁl'c, )/ Hr,

And the second line, for the total system regime:

B
Ap:162.6% logAf+log_5—T—3.23+0.87S (4.28)

#e),

The vertical distance 6p between the two lines gives @ (Warren and Root, 1963):

_op
w=10 M (4.29)

where m is the semi-log slope. In the definition of 8p, the first straight line should not be
simply defined as a tangent to the data curve in the early time region, drawn parallel to
the second line. Such an approximation can give an under estimated value of w.
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Figure 4.11. Semi-log plot of homogeneous and double porosity examples.
Cp = Cppem =100, S =0, ©=0.01 and 1 =107,
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The interporosity flow coefficient A is not accessible with accuracy from semi-log
analysis.

When only the first semi-log straight line of fissure regime is present, the double
porosity nature of the response can be overlooked by mistake. By using the total
storativity instead of that of the fissure system, the calculation of the skin gives an over
estimated value S. From Equations 4.27 and 4.28,

S, = 5+05In (4.30)
’ w

Build-up analysis

Drawdown periods are difficult to analyze and, frequently, only build-up data is used
for interpretation. Build-up analysis in double porosity reservoirs, however, is a lot
more complicated than for homogeneous formations. The main reason is that the
behavior changes in the course of the response: for different production times, the shape
of the build-up curves can show different characteristic features.

Log-log pressure build-up analysis

Build-up pressure type-curves for a well with wellbore storage and skin in a double
porosity reservoir can be constructed as the drawdown type-curve of Figure 4.2: the
family of Cj,e* component curves is replaced by build-up curves generated for the
appropriate production history; the e’ transition curves are not changed (Bourdet and
Gringarten, 1980).
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( fissures Cpe?5= 1 and total system Cpe%5,,,,= 0.1)
Double porosity,
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Figure 4.12. Log-log plot of build-up pressure responses for a well with wellbore storage and skin
in double porosity reservoir, pseudo-steady state interporosity flow. p;, versus #,/Cp.
Cprim=0.1,5=0, @=0.1 and 2 =3x10". £,,’Cj = 100 (A,), 9000 (A;), 300000 (Aj3).
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Figure 4.13. Semi-log plot of drawdown and build-up pressure responses of Figure 4.12.

On the log-log plot Figure 4.12, the drawdown double porosity example A of Figure 4.4
is compared to three build-up responses generated for different production times f,.
With example A;. (1,/C),, = 100, the drawdown prior to shut-in stopped in fissure flow,
with example A, ((4/C);, = 9000) it ended during transition, and in example Aj;
((£,/C);=3x107) in total system flow.

For clarity, the same drawdown and build-up curves are presented on semi-log scale in
Figure 4.13, similar to the build-up discussion of Figure 2.7. However long the three
build-ups are, only example Aj; exhibits a clear double porosity pressure response. On
example Aj, the drawdown stops in fissure flow, before the Ae® transition curve is
reached. The build-up curve A, appears to show only the build-up response of the
fissures, and not a double porosity behavior. In example A,, the build-up curve flattens
at the same Ap level as the Ae™ transition and there is no evidence of total system flow
regime.

Figure 4.12 illustrates the lack of definition of log-log pressure analysis. The three
build-up curves are generated by superposition of drawdown solutions, and all
characteristic features of the double porosity model are theoretically present in the
responses. Due to the build-up effect, they cannot always be identified on a log-log
pressure plot.

Horner & superposition analysis

Figure 4.14 is a Horner plot of the three build-up examples of Figure 4.12. With
example Ay, only one semi-log straight line is obtained during shut-in. [t represents the
fissure behavior. The straight line can be used to compute k4 and, if the fissure porosity
is known, the skin factor S. The extrapolation at infinite shut in time gives the correct
p*=p.. When the total system storativity is used, the semi-log straight-line analysis
provides only a maximum value of the skin, Sy of Equation 4.30. In the test sequence of
example Ay, no double porosity effect is apparent from either drawdown or build-up
when only the pressure data is considered for analysis.



Fissured reservoirs 135

(p - p,)D

Dimensionless Pressure
Difference,

1 10 102 103 104 105 106

Horner time, (ot )/ 15

Figure 4.14. Horner plot of the three build-up examples of Figure 4.12.
L,p/Cp =100 (Ay), 9000 (Ay), 300000 (A;).

If the drawdown test is stopped during the transition, (example A,), only one semi-log
straight line develops on the Horner plot. This straight line corresponds to the fissure
regime. It has the proper slope but does not extrapolate to p,. The intercept at infinite
shut-in time is between p; and p; + m.log (1/w), depending upon ¢,. On Figure 4.14, the
response leaves the Horner straight line at late time, and flattens to reach p;. As for
curve Ay, the use of the total system storativity for the fissure regime semi-log straight-
line analysis leads to an over estimated skin value, between S and Sy

Finally, in example Aj, the total system radial flow regime is reached at shut-in time
and, provided the build-up period lasts long enough, two parallel straight lines are
present on the Horner plot. These can be used to estimate k4, S and w (Equation 4.29).
P, is obtained by extrapolation of the second straight line, the first extrapolates to p; + m

log (1/w).

Figure 4.14 illustrates this: if the heterogeneous response has not been clearly identified,
Horner or superposition analysis of double porosity build-up responses can be
misleading. When the double porosity nature of the response is ignored, not only the
calculation of the skin can be wrong but, more importantly, the extrapolated pressure to
infinite shut-in time can be over estimated. In addition, the shape of the semi-log
superposition curve, where the pressure flattens at late time (examples A, or Aj if the
build-up stops during the transition), can be interpreted by mistake as the effect of a
depleted closed system (see Figure 5.25, Section 5.4.7).

Derivative build-up analysis

The derivative using the Horner / superposition time corrects the influence of the
previous production history, except in the case when the drawdown response changes
during the extrapolation into the build-up period (see Section 2.3.4). In double porosity
responses, when the well is closed before the total system flow, the drawdown response
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changes after shut-in from fissure to total system regime, and the derivative method
does not correct perfectly the build-up curve as illustrated Figure 4.15.

In Figure 4.15, the derivative responses of the three build-up examples of Figure 4.12
are compared to the original drawdown derivative curve. Example Aj; matches the
drawdown response but not the two other build-up curves. For example A, the
transition happens later, and the deviation is more pronounced and even more so during
the build-up A;, which corresponds to a short production history limited to fissure
system.

The derivative curve A, reveals a double porosity behavior whereas the same data
plotted in terms of pressure, either on log-log or semi-log scale (Figure 4.12 and 4.14)
suggests a homogeneous behavior. The significance of the signal is absorbed by the
compression effect of the build-up correction methods (see Section 2.2.2 Figure 2.6 for
log-log analysis, and Figure 2.7 for semi-log analysis).

In practice, build-up derivative data after a short drawdown does not always display a
full double porosity response as on synthetic example of curve A;. With a small
production time, the pressure builds up quickly to the initial pressure, and the response
is barely changing at late times. The derivative then becomes scattered and a clear
diagnosis is difficult. However, when a late time downwards trend of the derivative is
observed on test data, the hypothesis of a double porosity response should not be
neglected.

Practice of build-up tests in double porosity reservoirs

The previous discussion clearly demonstrates the importance of a careful test design in
double porosity systems. As discussed with the pressure examples in Figure 4.3, two
test conditions have to be satisfied in order to display a full double porosity response
during drawdown:

1. the early time fissure flow regime should not be masked by wellbore storage,

2. the analyzed period has to be long enough to show the late time total system flow.
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Figure 4.15. Log-log plot of drawdown and build-up derivative responses of Figure 4.12
examples. Log-log scales, pj, versus ¢,/Cp.
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For build-up responses, not only these two conditions must be met but, as illustrated on
Figures 4.12 to 4.15, the previous period should ideally have been also long enough to
reach the final total system regime.

4.1.3 Double porosity behavior, unrestricted interporosity flow model (Wellbore
storage and skin)

In this section, the effect of transient flow from blocks to fissures is considered. As
opposed to the pseudo steady state interporosity flow model presented in Section 4.1.2,
there is no skin effect at the surface of the blocks. The transient interporosity flow
solution is also called unrestricted matrix flow.

Transient matrix flow has been studied by several authors, and two matrix blocks
geometries, slab or sphere, are usually considered. Following the theory developed by
de Swaan in 1976, Bourdet and Gringarten (1980) presented a pressure type-curve for a
well with wellbore storage and skin in a double porosity reservoir with unrestricted
interporosity flow. The type curve was later extended to describe derivative responses
(Bourdet et al., 1984).

Behavior

In the case of unrestricted interporosity flow, the matrix blocks react almost
immediately to any change of pressure in the fissures: the transition starts earlier than in
case of restricted flow, and the fissure flow regime is generally not seen. Only two flow
regimes are observed with this double porosity solution:

1. At early time, both fissure and matrix are producing, but the rate of change of
pressure is faster in the fissure system than in the matrix blocks. The first response
observed is in transition regime.

2. Later, the homogeneous behavior corresponding to the total system is reached.

Pressure type-curve

The pressure type-curve of Figure 4.16 describes drawdown responses for a well with
wellbore storage and skin in a double porosity reservoir with unrestricted interporosity
flow. As on the type-curve of Figure 4.2 for restricted interporosity flow, the well can
be damaged or stimulated. The same dimensionless terms are used (Section 4.1.1).

Independent variables

On the pressure type-curve of Figure 4.16, the dimensionless pressure py, is expressed
versus the dimensionless time group ¢;/Cp. The dimensionless pressure and time are
defined with respect to the equivalent permeability (Equations 2.3 and 4.17).
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Figure 4.16. Pressure type-curve for a well with wellbore storage and skin in a double porosity
reservoir. transient interporosity flow. Log-log scales. py, versus 1,,/C),.

The homogeneous regime is described with a family of (C), ez‘g)/.,,, curves defined in
Equations 4.19. and the early time transition regime by a second set of curves, labeled
A’ The f' dimensionless group is expressed as:

28
y (C/)C) )/+/n

p=s = (4.31)
Ae”

The constant 0" is related to the matrix system geometry. For s/ab matrix blocks,

o'=1.89 (4.32)

and for sphere matrix blocks:

5 =1.05 (4.33)

Description

On the pressure type-curves of Figure 4.16, rwo families of curves are superimposed: the
S curves for transition regime. and the (C,)ez‘\‘), . curves for the total system
homogeneous regime. The two families of curves have the same shape: the 4’ transition
curves are equivalent to Cpe™ curves whose pressure and time are divided by a factor
of two (Bourdet and Gringarten, 1980).

As shown on Figure 4.17, the match of a double porosity response with transient
interporosity flow is adjusted on two component curves: at early time, a S’ curve
describe the transition behavior; at late time, the total system homogeneous regime
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matches on a (Cp ezs)f_ » curve. With example A, the response follows first the transition
curve on A=10° and finally reaches the total system homogeneous behavior on
(Cp ez‘q),; » =10. With example B, the pressure response starts on £=10" and reaches
later (C)) €™)-,, =6x10°.

Since the shape of the §' transition curves is similar to that of the Cp ¢ homogeneous
curves, a semi-log straight line can develop during the transition. The £’ curves are
equivalent to C;,e*® curves displaced by a factor of two: the first line, in transition, has a
slope half of the second. The slope of the second gives the proper estimate of the
equivalent permeability thickness product kA.
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Figure 4.17. Examples for a well with wellbore storage and skin in a double porosity reservoir,
transient interporosity flow, slab matrix blocks. Log-log scales, pp, versus ¢,/C,.

A (Cpe®)=10", (Cpe™)., =10, =0.001, #/=10°, 1e™=1.89x10".

B : (Cpe™)=6x10°% (Cpe™)y., = 6x10°, 0= 0.001, #/=10", 2e? = 1.13x10".
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Figure 4.18. Semi-log plot of Figure 4.17 examples.
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On the semi-log plot, Figure 4.18, example A exhibits a semi-log straight line of slope
m/2 during the transition before the radial flow straight line of slope m. With example
B, the first semi-log straight line of the transition regime is masked by wellbore storage,
and only the final straight line of slope m is present.

Pressure type-curve analysis
As on the double porosity type-curve of Figure 4.2, pressure match and time match are
used to estimate the equivalent permeability thickness product 4% and the wellbore

storage coefficient C (Equations 2.9 and 2.10).

The skin factor is estimated from the late time match, on the total system homogeneous
curve (Cp,e™);- (Equation 4.20).

A is estimated from the ' curve:

———(CDQN )’ o (4.34)

A=4 5
ﬁ'e...

The fissure flow regime is not identified on the pressure type-curve of Figure 4.16, w is
not accessed from the match parameters.

Derivative type-curve

The derivative response of examples A and B are presented Figure 4.19.
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Figure 4.19. Pressure and derivative examples of Figure 4.17 for a well with wellbore storage and
skin in a double porosity reservoir, transient interporosity flow. Log-log scales, pj, versus #,,/Cp.
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Figure 4.20. Pressure and derivative type-curve for a well with wellbore storage and skin in a
double porosity reservoir, transient interporosity flow. Log-log scales, pj, versus #,/Cy.

With example A, two derivative plateaus are evident: the first during transition is at
0.25 (semi-log straight line of slope m/2 on Figure 4.18) and the second, during the total
system homogeneous behavior, is on the usual 0.5 line (slope m). With example B, the
transition is descried by a short derivative valley before the stabilization at 0.5.

On drawdown responses, the main difference with the restricted matrix flow solution is
in the transition regime: with the examples Figure 4.19, the derivative does not drop
below 0.25 but tends to stabilize. It is a flat bottomed valley rather than a deep rounded
valley

Description

Figure 4.20 presents the pressure and derivative type curve for transient interporosity
flow (Bourdet et al., 1984). The dimensionless pressure and time are the same as on the
type-curve Figure 4.16.

Derivative responses are also described by component curves. At late time, the 0.5 line
defines the infinite acting radial flow regime. Before the total system homogeneous
regime, two transition curves are used.

The early transition is described by £’ derivative curves. As on the pressure type-curve
of Figure 4.16, the derivative B’ curves are obtained by displacing derivative Cpe 2
curves by a factor of two along the pressure and time axes. During transition, the 0.5
line plateau of the Cj,e*® curves is replaced by a constant derivative 0.25 line.

During late transition, the derivative is expressed as:
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4_( AC, t, }
2o (1,)/C,)):0.5{ I-e L(l—w)” CI)J } (4.35)

The late transition curves, labeled (AC), )/(1 —(u)2 , describe the end of transition and
the start of the total system homogeneous regime.

Sphere and slab matrix blocks

Figure 4.21 presents the drawdown response for the same parameters (C,)ez‘g)_/.,,, =1,
B'=10" and @=10" produced by the two types matrix geometry, namely slabs and
spheres. Though the pressure curves look identical, the derivatives are different:

e The sphere model response hardly reaches the 0.25 straight line but remains above
1t

e The curve generated for slab matrix is tangential to the 0.25 line, and at late
transition time, the change from 0.25 to the 0.5 level is steeper.

Figure 4.21 illustrates that the matrix geometry has only a limited influence on double
porosity responses. In practice. when the analysis is made by hand, it is not possible to
differentiate between the two solutions. and the same type curve is used. When a
computer is used. and provided the quality of the data is good, one of the two solutions
is sometimes preferred because the derivative match appears slightly better. The choice
of the matrix geometry does not influence the numerical results of analysis.

Matching procedure with the pressure and derivative type curve

The match point is fixed from the derivative 0.5 line and the early time unit slope line.
The pressure curve is used to identify the total system curve (Cp ez‘s)/:<,m, and a
comparison between the pressure and the derivative matches defines the appropriate f
curve.
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Figurev4.2 1. Slab and sphere matrix blocks. Log-log scales, pp versus {D/C,}
(Cpe™)m=1, f=10% w=0.01, slab: e = 1.89x10™, sphere: 1™ = 1.05x10™.
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The permeability thickness and the wellbore storage constant are estimated from the
pressure match and the time match (Equations 2.9 and 2.10). The skin is obtained from
Cp ez‘y)f‘,,,, (Equation 4.20), and A from g with Equation 4.34. At late transition, the

group (AC), )/(l —a))z of the derivative match is not really sensitive to . It is not used
to estimate the storativity ratio.

Influence of double porosity parameters

In this section, we discuss the influence of the two heterogeneous parameters @ and 4
on double porosity responses with unrestricted matrix flow.

Influence of @

The storativity ratio @ defines the contrast between the two homogeneous curves
(Cp ezs)f and (Cp ezs),v.,,l‘ In case of unrestricted interporosity flow, the fissure regime is
short lived: after the wellbore storage effect, the response is usually already in the
transition regime and the (Cp, ezs)f curve is not seen. In such cases, the storativity ratio
has no influence on the model response.

The influence of @ can only be demonstrated on responses generated with a very low
wellbore storage coefficient. Figure 4.22 presents three double porosity curves for
unrestricted flow from slab matrix blocks. All parameters are the same as in Figure 4.7:
Cprom=1,5=0, 2=107 and @ =10", 10% and 10°.

Due to the very small wellbore storage, the three derivative curves of Figure 4.22
exhibit the early time fissure regime: the response follows a (Cp, ez‘g)/ curve, then the f'
transition curve and later the (Cp ezs)/w curve. The examples in Figure 4.22 show that,
when the wellbore storage does not mask the early time response, the influence of w is
the same as in the restricted interporosity flow response: decreasing @ increases the
fissure curve parameter (C) e )
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Figure 4.22. Influence of @ on pressure and derivative log-log curves, py, versus £p/Cp.
Slab matrix blocks. Cpy., =1, S =0, A=107, @=10"", 10? and 10",
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Figure 4.23. Influence of @ on semi-log plot of the Figure 4.22 examples.

On the semi-tog plot Figure 4.23 for the same three examples, the curve generated for
=107 first shows the straight line of slope m/2 during transition, and later the usual
semi-log straight line of slope m. When the storativity ratio is high (@ =10™), a first
semi-log straight line of slope m may be seen during the fissure regime, before
transition (Streltsova, 1983).

The curves on two log-log plots of Figures 4.7 and 4.22 are generated for restricted and
unrestricted flow with the same parameters. In the case of restricted matrix flow, the
fissure regime lasts longer (¢,/C;, = 10" for @ =10) than in the case of unrestricted
interporosity flow (,/C;, = 10%): the matrix skin delays the start of transition by more
than two log-cvcles. This confirms that with the unrestricted matrix flow solution, when
the matrix blocks are not damaged, the fissure regime is generally not seen and @
cannot be accessed from pressure and derivative analysis.

Influence of A
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Figure 4.24. Influence of A on pressure and derivative log-log curves, p;, versus 1,/Cy).
Slab matrix blocks. Cpy, =100, S =0, 0=0.02, 1 =10, 107 and 10°®.
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Figure 4.25. Influence of A on semi-log plot of the Figure 4.24 examples.

Figures 4.24 and 4.25 present three double porosity curves generated for unrestricted
flow with different interporosity flow parameters A. The curves correspond to slab
matrix blocks. The parameters are the same as on Figure 4.9: Cp.,, =100, S =0, 4 =107,
107, 10® and ©=0.02.

As in the restricted flow solution, A defines the end of transition and the start of the
total system flow. On derivative curves, a low A corresponds to a long transition regime
on 0.25, before the homogeneous behavior (Equation 4.35). On the semi-log plot of

Figure 4.25, decreasing A moves the transition upwards.

Associated specialized plot straight lines

The two usual specialized analyses can be used for interpretation: wellbore storage on
early time data, and semi-log analysis once the storage effect has subsided. With the
unrestricted matrix flow solution, three straight lines are in theory possible on a semi-
log plot. Practically, the first one during fissure flow is short lived, and it is masked by
wellbore storage.

Wellbore storage analysis

The analysis of wellbore storage is carried out on a linear scale (Section 1.2.2). Pure
wellbore storage regime is generally seen only on damaged wells, when the skin is
positive,

Radial flow analysis

As shown by the example A of Figure 4.18, two straight lines can be observed on a
semi-log plot of double porosity response, unrestricted flow. The first, during the
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transition regime, has a slope half of the second, corresponding to the total system
homogeneous behavior (Figure 4.23, example @ =107 and Figure 4.25). The curve
©=10"" of Figure 4.23 shows that, at very early time, a first semi-log straight line can,
in theory, demonstrate the fissure flow. The sequence is then, after wellbore storage, a
first line of slope m. a second transition straight line of slope m/2 and a third line, slope
m, parallel to the first.

In practice, the occurrence of three semi-log straight lines has not been clearly
demonstrated on actual data, for example with three long stabilizations for confirmation
on a log-log derivative plot such as on the theoretical example @ =10"" of Figure 4.22.
Even the transition half slope semi-log straight line appears to be rather exceptional and,
as discussed with Figure 4.11 of Section 4.1.2, most semi-log plots of actual field data
only show the characteristic double porosity "S" shape.

When the radial flow of the total system has been reached, the last semi-log straight line
is defined in Equation 4.28. Slope and intercept at Ar=lhr give the equivalent
permeability thickness product k4 and the skin coefficient S.

Build-up analysis

Build-up analysis of double porosity unrestricted interporosity flow is more difficult
than for a homogeneous reservoir response. The superposition method used to take into
account the influence of the production prior to shut-in can introduce a distortion on the
curves (see Section 2.3.4).

Log-log analysis

For build-ups, an approximation of the pressure response is obtained by replacing the
drawdown homogeneous curve (C,,ez‘\.)/,,,, by the corresponding build-up curve, and
keeping the p' transition unchanged. A build-up response displays the full double
porosity behavior only when the production time #, has been long enough before shut-in.

In Section 4.1.2, it was shown that for restricted interporosity flow, the derivative with
respect to Horner or superposition time does not always correct perfectly the shape of
the build-up curve during the transition. The same limitation is observed with the
unrestricted flow models.

On Figure 4.26, three build-up examples of a double porosity response are compared to
the original drawdown solution. Unrestricted flow from slab matrix blocks is assumed,
the parameters are the same as for the restricted flow build-up examples of Figure 4.15,
the three production times are also the same #,/Cp = 100 (Curve A,), 9000 (Curve A,),
3 10° (Curve Aj).
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Figure 4.26. Log-log plot of build-up derivative responses for a well with wellbore storage and
skin in double porosity reservoir, unrestricted interporosity flow, slab matrix blocks.
Cppen =0.1. 8 =0, ©=0.1 and A =3x10™. £,,/C;, = 100 (A,), 9000 (A,), 300000 (A3).

If the homogeneous total system flow was reached during the drawdown (curve Aj), the
derivative of the build-up matches on the original drawdown response. However, if the
previous drawdown stopped in transition regime, the derivative of the build-up deviates
as shown in examples A; and A, of Figure 4.26: during transition regime, the build-up
derivative drops below 0.25, down to 0.21 on Figure 4.26.

When the early time data is affected by wellbore storage, derivative curves can exhibit,
on build-up data, a valley shape during transition, with a minimum below 0.25. In some
cases, a match can be obtained with the two matrix flow solutions, unrestricted or
restricted, the second generally with a high value of storativity ratio .

Semi-log analysis

As discussed in Section 4.1.2 for the restricted flow model, Horner and superposition
analysis of unrestricted matrix flow double porosity data is used to estimate the kA
product, the skin and the extrapolated pressure p* provided that the correct total system
semi-log straight line is used.

4.1.4 Extension of the double porosity models

In previous discussions, radial flow is assumed. Double porosity responses can be
observed during other flow regimes encountered on well responses, due to well
conditions (Chapter 3) or boundary effects (Chapter 5). In the following, the resulting
shape of double porosity responses is briefly reviewed.

Next, several variations in the matrix properties are discussed: in the basic assumptions
of double porosity models presented in Section 4.1.1, matrix blocks are homogeneous
and of constant dimension (condition 6). A reduction of permeability at the surface of
the blocks is introduced with the interporosity skin concept, and changes of block size
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or fissured matrix blocks are considered with the multiple porosity models. The
behavior of layered and radial composite fissured reservoirs is discussed in Section 4.4.

Other flow regimes in case of double porosity behavior

In their study of horizontal wells in double porosity reservoir, Du and Stewart (1992)
illustrated that the double porosity transition can occur in any of the three flow regimes
characteristic of this well configuration (namely vertical radial flow, linear flow and
horizontal radial flow, see Section 3.6). The derivative double porosity transition is
simply superimposed onto the derivative trend describing the flow regime acting at the
same time. Interestingly, they demonstrated that when unrestricted interporosity flow
transition occurs during the linear flow regime, it is characterized by a quarter slope log-
log straight line, typical of a bilinear flow response.

In the case of boundary effects in fissured reservoir, the derivative double porosity
transition is also superimposed onto the boundary characteristic derivative shape (see
Section 5.7). Channel reservoirs with layered deposits having a high contrast of
permeability can also produce a bilinear flow regime, because of linear flow in an
unrestricted double porosity system (see Figure 5.42).

Matrix skin

When the surface of the matrix blocks is damaged, the interporosity skin S, is defined,
in dimensionless terms, as (Moench, 1984):

m hzi
g, = (4.36)
r k([

m
where A, and k, are respectively the damaged zone thickness and permeability (Figure
4.27). As already mentioned, the matrix skin term is not present in the Warren and

Root's (1963) definition of A Equation 4.5. For high S,, (>10), several authors have
proposed a correction to the interporosity flow parameter.

n=3, cubes n=1, slabs
Figure 4.27. Matrix skin. Slab and sphere matrix blocks.
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For slab matrix blocks of thickness 2r,, Cinco et al. (1985) define the effective
interporosity flow parameter A.g as:

A
A = ———— 4.37
eff 3(1 —a))S ( )

Stewart and Ascharsobbi (1988) propose an effective interporosity flow parameter as a
function of the number » of families of fissure planes :

A
- 4.38
L (n+2)s (438)

In Figures 4.28 and 4.30, transient interporosity double porosity responses are presented
for different values of the matrix skin S, of Equation 4.36. Slab and sphere matrix block
geometries are considered.

e When S,, =0, the responses correspond to the unrestricted interporosity model of
Section 4.1.3.
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Figure 4.28. Double porosity reservoir, transient interporosity flow, slab matrix blocks with
interporosity skin. Log-log scales. Cpy.,, =1, S =0, ®=0.01 and 4 =107, 8,=0,0.1,1, 10, 100.
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Figure 4.29. Comparison of Figure 4.28 derivative responses with the restricted interporosity flow
model. A= 2.50x10° (S, = 1), Aerr = 3.32x107 (S, = 10), Aegr = 3.33x10°* (S,, = 100).
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Figurc 4.30. Double porosity reservoir. transient interporosity flow. sphere matrix blocks with
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Figure 4.31. Comparison of Figure 4.30 derivative responses with the restricted interporosity flow
model. 2= 1.66x10°(S,, = 1). Ay = 1.96x107 (S, = 10). A= 2.00x10° (S,, = 100).

e  When S, =1, a first derivative stabilization at 0.5 is observed before the transition.
The effect of matrix skin is to delay the flow from blocks to fissures, and a fissure
regime is identified at early time. During transition. the derivative drops below the usual
0.25 plateau of the unrestricted interporosity transition (S, =0).

e With larger matrix skins (S,, =10 or 100), the early time fissure regime lasts longer.
Later. a valley shaped transition. similar to the restricted interporosity curves of Section
4.1.2, is observed and the start of the total system equivalent homogeneous behavior is
delayed.

On Figures 4.29 and 4.3 1, the derivative curves of Figures 4.28 and 4.30 are compared
to restricted interporosity responses generated with the effective interporosity flow
parameter A of Equation 4.38. When S,, =1, the equivalent restricted interporosity
solution describes correctly the fissure and total system flow regimes but, during the
transition, the valley drops to a deeper level than on the transient interporosity response
with matrix skin. When the matrix skin is larger (S, =10 or more), the two models
produce equivalent derivative curves.

Figures 4.29 and 4.31 illustrate that, when the Warren and Root (1963) restricted
interporosity flow solution is used for analysis, the match provides the effective
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interporosity flow parameter Ao, and not A of Equation 4.5. When S,, > 10, Aey of
Stewart and Ascharsobbi (1988) can be approximated by the modified pseudo steady
state interporosity flow parameter of Moench (1984):

ru2/ ky
¥ hd k

m

Interestingly, A of Equation 4.39 is independent of the matrix block permeability £,,.
Moench (1984) showed that when the matrix skin S,, of Equation 4.36 is large, most of
the pressure change within the blocks occurs across the damaged zone of thickness A,
and the pressure gradients in the block become small. This explains Equation 4.39, and
thus justifies the assumption of the Warren and Root (1963) model where the pressure
gradients in the matrix are neglected.

If the average size of the matrix blocks r, is known, A can be used to estimate the
permeability thickness ratio &, / b, of the damaged region on the fissure walls.

The theory of matrix skin unifies the two double porosity models presented in previous
Sections. For small values of the matrix skin (S,,.=0.1 on Figures 4.28 and 4.30), none
of the two limiting solutions, for unrestricted and restricted interporosity flow, describes
the response. A transient interporosity model with matrix skin should then be used for
the analysis of such data.

Multiple porosity systems

Several authors have considered changing block sizes in fissured reservoirs. Abdassah
and Ershaghi (1986) proposed a triple porosity model assuming two families of matrix
blocks with different characteristics. Cinco-Ley et al. (1985) and Belani and Yazdi
(1988) extended the triple porosity model to multiple block size with a frequency
function defining the probability of blocks of a given size. With these models, the
matrix blocks are uniformly distributed in the reservoir. Al-Ghamdi and Ershaghi
(1994) envisaged a different configuration, where matrix blocks are fissured with
pseudo steady state interporosity flow. In such case, the matrix produces into the micro
fissures, which feed a network of macro fissures producing to the well. A schematic of
the two possible triple porosity configurations is presented on Figure 4.32.

Other configurations have been proposed when the density of the fissure network is not
uniform. These solutions combine a double porosity response with double permeability
or radial composite configurations. They are briefly discussed at the end of this chapter
(Section 4.4). In the following, only the triple porosity solution is presented for
illustration, and the main conclusions concerning the multiple block size configuration
are summarized.

Figure 4.33 presents a triple porosity reservoir response with pseudo steady state
interporosity flow. The fissure network interacts with two groups of matrix blocks. For
each group, the interporosity flow is defined with a specific 4; (/ =1, 2). In the storativity



152 Reservoir heterogeneities

ratio @ =107, the total storage of Equation 4.4 involves the fissure and the two groups
of matrix blocks. & defines the contribution of the group to the total matrix storage (5, +

& =1):
((bVC, )ml (¢VCI )m/ (44())

5 =
(¢VC{ )ml + (¢VC1 )mZ (¢VC, )m

With group 1, the blocks are small and the interporosity flow coefficient is large (4,
=107) but the group represents only 10% of the matrix storage (& =0.1). The curve
Figure 4.33 shows response of the fissure alone with a first derivative stabilization at
0.5, then a valley transition when the matrix blocks of group 1 start to produce, followed
by a new stabilization at 0.5. An intermediate homogeneous radial flow behavior is seen
at times 10" to 10°, describing the fissures and group 1 matrix blocks. After t;,/Cp ~10
the second group enters into production (4, =5x10° 7y and a second derivative val/ey
develops. During this transition. the storage contrast between (fissures and group 1) and
the total system is 0.01+10%x0.99=0.109, and the depth of the second valley is about
the same as the first. The response ends in radial flow for the total system equivalent
homogeneous behavior.
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Figure 4.32. Triple porosity systems
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Figure 4.33. Triple porosity reservoir, pseudo steady state interporosity flow, two sizes of matrix
blocks, different A. Cpy.,, =1, S =0, @ =0.01, A=10°, 6=0.1 and 2,=5x107, £=0.9.
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Figure 4.34. Semi-log plot of Figure 4.33 example.

The same triple porosity example is presented on semi-log scales in Figure 4.34. Three
straight lines are present: the first for fissure flow, the second for (fissures + group 1)
and finally the third for (fissures + group 1 + group 2). This sequence of regimes is
theoretically possible but, more frequently, a triple porosity response is characterized by
a non-symmetric transition valley as illustrated on Figure 4.35.

In this example, the interporosity flow coefficient is the same for the two groups
(/1,:12:10’6) and the two transitions start at about the same time. The two dashed curves
of Figure 4.35 present the individual double porosity responses produced each groups:
the transition for group 1 (&, =0.1) ends earlier than for group 2. The resulting triple
porosity transition can be described as the sum of the two valley shaped transitions:

e At early transition time, the drop of derivative can be identified earlier than on the
two individual double porosity response curves.

e At late transition time, an intermediate derivative plateau is observed when the
group 1 transition is finished but not for the group 2.
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102
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Figure 4.35. Triple porosity reservoir, pseudo steady state interporosity flow, two sizes of matrix
blocks, same A. Cpp. =1, S =0, 0=0.01, A;= A=10"°, 6,=0.1, 5=0.9. The dashed curves describe
the double porosity responses for only blocks 1 (small valley) and only blocks 2.



154 Reservoir heterogeneities

10

Dimensionless Pressure, py,
B

101 1 10 102 100 10+ 10° 106 107
Dimensionless time, 1,/Cy
Figure 4.36. Semi-fog plot of Figure 4.35 example. The thin curves describe the double porosity
responses for only blocks 1 (final semi-log straight line for fissures + blocks 1) and only blocks 2
(final semi-log straight line close to the total system).

The three examples of Figure 4.35 are presented on semi-log scale on Figure 4.36. On
the triple porosity response, only two straight lines are present, for fissure flow and for
(fissures + group 1 + group 2). The double porosity response for group 1 alone, shown
as a thin curve, describes the theoretical (fissures + group 1) semi-log straight line.

In the case of unrestricted interporosity flow, triple porosity responses deviate from the
typical behavior presented in Section 4.1.3 at transition time and the derivative curves
can exhibit an intermediate plateau between 0.25 and 0.5, or even an oscillation (Cinco-
Ley et al., 1985). With multiple porosity systems, the authors conclude that the size of
the matrix blocks r,, estimated with a double porosity model is the harmonic weighted
average of the different blocks sizes.
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Figure 4.37. Log-log plot of pressure and derivative responses for a well with wellbore storage
and skin in double porosity reservoir. Restricted and unrestricted interporosity flow, slab and
sphere matrix blocks. Cpy.,, =1, S =3, ©=0.02, =107, (Cpe™),, = 403, Ae™ = 2.48x107. Siab:
B =3.07x10°, Sphere: §'=1.71x10°
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4.1.5 Discussion of double porosity analysis results

In this section, we present specific features concerning resuits of analyses with the
double porosity solutions. We examine the question of the uniqueness of the solution,
and we discuss the numerical values of the different parameters obtained from analysis.
Multiple porosity systems and transient interporosity responses with matrix skin are
seldom used as they require parameters that are usually not accessible. Test
interpretation with these models is not considered in the following discussion.

Restricted and unrestricted interporosity flow models

Figure 4.37 compares the two types of double porosity responses generated for the same
parameters: (Cp ez‘g)/“,, =403, 1¢* =2.48x10” and w=2x10. In the case of unrestricted
interporosity flow with slab or sphere matrix blocks, the derivative is flat during
transition. With the restricted interporosity flow solution, the transition is characterized
by a valley in the derivative.

The choice of the appropriate double porosity solution is in general unique, the two
models correspond to different sets of data. The rule is to use the model that provides
the best match: with the restricted interporosity flow solution, the depth of the
derivative valley during transition is a direct function of the transition duration. With
long transition regimes, corresponding to small @ values, the derivative drops below the
practical 0.25 limit of the transient interporosity flow solution.

An ambiguity may occur when the transition regime is of very short duration after the
wellbore storage effect. In such cases, pseudo steady state curves (generated with a high
@ value) can produce a shape very similar to transient solutions, generated with a @
value much smaller (of the order of 107 or less). The two resulting fissure storativity
values are very different.

Some wells have been reported to change from a restricted to an unrestricted
interporosity flow behavior after acid stimulation (see discussion of the radial composite
double porosity model Section 4.4.2). In most cases, the type of interporosity flow
regime does not change in the course of the well history. Furthermore, it is in general
similar for all wells in the same formation.

Fissured reservoir versus sealing fault

The shape of the two curves of Figure 421 is similar to the response of a well in a
homogeneous reservoir bounded by one sealing fault (Chapter 5). On the corresponding
example Figure 5.1, the derivative stabilizes first at 0.5 and later at 1, but the shape of
this response shows the same characteristic as a double porosity curve with unrestricted
matrix flow. Using a homogeneous bounded model to interpret such pressure response
gives a permeability thickness product twice the /4 obtained with a double porosity
match.
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When the two alternative solutions seem equally appropriate to describe the pressure
response, the analysis of the results shows frequently that only one is applicable. For
example, in the hypothesis of boundary effect, the distance of the sealing fault could be
unrealistic, or the same behavior may be repeated on several wells in the same reservoir
etc. A double porosity model may then be preferred for interpretation. In the next
Section, we show that the numerical values of the well parameters (wellbore storage and
skin) can also be used in the diagnosis of double porosity behavior.

Results of double-porosity analysis

In the following, we discuss the significance of the interpretation results obtained with
the double porosity model. The equivalent permeability thickness product has been
discussed in Section 4.1.1. The interporosity flow parameter A, presented in Equation
4.5 of Section 4.1.1 for the unrestricted interporosity flow condition, has been modified
into Equation 4.39 of Section 4.1.4 in the case of restricted interporosity flow. In the
build-up discussion of Section 4.1.2, the concept of extrapolated pressure was shown to
be in some cases misleading. The next paragraphs present other characteristic features
of double porosity interpretations.

Reservoir parameters

The discussion of double porosity behavior was based so far on the assumption that the
fluid is single phase, and the compressibility is constant. When free gas is present in the
formation, the gas satwrations can be different in the fissures and in the matrix blocks,
and they are both changing during the well production history. As the storativity ratio of
Equation 4.4 depends on the total compressibility of the two phases (¢,), and (¢, @ can
change when the fluid characteristic changes. In the same way, A depends on %, or S,,
which are very sensitive to gas saturation. Some wells, after several tests at different
times, have shown a change in the double porosity behavior because of the variation in
w and A (Gringarten, 1984). This is in agreement with the Camacho-V. and Raghavan
(1994) simulation results.

Well parameters

In some cases, fissured reservoir responses show a very high value of wellbore storage
constant, associated to a negative skin factor, even when the well has not been
stimulated.

Common values for the wellbore storage constant in homogeneous reservoirs are in the
order of 10 Bbl/psi or less for an oil well. In the case of fissured reservoirs, it is not
exceptional to find wellbore storage effects of 0.1 Bbl/psi or more, 10 or 100 times
greater than the wellbore storage constant calculated from the completion.
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Double porosity reservoirs can also show negative pseudo-skins. A skin of around -3
can be encountered in non-stimulated wells, acidized wells may have skins as low as -7,
and a zero skin can correspond to a slightly damaged well (Gringarten, 1984).
Following the Stewart and Ascharsobbi (1988) theory, the equivalent bulk fissure
permeability concept k of Equation 4.1 is not valid for near wellbore description. At
small scale, the dimension of the matrix blocks is not negligible (condition 1 of Section
4.1.1) and the flow is not radial in the vicinity of the well. The fluid flows through the
fissure in direct contact with the well and, as a result, the resistance to flow is less than
in the homogeneous radial flow based on 4. For cubes matrix blocks, they express the
corresponding negative pseudo-skin as:

S2¢ zg—ln 2rm

(4.41)

Fy

A high value of wellbore storage, associated with an apparent negative skin, is an
indication of fissured formation, even when the shape of the data curves does not
suggest any heterogeneity. This specific influence of natural fissures on the wellbore
parameters has been observed in many fissured reservoirs but not all. Many double
porosity reservoirs, such as multiple-layer systems, are also known to have no effect on
the wellbore parameters (Gringarten, 1984).

4.1.6 Field examples

In the following section, two published double porosity examples are presented. The
manual analysis of the first example (Bourdet et al., 1983 b), with the double porosity
type-curve of Figure 4.6 for restricted interporosity flow is summarized. For the second
example (Bourdet et al., 1984), the pressure and derivative responses are briefly
discussed for a match with the double porosity unrestricted interporosity flow model. A
possible triple porosity response is described in Section 5.7.5 (Figure 5.45).

Restricted interporosity flow example

After one day of production, an oil well is shut in for an 18 hour build-up test. The log-
log plot of pressure and derivative (Figure 4.38) suggests a heterogeneous behavior:
after an initial hump at early times, the derivative drops slowly until the third hour of
shut-in, then it increases during the 15 remaining hours of build-up. The derivative does
not stabilize on this build-up response, a radial flow semi-log straight-line analysis is
not justified.

A first match is attempted on the homogeneous model (type-curve Figure 2.22),
assuming that the lower part of the derivative plot corresponds to the 0.5 line of the
radial flow regime. The later upward trend would then be possibly explained by
boundary effects.
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Figure 4.38. Log-log plot of the double porosity (pseudo steady state interporosity flow) field
example.

No satisfactory solution is found to match the first part of the build-up: after the
derivative maximum, the downward branches of the homogeneous type curves are
much steeper than on the data plot.

A second attempt is made with the double porosity solution, restricted interporosity
flow. The definition of the flow regimes is as follows: the derivative displays a hump
corresponding to wellbore storage during the first 10 minutes of shut-in. Then, from 0.2
hours to the end, a long transition behavior is observed, the radial flow for the total
system is not reached after 18 hours of shut-in.

An initial match is performed on the pressure and derivative type-curve of Figure 4.6.
As radial flow has not been reached, the last derivative points are placed slightly below
the 0.5 fine, and then the early time data is matched on the unit slope straight line. Both
pressure and derivative data curves appear to match a fissure curve in the region of
(Cp ezx)‘, = 50. The pressure transition period is matched against Ae = 10'4, and the
total system curves seems to be close to (C),e™),.,, = 10.

The match is checked against the derivative transition response. With @ = 0.2, the early

5 -1 .
AC, _107X10 s A0
wll-w) 02x0.8 (1-w)

and late transition curves are =12x10""

respectively.

Pressure and derivative give consistent results. The match can be refined by generating
the complete double porosity multiple-rate response by computer (Figure 4.39). Results
are:

- Pressure match: pn /! Ap =0.06 psi-1

- Time match: (tyCp) Ar=161 hrs-1
- Fissure curve: (o) ezx)f = 50.

- Total system curve: (C)) e”), =38

- Transition curve: Ae®=101x10"
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Figure 4.39. Log-log match of the field example on double porosity model, restricted
interporosity flow. (C)) ez‘s)/ a=8,S=41 w =0.16, 1=2.8x10*.

Unrestricted interporosity flow example

The second example is a short three hours build-up test, after two days of production.
On the log-log plot shown in Figure 4.40, the derivative clearly describes two
stabilizations, with the second approximately twice above the first. On late time data,
the pressure is less than one log-cycle above the derivative response: it can be
concluded that the skin is negative. This is confirmed by the early time response, where
the wellbore storage effect ends before the first point, recorded 15 seconds after shut-in.

Two models can be used to match the data: a double porosity model with unrestricted
interporosity flow, or a homogeneous reservoir with sealing boundaries. Both models
are equally applicable. With the first hypothesis, the radial flow derivative stabilization
corresponds to the second plateau, and a slab matrix block geometry is found to provide
the best match. With the second hypothesis, the radial flow regime is seen during the
first derivative stabilization, and two intersecting faults with an angle larger than 90°
have to be used.
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Figure 4.40. Log-log plot of the double porosity (transient interporosity flow) field example.
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4.2  LAYERED RESERVOIRS WITH OR WITHOUT CROSSFLOW

As an extension of the double porosity models presented in Section 4.1, the double
permeability solution considers also two distinct media in the reservoir. The two
elements are defined as layers, with a porosity and a permeability. In each layer, the
flow is radial, and they can both produce directly into the well. In the reservoir, a cross
flow may be established when one layer tlows into the other (Figure 4.41).

The double permeability behavior is observed in stratified reservoirs, when the
permeability of the different layers is participating to the response, or in fissured
reservoirs, when the matrix blocks are connected. In systems with a large number of
layers, the high permeability layers are grouped by convention into the "Layer 1", and
the "Laver 2" describes the tight zones (sce discussion in multiple-layer Section 4.2.5).

Figure 4.41. Model for double permeability reservoir

Layered reservoir have been studied either for the case of commingled systems
(Lefkovits et al., 1961; Tarig and Ramey, 1978), when the layers, separated by
impermeable barriers, can only communicate through the well, and also when a
reservoir cross flow is possible (Jacquard, 1960; Russell and Prats, 1962; Polubarinova-
Kocina, 1962; Gao. 1984; Wijesinghe and Cutham, 1984; Bourdet, 1985; Prijambodo et
al., 1985). In 1984, Wijesinghe and Culham presented an analytical model for transient
interlayer cross flow. Pseudo steady state cross flow between the layers was envisaged
for two layers by Bourdet in 1985. This type of reservoir cross flow has also been
considered by Liu et al. (1987) and Liu and Wang (1993) with similar conclusions.
Chen et al. (1990) derived a relatively simple transient cross flow solution. The pseudo
steady state interlayer cross flow solution was extended to any number of layers (Ehlig-
Economides and Joseph, 1985: Larsen, 1988; Park and Horne, 1989) and to different
well and boundary conditions (Joseph et al., 1986; Larsen. 1989; Suzuki and Nanba,
1991; Bidaux et al., 1992; Kuchuk and Habashy, 1996). Limited entry wells in layered
reservoir with transient cross flow have also been considered (Shah and
Thambynayagam, 1992; Abbaszadeh et al., 1993).

The double permeability model described in this section corresponds to the analytical
solution proposed by Bourdet (1985). It includes the wellbore storage and skin effects,
and the reservoir cross flow is in pseudo steady state condition. The basic assumptions
are discussed in Section 4.2.1. Two different types of well configuration are considered.
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In Section 4.2.2, the model response is presented when the two layers produce into the
well as in the example Figure 4.41. In Section 4.2.3, the response is examined when
only one of the two layers is perforated, such as in Figure 4.47. Extensions of the model
to multiple-layer reservoir, and transient reservoir cross flow are described in Section
4.2.6. Responses of commingled systems are further discussed in Section 4.2.7 for equal
or unequal initial pressure.

4.2.1 Double permeability model

The basic assumptions of the double permeability solution and the definition of
dimensionless parameters are based on the same concepts as in the double porosity
mode] of Section 4.1. Again, the parameters resulting from interpretation define the
idealized mathematical model used for description of the layered reservoir. In particular,
the vertical permeability estimated from a match with the double permeability model
depends upon the choice of a two layers simplified model to describe a complex
reservoir configuration. The influence of layer refinement on the results is discussed in
the multiple-layer Section 4.2.6.

Double permeability assumptions

o The well, intercepting two homogeneous layers, is affected by wellbore storage. At
each layer, a skin defines the communication between the well and the formation.

o  The initial pressure is the same in the two layers.

e  After some production, a difference of pressure is established between the two
layers and a cross flow takes place in the reservoir. As for the double porosity model,
two different types of cross flow have been considered. In the case, discussed in the
following, of pseudo steady state flow between the layers (Bourdet, 1985), the same
assumption as in the Warren and Root (1963) model is made: the vertical pressure
gradients in the layers are neglected and the resistance to vertical flow is described with
the semi-permeable wall model of Gao (1984). With the hypothesis of transient flow
between the layers (Chen et al., 1990), the cross flow is unsteady because of the vertical
pressure gradients in the low permeability layer.

Other multiple-layered reservoir configurations have been considered with any number
of layers, homogeneous or not. These solutions are discussed in Section 4.4.
Definitions

In the following, subscripts 1 and 2 refer respectively to layer 1 and 2 (see Figure 4.41).
The total permeability thickness product is expressed as:
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khroraL = k0 + kol (4.42)
and the reservoir total storativity:

(gﬁc,/1),l.(),l}\l_ = ((jﬁc‘/ /7)1 +(¢5(‘,/1)2 (4.43)
The kh contrast between the two layers is expressed by the mobility ratio &

o = kyhy kA
kb +kshy o Khporay,

(4.44)

x defines the contribution of the high permeubility layer 1 to the total permeability
thickness product. When « is close to 1 (0.999 or more), the mobility of layer 2
becomes negligible. The double permeability model then tends to exhibit the same
configuration as the double porosity solution defined in Section 4.1 when applied to
multiple-laver systems: the double porosity model is a limiting form of double
permeability responses.

The contrast of storage between the layers is expressed by the storativity ratio w. It
defines the contribution of the high permeability laver, to the total storativity:

(¢C, ;’7)1 B (¢c‘, /7)]

_ (4.45)
(¢"z ]7)| +(¢C‘/ }7)2 (¢C/h)l'o’1}\l,

w =

The definition of the storativity ratio is the same as in the double porosity model: the
volume ratios /', and V', of Equation 4.2 are replaced by the thickness ratios #,/(h+ h,)
and Ay/(h+ h,) in Equation 4.45. Practical values for o can be in the same range, in the
order of 10" or less.

The reservoir cross flow is defined by the interiayer cross flow coefficient A: the smaller
is A, the more difficult is communication between the layers and A=0 corresponds to

two layers without cross flow, also called commingled system.

With the semi-permeable wall resistance hypothesis of Gao (1984), 4 is expressed as:

e 2
= u = 4.46
klhl +k2h2 2£+ﬂ.+ /72 ( )
k‘: k:l k:2

As depicted on Figure 4.41, 1 is a function of the vertical permeability &’. in the low
permeability "wall" of thickness /' between the layers and, by extension, of vertical
permeability in the two layers 4., and k...

If the vertical resistance is mostly due to the "wall", a simplified A can be used to
characterize this interlayer skin:
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2
ro k',

W

L S & (4.47)
kihy +kyhy W

Equation 4.47 is equivalent to the effective interporosity flow parameter A of Equation
4.39 (Moench, 1984).

When there is no skin at the interface and the vertical pressure gradients are negligible
in the high permeability layer 1, A is equivalent to the interlayer flow parameter of the
transient double permeability model of Chen et al. (1990):

,
r. k.,

w

A=t
ki +kyhy by /2

(4.48)

Dimensionless variables

All dimensionless variables are expressed with reference to the total system parameters
defined in Equations 4.42 and 4.43. The dimensionless pressure is based on the
permeability thickness product of the total system:

by = kit hohy (4.49)
141.2gBu
and the dimensionless time is:
kih +kyh
t), =0.000264 1 ¥ B2 (4.50)

At
[<¢Cl h)] + (¢C1 h)z lﬂrj

The well condition is defined by two skins S, and S,, and by the dimensionless wellbore
storage:

Cp= 0.8936C @51)

[(¢Cr h)l + (¢C,/7)2 ]rvg

In the following sections, the double permeability curves are presented with the
dimensionless pressure p;, of Equation 4.49 versus the dimensionless time group £,/C):

Ip - oooozgsMﬁ

(4.52)
Cp H c
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4.2.2 Double permeability behavior when the two layers are producing in the well
(Wellbore storage and two skins)

The response of a well with wellbore storage and skins is defined, in a double
permeability reservoir, by six dimensionless parameters: Cp, S; and S, for the well, x, @
and A for the reservoir. No log-log type-curve has been found practical to describe
double permeability responses, the analysis is performed on computer and the
parameters are adjusted with pressure and derivative data.

Behavior

In a two-layer reservoir with cross flow. three different regimes can be identified in the
response of a well with wellbore storage and skins :

1. First, the behavior of nvo layers without cross flow is seen: with the semi-
permeable wall assumption, the reservoir cross flow is negligible at early time.

2. At intermediate times. the response deviates from the "two layer no cross flow"
behavior and reaches a transition regime. as the fluid transfer between the layers starts
in the reservoir.

-

3. Later, the pressure of the two layers equalizes, the equivalent homogeneous
behavior of the total system becomes evident.

A typical double permeability response is presented in Figure 4.42. The example
corresponds to a well with wellbore storage, the two layers are producing into the well
and a cross flow is established in the reservoir. The derivative follows the unit slope
straight line at early time. reaches a maximum. then drops below the 0.5 line in a long
transition, and finally reaches the 0.5 stabilization when the radial flow in the equivalent
homogeneous total system is reached. During transition, the shape of the derivative
valley is a function of the contrast of storativity and permeability between the two
reservoir clements, as opposed to a double porosity response such as on Figure 4.7,
where only the storativity ratio influences the response.
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Figure 4.42. Pressure and derivative response for a well with wellbore storage and skins in double
permeability reservoir, the two layers are producing into the well. Log-log scales, py, versus #,/Cp,.
Cp=1000,5,=5,=0, w=0.02, k= 0.8, 1= 6x10°.
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Figure 4.43. Log-log plot of double permeability responses, the two layers are producing into the
well. ppy versus ty/Cp. Cp=1,8,=5,=0, @=0.001, 1=4x10". £=0.6, 0.9, 0.99 and 0.999.

The two dashed curves correspond to the homogeneous reservoir response (Cp ¢* = 1) and double
porosity response (k= 1).

Discussion of double permeability parameters

In the following, it is assumed that the respective layer skins are equal: S| = S,. The
number of parameters is reduced to 5, and the influence of the three reservoir
parameters x, @ and A is demonstrated with several log-log and semi-log examples.

Influence of k and w

Figure 4.43 presents pressure and derivative examples of double permeability responses
for different values of x (0.6, 0.9, 0.99, 0.999). The curves are generated with @ = 107,
and A4, Cp, S, and S, are the same on all responses. The upper and lower dashed curves
are the two limiting cases: the homogeneous reservoir (x =) and the double porosity
(x =1) responses.

When x =1, the maximum value of the mobility ratio, layer 2 has no radial permeability
and the model corresponds strictly to a double porosity configuration: the derivative
valley has the characteristic shape of a double porosity transition with restricted
interporosity flow. When & = 0.999, layer 2 provides 0.1% of the mobility, and the
derivative curve deviates from the double porosity shape. With lower values of x, the
depth of the transition valley is reduced and for x = 0.6 the derivative hardly drops
below the 0.5 line.

The Figure 4.43 double permeability examples are presented on semi-log scales in
Figure 4.44. The dashed curves describe the equivalent homogenecous behavior
(Cpe™=1) and the double porosity response (x =1). The thin curves illustrate two
examples of the "rwo layers no-cross flow" responses corresponding to x = 0.99 and 0.6:
the interlayer flow parameter is set to A=0, other parameters are unchanged. When the
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mobility contrast is large (curve x = 0.99), the two layer no-cross flow early time
response is very different from the final total system equivalent homogeneous regime
Cpe®=1 (see discussion of Equation 4.74, Section 4.2.6), and the double permeability
transition is long and flat. The "S" shape of the semi-log curves is reduced when the
contrast in layer permeability is smaller. such as with the curve for ¥ = 0.6.

On the Figures 4.45 and 4.46, the storage contrast between the layers is reduced: the
storativity ratio is @= 10", the other parameters are the same as on the responses
Figures 4.43 and 4.44. When the storage of layver | becomes significant, the two
characteristic regimes "two layers no-cross flow" and "total system homogeneous" are
closer, and the double permeability transition is shorter.
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Figure 4.44. Semi-log plot of three double permeability examples of Figure 4.43.
The dashed curves correspond to the homogeneous reservoir response ((’,)ez‘\' = 1) and the double
porosity response («=1). The thin curves correspond to the two layers responses with no reservoir
cross flow (x#=0.6 and 0.99. A =0).
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Figure 4.45. Log-tog plot of double permeability responses. the two layers are producing into the
well. pyy versus 1,/Cph. Co=1.85,=5.=0, = 0.1, A =4x10". £ = 0.6, 0.9, 0.99 and 0.999.
The two dashed curves correspond to the homogencous reservoir response (Cp ¢* = 1) and the
double porosity response (k= 1).
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Figure 4.46. Semi-log plot of three double permeability examples of Figure 4.45.

The dashed curves correspond to the homogeneous reservoir response (Cp e* = 1) and the double
porosity response (x=1). The thin curves correspond to the two layers responses with no reservoir
cross flow (x=0.6 and 0.99, 1 =0).

On a double permeability response, the shape of the transition is a function of the two
ratios @ and k. The storativity ratio @ defines the duration of the transition, but the
depth of the derivative valley is also related to the mobility ratio x. For example, the
transition is deeper on the curve x = 0.99 of Figure 4.45 (w=10") than on the curve
k= 0.6 of Figurc 4.43 (0 =107).

Influence of A

The interlayer flow parameter 4 depends upon the ability of the vertical cross flow to be
established between the layers. When A= 0, the response corresponds to the "two layers
no-cross flow" solution. In other cases, a cross flow is established between the layers,
and A defines the time of start of the equivalent homogeneous total system flow regime
like in double porosity responses. The smaller is A, the later the start of total system
flow.

Matching procedure with the pressure and derivative data
As for all responses affected by wellbore storage effect, the match point is fixed by the
two derivative straight lines: at early time, the wellbore storage unit slope line, and

during total system radial flow, the 0.5 line. The kfrora. and C are estimated from the
pressure and the time matches (Equations 4.49 and 4.52):

khy + kyhy = 141.2gBu(PM) (4.53)

C= 0,000295M[ﬁ\7) (4.54)
7
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The time of the end of transition and start of the total system homogeneous behavior is
used to estimate the interlayer cross flow parameter 4. The two other heterogeneous
parameters are adjusted on the derivative transition data: a long transition valley
suggests a small storativity ratio «. and the depth below the 0.5 line indicates the range
of the mobility ratio «.

o and « define the storativity and the mobility distribution between the two layers from
Equations 4.45 and 4.44, 4 is used to provide an estimate of the vertical permeability. If
the vertical resistance to the flow between the layers is concentrated at the wall
interface. the vertical permeability of the "wall" &', is obtained from Equation 4.47:

k. =k by + ko )izh' (4.55)

"

If no semi-permeable wall is present between the layers and the vertical pressure
gradients are negligible in the high permeability layer 1, k7 can be expressed from
Equation 4.48:

A hy
52
R

ko =(k hy +kyhy) (4.56)

H

When the same vertical permeability 5 is assumed in the two layers and there is no skin
at the interface:

h +h
ko :(klhl +kzhz)é‘ Wi

an

(4.57)

In practice, when the storativity ratio © is small, s <<k, and Equations 4.56, 4.57
provide similar results. The estimation of vertical permeability from A is further
discussed in the Multiple layer Section 4.2.6.

Once the derivative is matched and the three heterogeneous parameters are defined, the
pressure response is used to evaluate the skins S; and S,. If the two skin effects are
different, the well condition influences the shape of the derivative transition, and it is
difficult to conclude a unique match.

In the next Section 4.2.3, only one of the two layers is producing into the well: this
configuration corresponds to the highest contrast between the two skins. It can be
applied when a layered system is tested on a selected interval only.
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4.2.3 Double permeability behavior when only one of the two layers is producing
in the well (Wellbore storage and skin)

The well is perforated in one layer only: in the model, a very high skin is given to the
non-communicating zone. Even though the well configuration corresponds to partial
penetration, no spherical flow regime is produced. With the semi-permeable wall
assumption of the double permeability model, the vertical pressure gradient is
concentrated at the interface between the two layers.

The response of a partial completion well with wellbore storage and skin in a double
permeability reservoir is defined by five dimensionless parameters: x, @, 4, Cp, and S,
or S,, depending upon the well configuration.

Behavior

Three different regimes are observed in the response of a partially completed well with
wellbore storage and skin in a layered reservoir:

1. First, the perforated layer response is seen alone, and the behavior is Aomogeneous.
The level of the first derivative stabilization depends upon the permeability of the
perforated interval.

2. When the second layer starts producing into the perforated zone, the response
deviates in a transition regime and the derivative drops.

3. Later, the pressure of the two layers equalizes, the equivalent homogeneous
behavior of the total system is seen and the derivative stabilizes at 0.5, as the total kA is
acting.
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Figure 4.47. Pressure and derivative response for a well with wellbore storage and skin in double
permeability reservoir, only one layer produces into the well. Log-log scales, py, versus £,/Cp,.
Cp=1000, S, =100, S, =0, @=0.1, k= 0.9, 1 =6x10™",
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In Figure 4.47, only layer 2 is producing in the well. After the wellbore storage hump,
the derivative shows a first plateau corresponding to radial flow in the perforated zone,
until the curve decreases to reach a second plateau, when the interlayer cross flow is
established, and the total system produces. The double permeability behavior is then
similar to the response of a well in partial penetration, such as Figure 3.15.

Discussion of double permeability parameters

The shape of the transition between the two homogeneous regimes depends upon the
permeability ratio between the perforated layer and the second layer. In Figure 4.48, the
two hypotheses are presented for the same layered system. The reservoir parameters are
defined as @ =02. k=09 and £ = 10" The wellbore storage coefficient is C), = 1 and,
for one of the curves S, = 100, S, = 0 and for the other S, = 0, S> = 100. The thin curve
describes the double permeability response when both layers are perforated (the two
skins are set to 0). Figure 4.49 presents the same response curves on semi-log scales.
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Figurc 4.48. Log-log plot of double permeability responses. only one layer is producing into the
well. Cp =1, ©=02. k=0.9. 2 =107 5,=100. $=0 and $,=0. S,=100. The thin curves correspond
to the double permeability response with no skin when both layers are perforated.
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Figure 4.49. Semi-log plot of Figure 4.48 double permeability examples.
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Taking only the low permeability layer producing into the well, we will examine first
the response shown as “layer 2 produces”. During the initial homogeneous regime, the
derivative tends to show a stabilization at 0.5/(1- x). On the example of Figure 4.48, the
first radial flow regime is masked by wellbore storage, and the derivative plateau (at 5
with k=0.9) is not seen. The curve displays a long hump before the drop of derivative in
transition, and the second stabilization on 0.5 for the total system. During this final
radial flow regime, the amplitude of the response is large, as illustrated on the semi-log
plot Figure 4.48. This configuration produces, when the well is perforated on the low
permeability layer, a large positive geometric skin.

The response is very similar to the behavior of a well in partial penetration as described
in Section 3.4; the two models exhibit a different behavior only during the transition. In
a homogeneous reservoir, partial penetration is characterized by a spherical flow regime
with a negative half unit slope derivative straight line. In case of double permeability
response, the vertical pressure gradient is modeled with the semi-permeable wall
interface, and the transition between the two radial flow regimes is steeper.

Conversely, when only the high permeability layer 1 is producing to the well, the
permeability of the first homogeneous regime is, with x=0.9, 90% of the total system
permeability, and the two derivative stabilizations are almost at same level: 0.5/ x for
the first (in the example: 0.55) and 0.5 for the second. At transition time, the derivative
valley is deeper than on the thin curve, when the two layers produce into the well.

With this second type of double permeability partial completion, the response tends to
show the same behavior as a double porosity with restricted interporosity flow:
introducing a high skin at the low permeability layer produces a similar effect as a
reduction of permeability of the layer.

The influence of the double permeability parameters on a partial completion well can be
summarized as follows:

*  When only one layer is communicating with the well, x defines the level of the first
derivative plateau, 0.5/ x or 0.5/(1- x), thus the type of response. When the perforated
layer is of high permeability, the first derivative stabilization is close to 0.5, and the
response tends to a double porosity behavior. Determining whether the reservoir
behavior is double porosity or double permeability is difficult. In the opposite case, the
response shows a first derivative plateau above 0.5, and tends to a partial penetration
response.

o Aindicates the time of transition between the two homogeneous behaviors. A small
A corresponds to a long early time "one layer" regime, and a late total system regime. @
can influence the shape of the transition when the derivative drops.

Matching procedure on the pressure and derivative data
In the case of a partially completed well, frequently only one derivative stabilization is

observed on the log-log data plot. When radial flow is reached for the late time total
system homogeneous behavior, the second stabilization is evident and the match point is



172 Reservoir heterogeneities

fixed by the two usual derivative straight lines: the welibore storage unit slope line and
the 0.5 line during total system radial flow. The total permeability thickness product
khroraL and the wellbore storage coefficient C are estimated with Equations 4.53 and
4.54. The curve match defines the other parameters: the skin of the perforated layer, and
the ratios of diffusivity and mobility.

When the test stops before total system radial flow, only the first line can be expected
on the response curve and the total permeability thickness product cannot be accessed.
In such case, the static parameters used for analysis correspond generally to the open
interval, as discussed next.

In the following definition of the dimensionless pressure, time and wellbore storage, the
open interval is referenced with subscript / ( =1 or 2):

kfhl

=LA 4.58
Po 141 2B P (4.58)
0.000264 h, .
=LAl (4.59)
(e ), e
0.8936C
p = “—3—7 (4.60)
(¢C{h)/ r1;
‘n_g.000205 1A (4.61)
D u C

The 0.5 derivative stabilization corresponds to radial flow in the open interval, shown
by the first plateau before the drop of derivative response. From the pressure and time
matches, kA, and C are estimated:

kb =141.2gBu(PM) (4.62)
C= 0.000295ﬂ[Lj (4.63)
@ U TM

The skin S, is estimated from the homogeneous C, e curve matching the early time
data before the drop of the derivative, with Equation 4.60 and Equation 2.11.

When the second derivative stabilization is not reached, the parameters of the complete
system are not well defined. The time of end of the first homogeneous behavior and
start of the transition is used to estimate the interlayer cross flow parameter A, and
possibly the vertical permeability from Equations 4.55 to 4.57. Depending on how well
defined the shape of the derivative curve during transition is, the two other
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heterogeneous parameters x and @ can be approximated or not. In general, a unique
match is difficult to obtain.

4.2.4 Associated specialized plot straight lines

Wellbore storage effects and radial flow regimes can be identified on double
permeability responses. The specialized analysis of the wellbore storage period is not
affected by the layered nature of the reservoir but, for the radial flow regimes, the
analysis is adapted to the number of producing zones during the selected time interval,
as diagnosed with the log-log analysis.

Wellbore storage analysis

On a Cartesian scale, the slope of the early time straight line provides an estimate of the
wellbore storage coefficient with the relationship Equation 1.10.

Radial flow analysis

When the two layers are producing into the well, as described in Section 4.2.2, the
sequence of flow regimes is "two layers without cross flow", transition and "total
system equivalent homogeneous". On a semi-log scale, the first regime is not
characteristic and only one straight line can be analyzed at late time (Figures 4.44 and
4.46).

With the other well configuration presented in Section 4.2.3, only one layer produces
into the well and a first radial flow regime can be seen before the total system response.
Two semi-log straight lines are then possible, the mobility during the first radial flow
being a fraction of the total; the first slope is higher than the second is. Frequently, only
one of the two lines is observed: the wellbore storage effect can cover the first as in
Figure 4.49, or the test is not long enough to reach the second. The semi-log analysis of
the two straight lines is valid only when the log-log analysis confirms the presence of
two radial flow regimes.

When one of the two layers (called layer /) starts to produce alone, the first line is

expressed as (from Equation 1.15):

B k.
Ap = 162.6?{—: log Af + log——<——~3.23+0.87S, (4.64)

it ¢Cl [/Llrw—

This first line gives kA, and S;. The second line, for the total system regime, gives the
total mobility:
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qBu khroraL

Ap =162.6 log Ar + log - —323+0.87S (4.65)

TOTAL | (¢5c, h)m'r A A

When only one layer is producing into the well, the global skin S measured on the total
system semi-log straight line includes a geometrical skin due to the curvature of the
flow lines. This is equivalent to the geometrical skin of partially penetrating wells.
When the two layers are producing into the well, the global skin S, measured on the
total system semi-log straight line of Equation 4.63, is a function of the two layers skins
S, and S,, with (Prijambodo et al.. 1985; Park and Horne, 1989):

. . 1 ‘ -
S=5 qfﬁ +35, qé‘,l) = ——(S] q,“1 +5, qél ) (4.66)
q1 T4

where q},‘? are the late time stabilized fractional rates of the two layers. When

production-logging data is not available, c/,l,‘)l‘ can be expressed (Park and Horne, 1989)

as a function of 4, S, and A (see discussion for multiple layer in next Section).

4.2.5 Field example

On the build-up example presented in Figure 4.50 (published in 1985, Bourdet), the
derivative response shows a long transition valley before a final stabilization, from the
sixth hour to the end of the test. When the final stabilization is assumed to describe the
infinite acting radial flow regime. it is possible to match the data with a double porosity
solution, restricted interporosity flow. The match is slightly improved with the double
permeability model, when 2.5 % of the permeability thickness product is attributed the
low permeability layer (x=0.975 with the same negative skin on both layers §,=5,=-4).
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Figure 4.50. Field example build-up test. Log-log scale.
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Other models, such as a radial composite system (Section 4.3.2) or a homogeneous
reservoir with intersecting sealing faults (Section 5.3) can be used, but the radial flow
regime ends before the first hour of shut-in. The derivative stabilization must be located
a little below the bottom of the valley, the permeability thickness product is almost three
times larger and the skin is less negative than with previous double porosity or
permeability matches.

4.2.6 Extensions of the double permeability model

In the following, several variations of the double permeability behavior are reviewed.
First, the extension of the model to multiple layer system is considered. The analysis is
more complex and the uniqueness of the solution seems frequently to be not clearly
established. Transient reservoir cross flow is then presented. These two developments
are not currently used for the time being and they are only briefly discussed.

Multiple layer

The double permeability model can be extended to an n-layer system (Ehlig-
Economides and Joseph, 1985; Larsen, 1988; Bidaux et al., 1992). For layer i, the n-
permeability parameters are defined as:

k,h, kb,
o = - (4.67)
k h TOTAL
; )
_ (geh),  (geh), (4.68)

I i(¢czh) _(¢cth)'l‘OTAL

J=1

A; is a function of the vertical permeability £’ in the low permeability "wall" of
thickness /'; between the layers / and i +1 and, of vertical property of the two layers
Ak, i 1.

A= & 2
D kh, ?_h" S
o Ko (k) k)
K /i 2 /i+1

[f there is no cross flow between layers i and i+1, £, =0 and 4, =0.

(4.69)

As for the double permeability configuration, when all layers of an »-layer system are
communicating in the reservoir, the response is identical to that of the commingled
system at early time and to that of the equivalent homogeneous total system at late time
(with the average horizontal permeability of Equation 3.55).
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Each layer is defined with 4 parameters (Equations 4.67 to 4.69 and the layer skin S))
and, with the wellbore storage coefficient, the total number of parameter required to
define the response is 4/2. In order to reduce the non-uniqueness of the solution, several
authors suggest to incorporate layer rate measurements into multiple layer analysis.
Transient laver rate responses can be summarized as follows: during the commingled
regime, the fractional flow rate of each layer is expressed at very early time as a
function of the /ayer skin factors S, (Ehlig-Economides and Joseph, 1985; Park and
Horne, 1989):

lim g, = —"2— (4.70)

When there is no skin at the layers, the fractional flow rate is expressed:

a)lk/

lim g, = 4.71
150 1o =, (471

2ok,

=1

When there is no cross flow in the reservoir, the late time rates of the commingled
system are independent of the layer skin S, with (Park and Horne, 1989):

. k,h,
lim ¢, =———=« (4.72)

1o ' !

Zk/h/
7=l

In case of formation cross flow, the laver rates become constant after the transition,
during the equivalent total system homogeneous behavior, whereas those of the
commingled system do not stabilize as fast. This stabilized rate after transition is a
function of the permeability &, and the skin S, of the layers, with several groups such as
kS, and 2, /k, but also with a term k(S- S) defining the contrast between the skin
factors (Park and Horne, 1989).

e In the high permeability layers, the rate is higher than that of the commingled
system of Equation 4.70 if the skin is lower than in the low permeability layers.

e Conversely, when the high permeability layers are the most damaged, the rate is
lower because the reservoir cross flow is established from the layers with large skin to
the layers with smaller skin.

With the current down-hole rate measurement technology, transient layer rate is
frequently noisy and only stabilized rate data is available for the analysis. Caution must
be exercised in interpreting multiple layer systems. A regression algorithm can be used
to match pressures and layer rates, but the question of the uniqueness of the solution
must be examined carefully. Larsen (1994 b) investigated the non-uniqueness question
versus layers skin and refinement in the discretization of the layered reservoir (see
following discussion). He concluded that layer flow rates are not strongly influenced by



Layered reservoirs 177

layer refinement but, with large contrast in skin values between the layers, the analysis
become highly uncertain.

Interpretation of the interlayer cross flow coefficients A; is the next step for
characterizing the multiple layer reservoir. When there is no low permeability "wall"
separating the layers, Equation 4.69 can be used to express the vertical permeability
{Boutaud de la Combe et al., 1996). With £';; =0,

k, =4 k:l+1/1/

zi 7 I n
k:H—] (2]‘3/ Zk_/hj \J - hwlli
/=1

(4.73)

The different vertical permeability k; can be expressed as a function of one of the
vertical permeability k;; . A graph of the k;; versus k;; defines n branches of hyperbola
that indicate the different minimum and maximum 4 values.

In his discussion of # permeability model, Larsen (1988) observed that by dividing a
layer into several smaller layers with similar characteristics, the vertical pressure
gradients due to transient vertical flow are reproduced. Increasing the number of layers
tends to produce a transient interlayer flow response (see next Section): the cross flow
begins earlier and the bottom of the derivative valley is moved upward. Boutaud et al.
reached similar conclusion for the low permeability interval of a two layers reservoir
but, in the high permeability layer, the discretization has little effect. When only the
high permeability layer of a two layers system is perforated (see Section 4.2.3), the
discretization of the non-perforated interval into several layers tends to exhibit the half
unit slope derivative straight line characteristic of the spherical flow regime of a well in
partial penetration presented in Section 3.4 (Larsen, 1988; Boutaud et al., 1996).

Conversely, the double permeability model can be used for the analysis of multiple
layer reservoirs. Assuming an » layers system is described as a sequence of alternating
high and low permeability layers, the response can be approximated by that of one
element of the series (a two layers reservoir) produced at rate 2¢/n. In the analysis of the
multiple layer reservoir, it is therefore possible to group the #/2 high permeability layers
into "Layer 1" and the n/2 low permeability layers into "Layer 2". Such approximation
provides an accurate estimate of the total mobility and storage ratios x and «. In the
interpretation of A to estimate the vertical permeability with Equation 4.46, the layer
thickness A, and 4, should not be defined as the total thickness of the high and low
permeability layers. In his discussion of layer refinement, Larsen (1988) illustrated the
difficulty in the interpretation of the cross flow parameter A with a three layers example.

Transient reservoir cross flow

Following Chen et al. model (1990), transient reservoir cross flow is defined, as for the
unrestricted double porosity model of Section 4.1.3, by introducing vertical pressure
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gradients in the low permeability layer. The vertical pressure gradients in the high
permeability layer are neglected.

With transient reservoir cross flow. the low permeability layer reacts quickly to any
change of pressure in the high permeability drain. The transition starts earlier than in
case of the semi-permeable wall model: the two layers no cross flow regime is short
lived and the transition is longer. During the transition, the derivative tends to stabilize
at a level between 0.5 (homogeneous system) and 0.25 (unrestricted double porosity
model, x=1). The level of the intermediate stabilization is a function of x.

When a skin is introduced between the lavers, the Chen et al. model (1990) reproduces
the double permeability transition of Section 4.2.2 for the semi-permeable wall. For
large skin between the layers, the effective interporosity flow parameter A is given by
Equation 4.47.

When there is no skin between the lavers, the two models are clearly different provided
the contrast between the two lavers is very high (x> 0.99 and @ < 0.01), making the
transition characteristic. In such case, the unrestricted double porosity model with slab
matrix block can be used as an approximation. In other cases, Equation 4.48 seems to
provide acceptable results (Boutaud de la Combe et al., 1996).

4.2.7 Commingled systems with equal or unequal initial pressure

Many authors have discussed pressure responses from commingled systems (Lefkovits
et al., 1961; Tariq and Ramey, 1978: Larsen, 1981; Bourdet, 1985; Ehlig-Economides
and Joseph, 1985; Joseph et al., 1986; Larsen, 1989; Park and Horne, 1989) considering
infinite or closed system behavior. Different initial pressure between the layers has also
been envisaged (Larsen, 1981; Agarwal et al., 1992; Aly et al., 1994). In the following,
transient pressure analysis in an infinite multiple layer reservoir without cross flow is
briefly reviewed.

Same initial pressure

Commingled responses have been illustrated on the semi-log plots Figures 4.44 and
4.46 for a two layers system with no skin at the wellbore. When there is no reservoir
cross flow, the amplitude of the response is larger than that of the equivalent
homogenous system. Furthermore, the semi-log straight line is not accurately defined
until long elapsed time.

In multiple layer systems, Larsen (1981) defines the pseudo-skin factor induced by
layering as:
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S,,:lz L Uh/ge.h) (4.74)

27 khrora, (kh/ ¢Czh)TOTAL

The layering pseudo-skin factor is relatively small in magnitude. In the case of large
contrast such as on the example x = 0.999 and w= 0.001 of Figure 4.44, the pseudo-
skin is estimated at S;=3.5. For the curve k= 0.9 and w = 0.1 of Figure 4.46, S; is only
0.9.

When in addition the layers have different mechanical skin factors, Larsen shows that
the semi-log slope is larger at early time, and it decreases slowly with increasing time to
reach finally the equivalent total system slope of Equation 4.65: 162.6qBu/khparay, - FOr

a two layers reservoir, the apparent early time semi-log slope is a function of x and w,
but also of the skin contrast (S;- S;). As the reduction of slope is slow, the author
indicates that the analysis of an approximate semi-log straight line on early time data
could yield a total k% up to 50% below the correct value. This error can be larger when
both positive and negative skins are present in systems with more than two layers.

When the semi-log approximation is valid, the global skin has two components: S; of

Equation 4.74 and the average mechanical skin E, resulting from the skin S; of the
different layers. When the layer skins S, are not considerably different, the author

proposes to approximate S with:

5 gt

———S, =) «,S, (4.73)
khIO[AI /le

On build-up responses, the extrapolated semi-log straight line to infinite shut-in time
can be significantly lower than the true build-up pressure at Af = o0, As discussed in
Section 5.8.3, some layers can show boundary effects when other are still infinite acting
at time of shut-in. Such configuration produces a late time rise of the build-up pressure
above the semi-log straight line.

Unequal initial pressure

In case of different initial pressure, a cross flow through the wellbore is established as
soon as the well is perforated. If the well is not opened to surface production, the
bottom hole pressure tends asymptotically towards the average initial pressure. For an
infinite system, p, is defined as the kh average of the different initial pressures with
(Larsen, 1981):

i ; (4.76)

khTOTAL
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The author developed a technique to analyze this initial transient regime with a plot of
the reciprocal of a pressure difference versus the logarithm of time.

It is interesting to note that, if the non-producing commingled reservoir is closed, the
final average reservoir pressure p can be greater or smaller than the "infinite" average

initial pressure ;, of Equation 4.76 (Boutaud de la Combe et al., 1996). The average

reservoir pressure p is defined as the "pore volume" average of the initial pressures
(Larsen, 1981):

"

- Ve,
p= Z——V_ P, @.77)
;=1 V€ TOTAL

where V, is the pore volume ¢ /44 of the closed layer /.

When the well is opened to production, the effect of the initial transient due to unequal
pressures is inversely proportional to the production rate. Larsen concludes that a high
flow rate is desirable to reduce this adverse pressure trend. Before the test, a long shut-
in period allowing cross flow through the well also tends to minimize the effect of
unequal pressures (Agarwal et al., 1992).

During shut-in periods, the transient effect of unequal pressures ultimately dominates
the build-up response. On earlv time data. the semi-log straight line does not in general

extrapolate to the average initial pressure ;, of Equation 4.76, and analysis of the late

time data is uncertain.

4.3 COMPOSITE RESERVOIRS

The composite reservoir models. like all basic heterogenecous reservoir solutions
presented in this chapter. consider two distinct media in the reservoir. Each component
is defined by a porosity and a permeability, and they are located in different reservoir
regions. Two geometries are considered for the interface between the reservoir areas.

Radial composite systems have been studied from the early 1960's (Hurst, 1960; Loucks
and Guerrero, 1961; Carter, 1966; Satman, 1980; Olarewaju, 1989): it is assumed that
the well is at the center of a circular zone, the outer reservoir structure corresponds to
the second element (Figure 4.51). This geometry is used to describe a radial change of
properties, resulting from a change of fluid or formation characteristic. Such change can
be man-induced in case of injection wells and in some cases of damaged or stimulated
wells. It can also be observed when oil and gas saturations vary around the wellbore, for
example when the reservoir produces below bubble point or dew point (see Section
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8.2.2). Radial composite solutions have also been used in some cases of sparsely
fractured reservoirs, when the well is in a block. The radial composite model presented
in this section is an extension of the analytical solution of Satman (1980).

With the linear composite model, a vertical plane interface is assumed between the two
reservoir regions (Bixel et al., 1963; Streltsova and McKinley, 1984 b; Ambastha et al.,
1987): the reservoir is divided into two semi-infinite zones, the well is located in one of
them (Figure 4.51). This composite configuration can be observed for example when a
linear fault separates two different reservoir elements with different characteristics, or
when a water drive is active in one direction of the producing zone. The linear
composite model presented in the following corresponds to the solution of Ambastha et
al. (1987), completed by the effects of wellbore storage and skin.

The hypotheses used for the description of composite reservoirs are presented in Section
4.3.1, the models behaviors are discussed in Section 4.3.2 for the radial model, and in
Section 4.3.3 when the interface is linear. In Section 4.3.4, extensions of the models to
multiple composite systems are presented (Barua and Horne, 1987; Acosta and
Ambastha, 1994; Abbaszadeh and Kamal, 1989; Bratvold and Horne, 1990; Kamal et
al., 1992; Bourgeois et al., 1996 b; Kuchuk and Habashy, 1997), and tests in reservoirs
with complex changes of permeability (Levitan and Crawford, 1995; Oliver, 1990;
Thompson and Reynolds, 1997; Oliver, 1992; Feitosa et al., 1993; Yeh and Agarwal,
1989; Kuchuk et al., 1993; Tauzin and Horne, 1994). Practical interpretation of
injection wells has been discussed by several authors (Abbaszadeh and Kamal, 1989;
Bratvold and Horne, 1990; Yeh and Agarwal, 1989), the main conclusions are
summarized in Section 4.3.5.

In this chapter, only the response of a well with wellbore storage and skin is envisaged,
but the radial composite solution has been also extended to the case of a fractured well
(Chu and Shank, 1993, Chen and Raghavan, 1995).

.............. (ki) (6, E (ki) (60,
FECTORCE Y (W), (9C);
i ° . :
R :: L H
Radial composite Linear composite

Figure 4.51. Models for composite reservoirs.
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4.3.1 Composite reservoir models
Composite reservoir assumptions

A discontinuity defines two distinct homogeneous regions in the infinite reservoir. The
intertace is stationary and it has no thickness. The mobility (k/x) and storativity (¢c,) are
different on each side. but the reservoir thickness / is constant. The change of reservoir
properties is abrupt, and there is no resistance to flow between the two reservoir
regions.

The well. affected by wellbore storage and skin, is located in the region 1: with the
radial composite model. it is at the center of a circular zone of radius R, with the linear
composite, the interface is at a distance L (Figure 4.51). The characteristics parameters
of the second region are defined with a subscript 2.

Definition

The changes of reservoir mobilitv (k/z) and storativitystorativity (dc,) are expressed
with the mobilityv 1/ and storativity F ratios. defined as region | compared to region 2:

M= (Z{f“;l (4.78)
FH )
Fe ) (4.79)
(¢‘7/ )2

A mobility ratio A/ greater than 1 indicates a decrease of mobility from region 1 to
region 2. A decrease of the storage is expressed with the ratio / greater than 1.
Dimensionless variables

All dimensionless variables are expressed with reference to the parameters of the region
1 around the well. The dimensionless pressure is:

Py =————Ap (4.80)

the dimensionless time:

~ 0.000264k

f = o 4.81
P e ) *80
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and the dimensionless wellbore storage:

Cp = 0.8936C (4.82)

(¢ cl )1 hl”‘g

The composite reservoir response curves are presented with the dimensionless pressure
pp of Equation 4.80 versus the dimensionless time group #,/Cp:

{
2 = 0.000295M£ (4.83)
Cp m €

The skin factor expresses a dimensionless pressure change around the wellbore
(Equation 1.11). As the dimensionless pressure of Equation 4.80, it is defined with
respect to the inner zone parameters.

S = ——‘TApskm (4.84)

The distance between the well and the interface is expressed in dimensionless terms as
R, or Lp, depending upon the model geometry. For radial and linear systems, the
distances are respectively:

R, _R (1.21)
rW

L, _L (1.34)
¥

4.3.2 Radial composite reservoir

Olarewaju and Lee (1989) presented a pressure and derivative type-curve for a well
with wellbore storage in a radial composite reservoir. They use a dimensionless time
group based on the distance R to the interface, and the curves are defined in term of

In the following, the mechanical skin of Equation 4.84 is included, and the usual #/Cp
time group is used (Equation 4.83). Five dimensionless parameters are used to define
the response of a radial composite system: Cp, S for the well and Rp, M, and £ for the
reservoir. No type-curves are available for this configuration, a log-log match of the
complete response is made on computer-generated pressure and derivative curves.
When the analysis is performed by hand, the different regimes of a radial composite
response can also be described individually, with the homogeneous log-log type-curve
and the specialized semi-log scale.
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Behavior

With the radial symmetry of the system, the two reservoir regions are seen in sequence:
1. First, the pressure response depends upon the inner zone characteristics, and the
well behavior corresponds to a homogeneous reservoir response.

2. When the circular interface is reached, a second homogeneous behavior,
corresponding to the outer region, is observed.

Influence of M

In Figure 4.52, derivative responses are presented for different values of the mobility
ratio M: the parameters of the well and of the inner zone are constant, the two reservoir
regions have the same storativity (F=1).

In Equation 4.80, the dimensionless pressure is defined with respect to the inner zone
parameters, the first derivative plateau corresponds then to 0.5. Before the different
curves diverge. the early time data is described by the type-curve for a homogeneous
reservoir, Figure 2.22.

For large values of mobility ratio (17 =2 and 10 on Figure 4.52), the mobility of the
outer region is reduced. and the second derivative plateau is displaced upwards (to
0.5M). The dotted derivative curves show the drawdown response of a well in a closed
circle of same radius Ry, it illustrates the limiting case of a zero mobility in the outer
zone.

In the same Figure 4.52. /ow values of the mobility ratio are shown by a reduction of the
derivative amplitude (curves M=0.5 and 0.1). The corresponding limiting case,
illustrated by the second dotted derivative curve, is a circle at constant pressure, when
the mobility of the outer region is infinite.
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Figure 4.52. Log-log plot of radial composite responses, changing mobility and constant
storativity. pp versus t,/Cp. Cp =100, S= 3, R, =700, M =10, 2, 0.5, 0.1, F =1.
The two dotted curves correspond to the closed and the constant pressure circle solutions.
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Figure 4.53. Semi-log plot of Figure 4.52 radial composite examples.
The two dotted curves correspond to the closed and the constant pressure circle solutions.
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Figure 4.54. Log-log plot of radial composite responses, constant mobility and changing
storativity. py versus £,/Cp. Cp =100, S= 3, R, = 700, M =1, and F==10,2, 0.5, 0.1
The two pressure curves correspond to £=10 and £ =0.1.
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On semi-log scale, the radial composite examples of Figure 4.52 exhibit two straight
lines as illustrated on Figure 4.53. During the initial radial flow in the inner zone, the
slope is m (Equation 4.88). The slope of the second line at late time (mM, or Equation
4.89) defines the mobility of the outer region. For a mobility ratio M higher than 1, the
semi-log straight line slope is increased, and for M values lower than 1, the second line
tends to flatten, towards a constant pressure behavior for very low values of M.

Influence of F

For the examples chosen in Figure 4.54, it is assumed that the two regions have the
same mobility: M=1. The well and inner zone parameters of Figure 4.52 examples are
used, several pressure and derivative responses are presented for different storativity
ratios F.

When F=0.1, the storage of the outer zone is 10 times larger than the storage of the
inner zone (with a constant mobility through the reservoir). The response corresponds to
an increase of storativity. A similar effect is observed in the double porosity model for
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restricted interporosity flow, when the response moves from the fissures to the total
system flow regime (see Section 4.1.2). The shape of the curve for £=0.1 is in fact close
to a double porosity response: the derivative shows a valley between the two plateaus at
0.5.

Conversely, when F is greater than unity (and M=1), the storage of the outer zone is
reduced, and the response shows a decrease of storativity from early time to late time:
the transition on derivative curves exhibits a Aump above the two 0.5 plateaus, as on the
curve F=10 of Figure 4.54.

Figure 4.55 is a semi-log plot of the four radial composite log-log curves of Figure 4.54.
The mobility is constant in the reservoir: during the two homogeneous behaviors and
the two semi-log straight lines have the same slope.
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Figure 4.55. Semi-log plot of Figure 4.54 radial composite examples.

When the storativity increases (curve £=0.1 of Figure 4.55), the transition between the
two paratlel semi-log straight lines tends to the horizontal as for a double porosity
response. By symmetry, when the storativity decreases (curve F=10), the transition
between the two parallel lines tends to the vertical, suggesting then the opposite
reservoir configuration.

Radial composite responses

The duration of the first homogeneous regime is a function of the inner region radius:
with a large R), the transition occurs later. Before the transition, the early time response
corresponds to the behavior of a well with wellbore storage and skin in a homogeneous
reservoir.

The shape of the transition is a function of M and F. When both the mobility and the
storativity change, the two transitions illustrated on Figure 4.52 and 4.54 examples are
superimposed on the response. For example, both low mobility and low storage in the
outer zone tend to increase the rate of change of pressure during transition and, when
the outer zone storage is very small, the derivative curve can show a hump during
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transition, before the second plateau. For a given mobility ratio M, the shorter transition
is obtained for constant storativity.

Matching procedure with the pressure and derivative log-log data curves
Pressure and time matches are defined by the 0.5 line and the early time unit slope

wellbore storage line. The permeability thickness product kA of the inner region is
estimated from Equation 4.80:

kyh=141.2 gBu, (PM) (4.85)

with Equation 4.83, the wellbore storage coefficient is obtained:

C= 0.000295M[-1—j (4.86)
1 \TM

At early time, the homogeneous () ¢” curve matching the data before the start of
transition is used, with Equation 2.11 and Equation 4.82, to estimate the skin factor. The
skin, defined in Equation 4.84 with the inner zone parameters, corresponds to the
wellbore skin.

The mobility ratio M is obtained by comparing the level of the two derivative
stabilizations:

M = Ap2nd stab. (4‘87)
Aplst stab.

The storativity ratio £ is in general difficult to access. When the match is performed on
a complete radial composite response generated by computer, F is adjusted from the
derivative transition.

Semi-log analysis

The first semi-log straight line describes the inner zone response. From Equation 1.15,
the pressure is expressed as:

Ap = 162.6£Ai logAt+log—L-2~—3.23+O.87S (4.88)
kih (¢ﬂcz )1 "w

The analysis of the first semi-log line provides the mobility of the inner zone, and the
wellbore skin factor (also called S.,).
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The second line, for the outer zone, is defined by:

3 -
ap=162692 logar +10g— 2232340875, (4.89)

kyh - (¢/1C/ )2 i

From the second straight line, the outer zone mobility is estimated and, if the first line is
also present on the response, the mobility ratio M is defined.

The total skin Sy is calculated from the second line and includes two components: the
wellbore skin factor S and a radial composite apparent skin effect Syc, function of the
mobility ratio M and the radius R,, of the circular interface, as shown in Equation 1.13.
In Equation 4.89, S; is defined with respect to the outer zone storativity and mobility.
The corresponding pressure change Aps,, r is expressed:

k‘)h
Sp=—-—2"  Ap, . 4.90
1 141.2(]3#2 Pskin ( )

The two components of Sy are defined as:

1 1
_:*S+ —=11]InR 491)
e o

The second term of Equation 4.91 is the radial composite apparent skin effect Sge
discussed in Section 1.2.3. It describes the influence of the inner zone during the late
time homogeneous response. When the near wellbore mobility is higher than in the
outer zone (M >1), the inner zone appears as a negative skin. In the opposite case
(M <1), a reduced mobility around the wellbore is equivalent to a well damage, and the
apparent radial composite skin is positive. Equation 4.91 is further discussed in the
multiple composite model, Section 4.3.4.

When the two semi-log straight lines are clearly defined, the analysis provides M, S and,
if the outer zone storativity is known. S; can be calculated. The radius R), of the circular
interface between the two reservoir regions can then be estimated from Equation 4.91.

When the storativity of the outer zone is not known and (¢éc,), is used in Equation 4.89
for the calculation of Sy. the global skin is wrong by 0.5In(F) . If (q)c, )i > (¢c, )2, Sy is

over estimated (as suggested for example by the increased amplitude of the curve F=10
on Figure 4.55). A similar effect of the storativity on the skin factor calculated from
semi-log straight line has been already discussed for double porosity reservoir responses
with Equation 4.30.
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Build-up analysis

With the radial composite model, the pressure behavior changes in the course of the
response. As for other heterogeneous models, the superposition method used in build-up
analysis can introduce distortions on the derivative response curve (see Section 2.3.4).

In Figure 4.56, a radial composite build-up curve is compared to the original drawdown
model response. At the time of shut-in, the production period had just reached the start
of the transition. During the build-up, the extrapolated drawdown has passed beyond the
early time behavior of the inner zone: as long as the shut-in period has not reached the
second regime, the derivative of the build-up curve with respect to the superposition
time does not follow exactly the original drawdown behavior. It drops slightly below
the 0.5 line, and the transition towards the second homogeneous regime appears
delayed.

The curves of Figure 4.56 shows also that, on a Horner plot of the radial composite
build-up example, the first semi-log straight line can be distorted and the resulting slope
is too low (the mobility of the inner zone (k,4/u;) would be then over-estimated). The
extrapolated pressure to infinite shut-in time is taken from the second line to provide the
correct p*= p;.

When, such as in some lens type reservoirs, the mobility of the outer reservoir region is
significantly smaller than in the inner zone, the build-up effect can produce a valley
shaped response, as illustrated on Figure 4.57. In this example, the mobility of the outer
reservoir region is reduced by a factor of 100, the dimensionless production time prior
to shut-in is 1,,/C,=3200. If the duration of the shut-in period is of the same order of
magnitude, only the downward trend of the derivative is recorded. Both the drawdown
and the build-up responses show the characteristic behavior of a closed depleted system
(See Sections 5.4 and 5.9.2), and the late time contribution of the infinite outer reservoir
region can be overlooked.
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Figure 4.56. Log-log plot of a build-up radial composite response, changing mobility and constant
storativity. pyy versus £,5/Cp. Cpy = 11500, S= 5, R =2000, M =3 and F=1.
The dotted pressure and derivative curves correspond to the drawdown solution.
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Figure 4.57. Log-log plot of a build-up radial composite response. changing mobility and constant
storativity. p,, versus £,/Cp. (5, = 1000. S = 0. R, = 10000, 3/ =100. £ =1 and 1, C), =3200.
The dotted pressure and derivative curves correspond to the drawdown solution.

The build-up data plot Figure 4.50. of the double permeability field example Section
4.2.5, illustrates a possible radial composite test response.

4.3.3 Linear composite reservoir

For linear composite responses. the five dimensionless parameters are: C), S, and L;),
M, and F. As for the radial composite solution, no log-log type curve is available, the
match is performed on computer-generated pressure and derivative curves.

Behavior

Two homogeneous regimes are seen on linear composite reservoirs responses but the
second homogeneous regime describes an equivalent total system, not the reservoir
region far from the well as it is in case of radial symmetry:

1. First, the region around the well is producing alone, and the pressure behavior
corresponds to a homogeneous reservoir.

2. When the linear interface is reached, the two regions are producing together. A
second homogeneous behavior is observed. the corresponding equivalent homogeneous
system is defined by the average properties of the two regions.

Influence of M

During the second homogeneous regime of linear composite reservoirs, the two
reservoir regions are participating to the production. The two limiting cases are defined
as an infinite, or a zero mobility in the external region. In Figure 4.58, the two limit
behaviors, shown as dotted curves, correspond respectively to a constant pressure and a
sealing linear boundary (see Chapter 5).
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Figure 4.58. Log-log plot of linear composite responses, changing mobility and constant
storalivity. pp versus (p/Cp.Cp =100, S=3, L, =700, M= 10, 2, 0.5, 0.1, F =1.
The two dotted curves correspond to the sealing and the constant pressure boundary solutions.

Figure 4.58 presents, between the two limiting cases, several linear composite examples
generated for different values of the mobility ratio M: the two reservoir regions have the
same storativity (F =1), the mobility ratio varies from 10 to 0.1. The same well
parameters as on the radial composite examples of Figure 4.52 are used.

As for the radial composite responses discussed in Section 4.3.2, the early time data is
described by the type-curve for a well with storage and skin in a homogeneous
reservoir, of Figure 2.22. With the dimensionless variables defined in Section 4.3.1 for
the inner region, the first derivative plateau corresponds to 0.5.

The level of the second plateau indicates the apparent mobility of the equivalent
homogeneous regime. This is obtained as the average of the two regions mobility:

k/ k
{ﬁj _ (k/ ), +(k/10), _ 0.5[1+L][£] (4.92)
H ) APPARENT 2 M\ 1),

When the mobility of the second region is small, the second derivative plateau is above
the first. For example, with the curve M=10 on Figure 4.58, the apparent mobility of the
equivalent homogeneous regime is only 55% of (&/u);, and the second plateau
corresponds to a dimensionless pressure of 0.91. As opposed to radial composite
responses, the level of the second stabilization is limited to twice the level of the first
plateau, illustrated by the sealing fault dotted curve.

With values of the mobility ratio less than 1 (curves M=0.5 and 0.1), the mobility of the
second region is larger, and the level of the final derivative stabilization is less than 0.5.

On semi-log scale, as illustrated on Figure 4.59 with the same example responses, linear
composite systems exhibit two straight lines. The slope of the second line at late time
defines the apparent mobility of Equation 4.92.
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Figure 4.59. Semi-log plot of Figure 4.58 linear composite examples.

Linear composite responses

The duration of the first homogeneous regime is a function of the distance between the
well and the interface: with a large L, the transition occurs late. The shape of the
transition before the second plateau is a function of A and F. The transition is in general
not well defined with linear composite responses, £ is frequently difficult to determine.
The final derivative stabilization defines the apparent mobility, and therefore M.

On Figure 4.60. a radial and a linear composite response are compared. The parameters
have been adjusted so that the two models show the same derivative stabilizations
during both homogeneous behaviors, the distance of the interface being also the same:
L;=R;,=300. The apparent mobility of the second regime gives, with the linear
composite solution, a mobility ratio A7/=5 whereas. on the radial composite curve, it is
only M=1.667 (Equation 4.92).
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Figure 4.60. Pressure and derivative responses for a well with wellbore storage and skin in a
composite reservoir, comparison of radial and linear interfaces.
Log-log scales, pp versus £,/Cp. Cpy =200, S = 0.
Linear composite: M =35, /'=1, L, = 300. Radial composite M = 1.667, F =1, R;,= 300
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Matching procedure with the pressure and derivative log-log data curves

The matching procedure is the same for both types of composite reservoirs, with a linear
or radial interface: pressure and time matches are defined by the unit slope and the 0.5
straight lines. The permeability thickness product k4 of the inner region is estimated
from Equation 4.85, the wellbore storage coefficient from Equation 4.86. The wellbore
skin is estimated from the early time Cp ¢* curve match with Equation 2.11 and
Equation 4.82.

The two derivative stabilizations are used to estimate the mobility ratio M. From the
definition of the apparent mobility Equation 4.92,

Ap2nd stab,

= (4.93)
2AP151 stab. — Ap 2nd stab.

The storativity ratio F is in general difficult to access, even when the match is
performed on a computer generated response.

4.3.4 Extensions of the composite reservoir models

In the following section, several variations of the composite reservoir models presented
above are reviewed. For multiple composite solutions, the radial and linear composite
models consider » regions with concentric or parallel interfaces. With these models, it is
possible to refine the abrupt change of properties assumed with the two region models.
In another approach, the mobility and storativity are not changing step-wise but defined
as a function of the distance. Finally, the estimation of permeability distribution from
well test data is discussed.

Multiple composite systems

Several authors considered multiple composite radial systems. The extension of the
radial composite model to three regions was considered by Barua and Horne (1987) and
an » regions radial composite model has been envisaged for the analysis of falloff tests
by Acosta and Ambastha (1994), Abbaszadeh and Kamal (1989), and Bratvold and
Horne (1990). The multiple composite model has also been used for the identification of
reservoir damage in producing wells from a water-flooded field (Kamal et al., 1992)
(see Section 4.3.5).

Figure 4.61 presents an example of 4 regions radial composite response. The circular
interfaces are defined at R, = 1000, R,y = 2500 and R;p = 50,000, the mobility is
respectively 1.5, 5 and 10 times larger than in the inner region and the storativity is
constant (£,=1). The thin curves describe 2 zones radial composite responses with the
same mobility in the infinite outer reservoir region. The three inner regions are changed
into one circular zone with respectively Ry, M=0.1; Ryp, M=0.15 and R;p, M=0.5.
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Figure 4.61. Pressure and derivative responses for a well with wellbore storage and skin in a 4
zones radial composite reservoir. Log-log scales. py, versus £,/Cp.
Cy=35440. 5= 0. 17=1. R, = 1000. K 1i» = 1.5 K. Rapy = 2500, &/ 115 = 5 Kty Ry = 50.000.
Ky =10 &1y, The thin curves correspond to radial composite responses with only one zone
(R;; = 1000, M/ =0.1. R;, = 2500, 3/ = 0.15. R, = 30.000, M\ =0.5).

The first and the third radial composite thin derivative curves on Figure 4.61 match
partially the multiple composite response but. at intermediate time, the curve for the
second zone does not. At time 7,,/(,=250. the approximation of a homogeneous inner
region is not applicable to the multiple composite response. When the second interface
Ry, is reached, the central region of radius R);, delays the transition compared to the two
region radial composite thin curve with A/=0.15.

In terms of pressure behavior, the curve (R,;,=1000, M=0.1) is close to the multiple
composite response on Figure 4.61. This suggests that the large global skin of the
multiple composite curve is mainly produced by the small low permeability region close
to the well. As suggested by Equation 4.91, the large region with a moderately reduced
permeability has less effect on the global skin.

The two regions radial composite configuration is a flexible model that offers a large
range of derivative signatures. This flexibility is higher with the multiple composite
model and, for a realistic match, the distribution of the different radial zones
characteristics should be supported by geological or petrophysical considerations.

In a multiple composite system. the radius of investigation r, can be expressed as a
function of the permeability distribution. Assuming a constant storativity, when the
radius of investigation , lies between the interfaces R, and R,,., r, is defined as:

k
ro=R |1 =l +,/kw[h PO . I
kn L\/;: kn—l k/?l
(4.94)
R g e Y T

\/E ky Puc,
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Bourgeois et al. (1996 b) extended the linear composite solution of Ambastha et al.
(1987) to a three zone composite system with parallel boundaries (see discussion of
channel reservoir Section 5.9.1). Kuchuk and Habashy (1997) developed a multi-linear-
composite solution to describe reservoirs with lateral changes of properties, such as in
deltaic sandstone deposit, or when a network of partially communicating faults
improves the permeability at some distance away from the well (see Section 5.6).

Unbroken change of properties in composite systems

In a different approach, Levitan and Crawford (1995) envisaged gradational changes of
properties, instead of the piecewise sharp interface models used by other authors. They
considered both radial and linear geometries, for a symmetric system. The storativity
(@c,h) and transmissibility (k#/u) are function of the distance from the well.

Figure 4.62 presents an example of radial composite response when the permeability
increases linearly from R;,=1000 to R;;=10,000, the storativity is assumed to be constant
(F=1). The two thin curves describe the radial composite responses with R,=1000 and
R;=10,000. With a linear increase of mobility, the transition between the two derivative
plateaus is smoother than in the case of a sharp change of properties.

Discussion of permeability distribution

Oliver (1990) investigated the perturbation produced by radial changes of permeability.
He showed that the derivative of the wellbore pressure is a weighted average of the
inverse permeability inside the drainage radius. The weighting function, expressed as a
function of time and distance, shows a maximum and drops to 0 beyond the radius of
investigation. The maximum indicates that the wellbore pressure responds primarily to
the permeability at a distance very similar to the radius of investigation of Equation
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Figure 4.62. Pressure and derivative responses for a well with wellbore storage and skin in a
radial composite reservoir, linear change of transmissivity. Log-log scales, p; versus ¢,/C.
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The thin curves correspond to radial composite responses (Rp =1000, R, =10,000).
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rp =092t (4.95)

Thompson and Reynolds (1997) correlated the weighting function with reservoir rate
versus the radial distance. In a circular region near the well, the rate is equal to the sand
face flow rate and this inner region has not effect on the derivative response. Only the
next circular region where the rate changes until the drainage radius is reached,
influences the wellbore pressure derivative.

Oliver's theory has been used in a tentative way to determine the permeability profile
from wellbore pressure data. assuming radial symmetric systems and constant porosity
(Oliver, 1992: Feitosa et al., 1993). Algorithms are proposed to construct a radial
permeability profile, but the solution is non-unique. Levitan and Crawford (1995)
investigated similar problem and they conclude that a heterogeneity function can be
defined from the analysis of well test data, but not the true permeability and porosity
distribution.

For water injection wells, Yeh and Agarwal (1989) propose a simpler approach to
convert the derivative curve into a mobility profile versus the radial distance. For each
point (Ap'= dAp/dInAs, At), they use Equation 2.24 and the radius of investigation #,

of Equation 1.23. Such procedure gives a volumetric average mobility profile:

k. k.. .
A, = k| Doy Son :0,5% (4.96)
H, Hy, ’ hAp'

and

2 412
r 20,024 |2 A = 0,004 | 141298 AL (4.97)
g, gk 28p

Non-radial geometry has also been considered for arbitrary heterogeneous reservoirs
(Kuchuk et al., 1993: Tauzin and Horne, 1994). The solution of the inverse problem
becomes problematic.

4.3.5 Injection wells

In the following section, the applicability of the radial composite solution to water
injection wells is discussed. With a two region radial composite system, the change of
mobility and compressibility is abrupt and stationary (See Section 4.3.1). This is not the
case with water injection wells :

e  The water saturation is constant at S,=1-S,, only in the region near the well from
which oil has been flushed. Afterwards, it decreases in a transition zone until the flood
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front is reached. At the injection front, water saturation drops abruptly to the initial
water saturation S,; of the outer unflooded region.

e The pressure behavior of an injection well is different during injection and falloff.
During the injection period, the flooded region expands with the cumulative injection
volume, and a moving interface model has to be used. During a falloff, if the injection
time is large compared to the shut-in period, the stationary interface hypothesis is
applicable (Abbaszadeh and Kamal, 1989; Bratvold and Horne, 1990; Yeh and
Agarwal, 1989).

Abbaszadeh and Kamal (1989) presented injection and falloff solutions considering the
effect of saturation gradient, Bratvold and Horne (1990) introduced non-isothermal
effects due to injection of cold water in a hot oil reservoir.

In the following, the reservoir is assumed homogeneous. When the injection well
intercepts several layers, a multiple layer composite reservoir model can be used (see
Section 4.4.3).

Injection period

After enough injection time, when a constant water saturation region is established
around the well, the injection pressure response follows a semi-log straight line whose
slope yields the water region mobility. The apparent skin estimated from injection data
is made of two components: the wellbore skin and a skin effect due to the two phases
fluid condition when the water displaces the oil. It is defined as a function of the rock
and fluids characteristics and, in practice, the injection skin is difficult to interpret.

Falloff

As for a build-up period after a production, a falloff response depends upon the duration
of the injection prior to shut-in, and a build-up or multiple-rate analysis method should
be used. Due to the different behavior during injection and falloff, the superposition
method is in theory not applicable to generate the shut-in response. In practice, it is
found that, when a radial composite solution with a stationary front is used to analyze
the falloff, the superposition described in Section 2.2.2 does not introduce a significant
error. Falloff responses can be approximated with a standard build-up or multiple-rate
radial composite type curve (Abbaszadeh and Kamal, 1989).

On a log-log derivative plot of falloff data, the difference between the first and the final
derivative stabilizations define in theory the mobility ratio M (Equation 4.87). The skin
is estimated from the early time homogeneous match for the water zone response, as
described in Section 4.3.2. Between the two plateaus, the derivative response describes
the changes of saturation in the transition zone separating the inner water region and the
original reservoir fluid region.
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Figure 4.63. Pressure and derivative responses for a falloff. Well with wellbore storage and skin.
Log-log scales. pp versus t;,/Cyy. Cpy = 1000, S=0. }'=I.
From Ry, = 1000. 1/ increases until R»;, = 10.000 and. after the flood front. Af=3.33.

In practice, the inner region with constant water saturation S,=1-S,, is generally small
(if not absent), and most of the flooded region is transition, the first derivative
stabilization is frequently not seen. After wellbore storage, the response shows the
reduced mobility of the transition. including possible temperature effects (Bratvold and
Horne, 1990). When the mobilitv ratio A/ is not significantly greater than unity, the
transition is described by a hump such as on the synthetic falloff example of Figure 4.63
(this example has been generated with a multiple composite model, for a given radial
distribution of the total fluid mobility). If the typical falloff of Figure 4.63 is matched on
a the radial composite model, the reduction of mobility is ignored and the match is
frequently poor at transition time. In such case. both the mobility of the inner region and
the radius R, of the injection front are underestimated (Abbaszadeh and Kamal, 1989).

Multiple composite radial models have been developed to describe the saturation
gradients in the reservoir: the circular interfaces are moving during injection, and
stationary after shut-in (Abbaszadeh and Kamal. 1989; Bratvold and Horne, 1990).
Such refined models require the relative permeability curves for the reservoir to be
known, and therefore they are reservoir dependent.

When Equations 4.96 and 4.97 are used to estimate the average mobility profile, Yeh
and Agarwal (1989) conclude that the flood front radius corresponds to the minimum of
the average mobility curve.

4.4  COMBINED RESERVOIR HETEROGENEITIES

The response of fissured reservoirs with changing block sizes has been presented in
Section 4.1.4 for a uniform fissure network. In the following, the fissured layered and
the fissured radial composite models are considered to describe respectively a vertical
or a radial change of fissure characteristics. Next, radial composite behavior in layered
formations is presented and several examples of layered radial composite responses are
discussed.
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4.4.1 Fissured layered reservoirs

Several authors have envisaged presence of fissures in layered reservoirs (Al-Ghamdi
and Ershaghi, 1994; Larsen, 1988). The two different types of heterogeneities are
combined on the response and several sequences of flow regimes are possible,
depending which system reacts first. In the following, two examples are briefly
discussed to illustrate fissured layered reservoir responses.

On Figure 4.64, the thin curves describe a double permeability response with low
contrast (@ = 0.1, x = 0.7) and an early cross flow (4 =107). When the two layers are
fissured, and assuming restricted interporosity flow from matrix to fissure, the
derivative exhibits two valleys. For each layer, the storativity ratio between the fissure
and the layer storage (Equation 4.4) is @,=»,=0.01 and the interporosity flow
coefficient are 4,=107 and 4,=5x107 respectively, as on the triple porosity example of
Figure 4.33. With this layer configuration, all parameters are equivalent to those of
Figure 4.33 and the fissured layered response matches the triple porosity example
(shown with circles on Figure 4.64). When the vertical communication is good in a
fissured layered reservoir, grouping of matrix size by layers has no effect on the
response.

When reservoir cross flow between layers is not allowed, the response is different as
shown by the second thick curves of Figure 4.64. The first transition is observed earlier
and, especially during the second transition, the shape of derivative valley is smoother.
In the absence of vertical cross flow, the time of start of the matrix blocks production is
different from that of the triple porosity example.
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Figure 4.64. Fissured layered reservoir, pseudo steady state interporosity flow, two sizes of matrix
blocks, different A in each layer. Log-log scales, pj, versus 1/Cp. Cppi = 1,5 =85 = 0, ©=0.1,

xk=0.7.A=107 or 2=0. ©0=0.01, 1, =10”, @, =0.01, 1, =5x10"".
The (0) dotted curves correspond to the triple porosity response of Figure 4.33.
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Figure 4.65. Fissured layered reservoir. pseudo steady state interporosity flow. only layer 1 is
fissured. Log-log scales. py, versus (,/Cp,. Cryopy = 1. 5= 5= 0. 0= 0.1. k=099, 4 =102, w,
=0.01. 4, =10" or 4, =10°%. The dotted curves correspond to the double permeability responses
with £=0.99 and /=4x107 (0 w =107 . Figure $.43. and 11: w= 10", Figure 4.45).

When the high permeability layer 1 is fissured and not the other, the response depends
upon which transition, the double porosity or the double permeability transition, is seen
first. On Figure 4.65, the two layers double permeability system is defined with
Crr-n=1, 5=5:70, w=0.1, x=0.99, A=4x107. Layer 1 is fissured with @,=0.01 and
A1=107 or 4,=10%,

When the interporosity flow parameter is small (1,=10®), layer I is in fissure regime
when the double permeability transition starts. The reservoir cross flow is established
between the layer 2 and the fissure network of tayer 1. The storativity ratio between the
two reservoir components is therefore @ x @,=10~ and the response becomes equivalent
to the double permeability response x=0.99 of Figure 4.43 (shown with circle on Figure
4.65). The double porosity transition is not seen on this response, it would show at later
time, after t,)/C,):lO“‘.

Conversely. if layer 1 is in total system flow (1,=107) at start of the double permeability
transition, the double porosity transition in layer 1 is first seen during the two layers no
cross flow regime. Later, the double permeability transition corresponds to a storativity
ratio of @=10"" and the second derivative valley tends to be similar to that of the double
permeability response x = 0.99 of Figure 4.45 (square symbols on Figure 4.65).

4.4.2 Radial composite double porosity reservoirs

In a fissured reservoir, a radial composite behavior is sometimes observed because of
change of fissure density in the reservoir. Injection wells, and some acid stimulated
wells in fissured reservoir also correspond to this geometry. Radial composite double
porosity responses have been first considered by Poon (1984) for restricted interporosity
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flow. Satman (1991) studied unrestricted matrix flow and Kikani and Walkup (1991)
presented a general model, including the effect of matrix skin.

Figure 4.66 presents two examples of radial composite responses when the inner region
is fissured but not the outer region. Well and reservoir parameters are the same as on
curve M=10 of Figure 4.52 (shown with circle on Figure 4.66) with C,=100, S=3, F=1
and R;=700. The inner region is double porosity restricted interporosity flow with
@=0.01, 2,=10" or 4,=10°°,

With A,=10", the response shows the double porosity behavior of the inner zone and,
after the characteristic valley, the derivative follows the 0.5 stabilization for the total
system matrix + fissure flow, until the radial composite interface is reached at
tyCp=10. Then, the response becomes equivalent to the radial composite with a
homogeneous inner region, shown Figure 4.52.

When 4,=10"°, the inner region is still in fissure regime when the interface is seen. Since
the diffusivity is high during fissure flow, the interface is felt earlier, and the derivative
deviates from the double porosity transition valley at 1,/C;=107 (the infinite reservoir
double porosity response is shown as a dashed curve on Figure 4.66). The transition
towards the final derivative stabilization for the outer region combines the double
porosity and the radial composite responses, the derivative increase is delayed
compared to the radial composite curve.

When the outer zone is fissured, the double porosity derivative valley transition can be
observed after the radial composite derivative deviation, provided ARp2< 10 (Kikani
and Walkup, 1991). When both regions are fissured, the authors conclude that only one
transition is likely to be observed as a contrast of five order is needed between the two

interporosity flow parameters 4, , in order to display two double porosity transitions.
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Figure 4.66. Radial composite reservoir, the inner region is fissured, pseudo steady state
interporosity flow. Log-log scales. Cp, =100, S =3, M =10, F =1 R, =700, @, =0.01, 4;= 10 or
A= 10, The (o) dotted curves correspond to the radial composite response of Figure 4.52 with
M =10, the thin (") dotted curves describe the double porosity response @, =0.01, 4= 10°®,
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Kikani and Walkup (1991) presented an example of a well response in a fissured
reservoir before and after acid stimulation. As the acid penetrates mostly the fissures, it
can travel a long distances from the well, resulting frequently in a radial composite
behavior (as opposed to homogeneous reservoir where acid stimulation is a near
wellbore process). More interestingly, the authors observed that the acid treatment not
only removes the wellbore damage. but also changes the type of interporosity flow.
Before acid. the response corresponds to restricted matrix to fissure flow whereas after
acid, it is unrestricted interporosity flow. In such a case, the acid removes the matrix
skin in the invaded region.

4.4.3 Radial composite double permeability reservoirs

Radial composite behavior can be observed in layered formations. Hatzignatiou et al.
(1987) investigated interference responses in a two-layer composite reservoir with the
same interface distance R,, in the layers. Larsen (1988) described the extension of the
model to an s-layer multiple composite system. Anbarci et al. (1989) used a similar
solution to investigate the location of the flood fronts for injection wells in a two-layer
reservoir. Gomes and Ambastha (1993) suggest using an n-layer multiple composite
model to describe tilted or irregularly - shaped fronts.

In the following. a two-layer. two-region. radial composite solution is used to illustrate
several variations of double permeability model presented Section 4.2.1. Extensions to #
layers or multiple composite configurations are not envisaged here.

Frequently, layered reservoirs combine homogeneous and lenticular layers, commingled
or not. The examples shown in Figure 4.67 illustrate the response of a two-layer
reservoir without cross flow when one layer is radial composite with a strong reduction
of mobility at R,;,=100. Near the well. the two layers have equal mobility (x=0.5) and
the storativity ratio is @ =0.1. After the circular interface, the mobility of layer 2 is
reduced with M>=10, 100 and 1000 and the storativity ratio is constant in layer 2 (F>=1).
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Figure 4.67. Layered reservoir, no cross flow, layer 1 homogeneous, layer 2 radial composite.
Log-log scales. Cp =30, S, =S, =0, =0.1, ©=0.5, 1=0. Ry, = 100, M, = 10, 100, 1000, I, = 1.
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After wellbore storage, the response describes the commingled two layers behavior until
the interface of layer 2 is reached. The derivative increases and, when the mobility of
the outer region is low (M>=100 or 1000), it tends to follow a unit slope straight line and
produces a hump. Later, a new two layers commingled infinite reservoir response is
seen with, in layer 2, the outer region mobility. The derivative tends to stabilize at

0.5 M,/[1+ (M,-1)k], respectively 0.90, 0.990 and 0.999 on Figure 4.67.

The hump of the derivative examples M,=100 or 1000 describes the storage effect of the
inner region of layer 2. Reservoir storage is further discussed in the chapter on boundary
effects, Section 5.8.3 for closed circle double permeability reservoir. When the
reduction of mobility is large in the radial composite layer, the responses of Figure 4.67
tend to be similar to the first part of a closed system layered reservoir response, as
iltustrated on Figure 5.48.

On the radial composite double permeability examples Figures 4.68 and 4.69, only the
cross flow parameter A changes between the inner regions and the outer regions. The
two layers have constant properties (M,,=F|,=1) and several distances R, are
considered for the change of cross flow parameter A.

When no cross flow is allowed in the inner region and the layers are communicating
only beyond the radius R),, the valley shaped derivative transition is delayed and it tends
to be steeper than the double permeability response with a constant interlayer cross flow
parameter throughout the reservoir. In Figure 4.68, the dotted curve describe the double
permeability response and the radial composite double permeability curves are
generated for R, =30, 100 and 300. In the inner region, 4,=0, and in the outer region
=410,
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Figure 4.68. Layered reservoir, no cross flow in the inner region. Log-log scales, pj, versus ¢,/C)).
Cp=1,5=35,=0, w=0.1, k=09, M= F=1. 1,=0, 2,=4x10™, R;, =30, 100, 300.
The (o) dotted curves correspond to the double permeability response of Figure 4.45 with £ =0.9.
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Figure 4.69. Layered reservoir. no cross flow in the outer region. Log-log scales. py, versus #,,/Cp.
Cp=1.5=5=0. @=0.1, £ =0.9. M = I =1. A;=4x107. 1,=0. R;, =30, 100. 300.

The (o) dotted curves correspond to the double permeability response of Figure 4.45 with £ =0.9
and the thin (') dotted curves to the commingled reservoir (A=0).

The opposite configuration is presented in Figure 4.69 with the same parameters. The
reservolr cross flow is only possible in the inner region of radius R, the layers are not
communicating in the outer region. When the R,, interface is reached, the responses
change to the two layers without cross flow behavior and the derivative deviates above
the 0.5 stabilization (see Section 4.2.7). The introduction of a permeability barrier
between the layers produces a smooth Aump on the derivative response. The dotted
curve of Figure 4.69 describes the double permeability response (same as on Figure
4.68). and the dashed curve corresponds to the commingled configuration.



CHAPTER 5

EFFECT OF RESERVOIRS BOUNDARIES
ON WELL RESPONSES

The effect of boundaries has been considered from the earlier studies of pressure
transient analysis. In 1951, when presenting his historic paper, Horner (1951} discussed
the response due to a single linear sealing fault on a build-up example. Today, complex
boundary systems are used in well test interpretation, with sealing or constant pressure
conditions. Partially sealing and conductive linear boundaries can also be identified and
interpreted on well pressure responses.

In this chapter, the different boundary conditions used in well test analysis are
described. First, a homogeneous reservoir is assumed and the identification of sealing
boundaries is demonstrated for drawdown and build-up responses. When several
boundaries are present, the effect of the different limits appears as a function of the
different distances. It is shown that the late time response is influenced by the time
when the first boundaries are reached. The question of the extrapolated shut-in pressure
is discussed in detail for semi-infinite and closed systems. The effect of constant
pressure and communicating boundaries is then described. Boundaries in heterogeneous
double porosity, double permeability and composite reservoirs are considered in later
sections of this chapter. A constant formation thickness is assumed except in the final
section 5.10, where complex boundary configurations are described.

In the following, the distance from the producing well to the boundary is called L. The
dimensionless distance L, is defined as:

Ly _L (1.34)
¥

w

5.1 SINGLE SEALING FAULT IN A HOMOGENEOUS RESERVOIR

With the sealing fault model, a linear no-flow boundary closes the reservoir in one
direction. Such a configuration is encountered in faulted reservoirs but it can also be
considered, as an extension of the linear composite solution presented in Section 4.3.3,
when the reservoir flow capacity kk becomes zero. A pinch-out for example is
sometimes analysed using the sealing fault solution.
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Figure 5.1 Pressure and derivative responses tor a well with wellbore storage near one sealing
fault in a homogeneous reservoir. Log-log scales. py, versus 1)/C,. Cpy = 10", $=0. L;, = 5000.

The effect of a sealing fault has been presented in Section 1.2.7 (Figures 1.21 to 1.23)
and, for shut-in periods, in Sections 2.2.2 and 2.3.4 (Figures 2.10 and 2.20). A typical
drawdown response is presented on Figure 5.1 for a well with wellbore storage and skin
in a homogeneous reservoir limited by a sealing fault.

e The early time part of the well response corresponds to the infinite reservoir
behavior. During radial flow. the pressure response follows the first semi-log straight
line as illustrated on the semi-log plot Figure 1.23 and. on Figure 5.1, the derivative
follows the first stabilization.

e When the influence of the sealing fault is feit, the flow becomes hemi-radial, and
the apparent mobility is reduced by a factor of two. On semi-log scale, the slope of the
straight line doubles and., with the derivative, the curve follows a second stabilization at
a level twice the first. In dimensionless terms, the first derivative plateau is at 0.5 and
the second at 1.

5.1.1 Sealing fault model

With analytical well test interpretation models, the image well method is used to
produce the effect of a no-flow barrier: a imaginary second well, at a distance 2L,, from
the active well, is assumed to be produced with the same flow rate history. The
symmetry condition of the image method requires, in theory, the use of the same
wellbore condition for the two wells. In most cases, however, the influence of the image
well can be simplified using a line source response (see Chapter 6.1.1), expressed with

the exponential integral function of Equation 6.1: - 0.5 Eil- 2Lp )? /410 J

5.1.2 Log-log behavior

Figure 5.2 presents several examples of the influence of a sealing fault on a well
pressure response. Different distances L, are considered: 100, 300, 1000 and 3000. The
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time At, at midpoint of transition between the first derivative plateau on 0.5, and the
second at 1, is given by (Larsen, 1983) :

KAty (1.33)
Puc,

L=0.01217

At, is proportional to the square of the distance: when L is increased by a factor of ten,
the end of the early time infinite acting behavior is displaced by two log-cycles along
the time scale.

The curve L = 100 shows a limiting case of the behavior of a well near a sealing fault.
When the distance Ly, to the linear fault is small and the wellbore storage coefficient is
high, the fault influence can start during the wellbore storage dominated regime: after
the derivative hump, the curve stabilizes directly on 1, and does not show the first
plateau at 0.5. In such a case, the sealing fault is difficult to identify, and the response
can be misinterpreted with an infinite reservoir solution (the resulting permeability is
then half the true reservoir permeability).

5.1.3 Matching procedure with the pressure and derivative data

The derivative response curves of Figure 5.2 are characterized by a doubling of the
derivative plateau. As discussed in Sections 4.1.3 and 4.1.5, the same behavior is
observed on double porosity responses with transient interporosity flow condition. The
responses of the two solutions show a similar shape, but the matching procedure is
different.
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Figure 5.2. Pressure and derivative responses for a well with wellbore storage and skin near one

sealing fault in a homogeneous reservoir. Log-log scales, pp versus £,/Cp.
Cp =100, S=5. Several distances L, = 100, 300, 1000, 3000.
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For a well with wellbore storage and skin near a sealing fault, a C) ¢ curve describes
the early time response before the start of the boundary influence. The pressure match is
defined by positioning the 0.5 line on the first derivative stabilization, and the time
match is fixed by the wellbore storage unit slope line, as for the homogeneous type-
curve of Figure 2.22. The permeability thickness product k4 is estimated with Equation
2.9, the wellbore storage coefficient ¢ with Equation 2.10 and the skin factor with
Equation 2.11.

The distance L of the sealing fault can be estimated from the time Az, of transition
between the two derivative stabilizations with Equation 1.33, or by matching the data on
a computer generated response.

5.1.4 Semi-log analysis

On Figure 5.3. the four examples of Figure 5.2 are plotted on a semi-log scale: the
duration of the infinite acting radial flow regime. described by the first straight line of
slope m. is a function of L,. When the distance of the sealing fault is increased, the
second straight line of slope 2 is displaced towards late times.

The first semi-log straight line of slope m is used to estimate the reservoir permeability
thickness product kA, and the skin S:

B
kh=162.692H (1.16)
m
Apip
S=1.151 2P e k ~+3.23 (1.17)
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Figure 5.3. Semi-log plot of Figure 5.2 examples. pp versus £,,/C),.
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The time of intercept Az, between the two semi-log straight lines, is used to estimate the
distance between the well and the sealing fault (Gray, 1965) with Equation 1.33.

On the four examples of Figure 5.3, the transition between the two straight lines is
smooth and lasts more than one log-cycle on the time scale. Unless the two lines are
well defined such as on the curve L,, = 300, the intercept time At, is difficult to define
with accuracy. In practice, when the analysis is made by computer, the distance is
estimated from the log-log derivative match rather than with Equation 1.33.

5.1.5 Build-up analysis

Log-log pressure and derivative build-up analysis

As discussed in the Section 2.3.4 of the pressure derivative discussion, if the drawdown
behavior changes when extrapolated in the course of the build-up, the multiple rate
build-up derivative curve does not match perfectly on the original drawdown response.

With the sealing fault model, the flow behavior changes from a radial to a hemi-radial
geometry: a build-up derivative curve can deviate from the drawdown behavior. This is
illustrated by the build-up curve presented Figure 2.20. The well is near a sealing fault,
and the drawdown before shut-in has stopped before, or during transition between the
radial and the hemi-radial regimes (Figure 2.10), when the derivative is between the 0.5
line and the stabilization on 1.

At early shut-in time, the drawdown period extrapolated with the superposition
principle at (z,+Af) is under the influence of the fault whereas the shut-in period,
generated for the elapsed time A, is still in an infinite reservoir regime. The two
superposed periods are not on the same semi-log straight line and, on Figure 2.20, the
build-up derivative first drops below the 0.5 line. The curve deviates upwards towards
the second derivative stabilization at 1 only after the two superposed periods follow the
same behavior, when Ar has passed the time of start of the fault influence. On the build-
up example Figure 2.20, the sealing fault appears to be slightly delayed compared to the
original drawdown response. The effect of the production history on build-up derivative
responses has been also illustrated with similar conclusions in Sections 4.1.2 and 4.1.3
for heterogeneous double porosity reservoirs (Figures 4.15 and 4.26).

Semi-log build-up analysis

For semi-log analysis of build-up periods, the Horner or multiple rate superposition time
is used (Section 2.2.2). The first semi-log straight line gives access to kA4 and S and,
provided only one sealing fault is present in the reservoir area investigated during the
test, the behavior is semi-infinite and the extrapolation of the second line to infinite
shut-in time gives the initial reservoir pressure,
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The extrapolated pressure of the first line is not used, except in bounded systems with
the Matthews-Brons-Hazebroek (1954) method, to predict the average reservoir
pressure (see Section 5.4.7). The M.B.H. method, designed for closed reservoirs,
requires the shape of the drainage area to be known.

52 TWO PARALLEL SEALING FAULTS IN HOMOGENEOUS
RESERVOIR

With this boundary solution, the well is located between two parallel sealing faults.
Even though this type of configuration is encountered in faulted systems, frequently it
corresponds to long narrow reservoirs such as channel sands.

Two examples of parallel sealing faults responses are presented on Figures 5.4 and 5.5
for a well with wellbore storage and skin in a homogeneous reservoir.

e On the log-log plot Figure 5.4. the derivative describes first the wellbore storage
effect, then it follows the 0.5 line.

e Later, when the two reservoir boundaries have been reached, the flow lines become
paralle! to the reservoirs limits, and a linear flow regime is established (Miller, 1962).

The pressure changes proportionally to JAt , and the derivative follows a half unit
slope straight line.

e  The shape of the transition between radial and linear flow is a function of the well
location in the channel. When the well is equidistant from the two boundaries such as
on curve A of Figure 5.4. the transition between radial and linear flow regimes is short.
If the well is closer to one of the two boundaries, the characteristic behavior of one
sealing fault is seen before the linear flow. The derivative stabilizes first at 0.5, then 1
and finally it reaches the half unit slope straight line (Figure 5.4, B).
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Figure 5.4. Pressure and derivative responses for a well with wellbore storage in a homogeneous
reservoir limited by two parallel sealing faults. Log-log scales, pj, versus ,,/Cp.
Cp=3000,5=0, L;y= L,y =3000 (curve A) and L, = 1000, L,;, = 5000 (curve B).
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Figure 5.5. Semi-log plot of Figure 5.4 examples. pj, versus £,/Cp,.

On a semi-log plot of the same example (Figure 5.5), only one straight line is present,
describing the infinite acting radial flow regime. During linear flow, the pressure
response deviates in a curve above the semi-log straight line.

5.2.1 Parallel sealing fault model

The well is at a dimensionless distance L, and L,;, from the two sealing boundaries.
The channel, of dimensionless width of L,p+L,,, is of infinite extension on both
directions.

The behavior of the pressure derivative response for parallel sealing faults was
originally considered in 1980 (b) by Tiab and Kumar. They used the image well method
to generate the response of a well between two parallel sealing faults. Considering a
graph of the pressure derivative with respect to time, as did van Poollen (1965) for
intersecting faults, Tiab and Kumar identified a late time straight line with a negative
slope of 0.5 in case of parallel sealing faults. In 1986, the technique of source and
Green's function was considered by Wong et al. for long rectangular reservoir systems.
Using the logarithm derivative, the linear flow regime was evident with a positive 0.5
slope.

5.2.2 Linear flow regime

During the late time linear flow regime, the dimensionless pressure is expressed as
(Miller, 1962; Nutakki. and Mattar, 1982; Wong et al., 1986):
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pp =2mty, +S+Sy, (5.1

where the dimensionless time r,,; is defined with respect to the channel width:

0.0002644

= (5.2)
¢luc/ (Ll + ]‘3 )_

5%

S is the wellbore skin coefficient and S, expresses a geometrical skin component, due
to the convergence of the linear flow lines towards the well. Larsen and Hovdan (1987)
related S, to the offset of the well in the channel:

Li+L L
S =1In (i ~In| sin 21! (5.3)
2rr, L+1L,

The geometrical skin S, of Equation 5.3 has a form very similar to the skin S, of
Equation 3.34, for linear flow towards an horizontal well. The dimensional Equation 5.4
is obtained by combining Equation 5.1 and Equation 5.2

B At B
Ap=8.133-——1 A 14125 (s, 4 5) (5.4)
WL, +Ly)\ kee, kh

5.2.3 Log-log behavior
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Figure 5.6. Pressure and derivative responses for a well with wellbore storage near two parallel
sealing faults in a homogeneous reservoir. The well is located midway between the two

boundaries, several distances between the two faults are considered.
Log-log scales, p)) versus t;/Cp. C;p =300, S=0, L,p = L,p = 500, 1000, 2500 and 5000.
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The linear flow regime was discussed earlier in Sections 1.2.4 and 3.2, for high
conductivity fractured wells. The response is then characterized by linear flow at the
start of the period, and the derivative response follows a half-unit slope straight line
before the radial flow stabilization (Figure 3.5). With parallel sealing faults, the
sequence of flow regimes is inverse and the radial flow regime is observed before linear
flow.

On Figure 5.6, four examples of responses for different channel width are presented on
log-log scale, with the dimensionless pressure p; and derivative p'p versus the
dimensionless time #,/C)). The well is located midway between the two parallel sealing
boundaries, the curves are generated for L,p = L,p = 500, 1000, 2500 and 5000.

The time of start of the linear flow regime is proportional to the square of the channel
width. For large (L,;y+L,p), a long infinite acting radial flow regime is needed before the
boundaries are reached, the 1/2 slope line is displaced towards late times. Conversely, in
case of a narrow channel, the radial flow regime is short and can be masked by wellbore
storage. For example, on the curve L;;=L,; = 500 the derivative follows the half unit
slope straight line immediately after the wellbore storage effect.

On Figure 5.4, the two examples are generated for the same channel width (L,p+L,p=
6000) and the derivative curves merge on the same linear flow half unit slope line. The
well A is centered and for well B the offset is defined with L;/(L,,+Ly;)=1/6. The
geometrical skin Sg, of Equation 5.3 is higher on well B response and, after radial flow,
the pressure curve B is above the curve A. This effect is more evident on the specialized
scale plots presented in later sections.

5.2.4 Matching procedure with the pressure and derivative data

The early time response is analyzed with the infinite reservoir model. For a well with
wellbore storage and skin, a Cp, e* curve is selected, kk, C and the skin coefficient S are
evaluated as described in Section 2.2.1.

When the match is made on a computer generated curve, the derivative half unit slope
line is used to estimate the channel width (L;;+L,p). The distance of the closest
boundary, and therefore the well position in the channel, can be estimated from the
shape of the derivative transition between the 0.5 line of radial flow, and the half unit
slope line of linear flow. On the pressure curve, the well position is shown when the
effect of the geometrical skin S, becomes evident, during the linear flow regime.

5.2.5 Semi-log analysis

Figure 5.7 is a semi-log plot of the examples of channel responses presented on log-log
scales in Figure 5.6: at late time, during linear flow, the responses curve upwards from
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the semi-log straight line. For small channel width, the deviation occurs early, and the
radial flow straight line may not be seen.

Figure 5.5 illustrates on semi-log scale the influence of the geometrical skin effect Sy,
with the two examples of Figure 5.4: the channel width is L,,+L;, = 6000, the well is
centered (A) or close to one of the boundaries with L,;; = 1000 (B). When one of the
boundaries is secn before the other. the geometrical skin S, of Equation 5.3 is larger
and, after the infinite acting radial flow regime. the amplitude of the response is higher
than when the well is equidistant from the two limits. The influence of the well position
in multiple boundary systems will be discussed more generally in Section 5.4.6, with
the shape factor concept.

For the radial flow analysis of actual data on a Ap versus As semi-log plot, the semi-log
straight line before linear flow provides the permeability thickness product £/ and
wellbore skin coefficient S (Equations 1.16 and 1.17).

5.2.6 Linear flow analysis

Figure 5.8 is a plot of the four examples of parallel sealing fault responses Figures 5.6
and 5.7, with the dimensionless pressure py, versus the square root of the dimensionless
time [//C‘/)‘

During the late time linear flow regime. the response follows a straight line behavior
(Equation 5.4) and the slope of the straight line is inversely proportional to the channel
width (L, +L-;,). For small distances between the two boundaries, the rate of change of
pressure is faster during linear flow than when the channel is large, and the straight line
slope on Figure 5.8 is higher,
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Figure 5.7. Semi-log plot of Figure 5.6 examples. p, versus t,/Cp.



Two parallel sealing faults 215

40
&£ Lp= L,p= 500
)
5 30 slope m,
3
o 1000
o 20
1)
K 2500
S
ZRET 5000
@
£
Q

0

0 50 100 150 200 250 300 350

{t; /Cp)"?
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With real data, the specialized analysis of linear flow is made on a plot of the pressure
change Ap versus the square root of the elapsed time Az. The slope m,, and the intercept
Apchine of the linear flow straight line are used to estimate the channel width and the well
location.

qB M
WLy +Ly)\kée,

my, =8.133 (5.5)

Knowing the permeability from radial flow analysis, the channel width is obtained by:

L+, =8.133-98 | _# (5.6)
) hmch k¢c1

The straight line intercept at time 0, Apain, gives the total skin effect (S, + S), defined
as the sum of the wellbore skin and the linear flow geometrical skin of Equation 5.3.
When the permeability and the wellbore skin coefficient are known from radial flow
analysis, the geometrical skin S, is estimated with :

kh

Sy = ————Apgin S 5.7)
ch 141.2(]8}! \Pehint (

and it is possible to estimate the well location between the two parallel faults (Larsen
and Hovdan, 1987).

L _
L = iarcsin —LQL—Ze ch (5.8)
L+L, =« 2rr

w
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Figure 3.9. Build-up pressure and derivative responses for a well with wellbore storage in a
homogeneous reservoir limited by two parallel sealing faults. Log-log scales. py, versus £,,/Cp.
CH=3000.5=0.L,;,= L~;,= 35000 (curve Cy and 1., = 2000. L,;, =8000 (curve D).

I'he dotted curves are drawdown. the build-up responses are generated for (¢, /C),, = 2000.

5.2.7 Build-up analysis

Log-log pressure and derivative build-up analysis

Figure 5.9 presents on log-log scales the build-up response of two wells in a channel
reservoir. The distance between the two parallel sealing faults is (L,;,+L,;,)= 10000, the
well is centered for example C and off-centered with L,;, /( L,;+Ls,)= 1/5 in example
D. The dimensionless production time ¢,,,/C), prior to shut-in is 2000 on both examples.
The two dotted curves show the original drawdown responses of wells C and D.

The wells are closed for build-up just before the start of linear flow: at #,,/C), = 2000,
example C is in infinite acting radial flow and example D in hemi-radial regime. On the
build-up curves, the pressure flattens at late times (see Section 2.2.2) and the derivative
responses display a half unit slope straight line.

For the two build-up curves of Figure 5.9. the drawdown behavior changes afier
extrapolation into shut-in times. The two build-up derivative curves do not match on the
original drawdown responses: the half unit slope straight line is displaced towards late
times and. during the transition between radial to linear flow. example C drops below
0.5 while example D shows an oscillation. For larger production times #,,,/C’,, the build-
up derivative curves would be closer to the original drawdown responses.

As already discussed in Section 5.1.5 for a single sealing fault, build-up derivative
responses in a bounded reservoir are sensitive to the production history prior to shut-in.
Drawdown derivative curves are not always applicable, and caution must be exercised
during the diagnosis of build-up responses. For example, if a build-up similar to
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example C of Figure 5.9 stops between the stabilization and the valley bottom, the
channel response can be interpreted by error with several different models:

* increasing of mobility such as in a composite reservoir (see Section 4.3)
e effect of a constant pressure boundary (see Section 5.5)
o closed depleted reservoir (see Section 5.4.7)

The choice of the appropriate interpretation model can be frequently concluded when
the results of the different interpretations are applied to flowing periods, such as on a
test simulation plot. In particular, any difference between the initial pressure used for
simulation, and the actual pressure before the test, must be carefully examined (see
Section 10.2.3).

Semi-log analysis of build-up

The derivative distortion of the build-up curves of Figure 5.9 shows that, on a Horner or
multiple rate superposition plot, the time of end of the semi-log straight line is
influenced by the production history before shut-in. On example C, the drawdown
derivative follows the 0.5 line until #,/C;, = 2000 but the build-up starts to drop below
0.5 at #,,/C;, = 1000, the duration of the radial flow behavior is shorter.

Figure 5.10 is a Horner plot of the two build-up examples in Figure 5.9. After the radial
flow straight line, curve C tends to flatten before the late time linear flow regime, and
curve D shows the opposite behavior, by rising above the semi-log straight line.

The proper straight line of the Horner plot defines the permeability thickness product kh
and wellbore skin coefficient S but, as shown on Figure 5.10, the extrapolation of the
straight line does not correspond to the infinite shut-in time pressure.
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Figure 5.10. Horner plot of the build-up examples Figure 5.9. pp versus (¢, +p)/ip.
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Figure 5.11. Linear flow analysis of the build-up cxamples Figure 5.9.
P versus (L +1p)/Cpl = [1,/Cp) 2.

Linear flow specialized analysis of build-up

In a two rate test, when both the drawdown and the shut-in periods are in linear flow
regime, the superposition function is expressed as ff, +Af —/A1 (Equation 2.19

Section 2.2.2). Figure 5.11 is a plot of the two build-up examples from Figure 5.9, with
the dimensionless pressure p;, versus the dimensionless linear flow superposition time

Ve [Cp 1 /Ch —\//,)/C,) . The two build-up curves exhibit a straight line at late

times.

The slope i, of the linear flow straight line is expressed, as for drawdown responses,
by Equation 5.5. On the examples C and D of Figure 5.11, the channel width is the
same and the two straight lines are parallel. Well D is off-centered in the channel, the
geometrical skin S, 1s larger than for well C: the two dimensionless responses are
superimposed until the end of infinite acting radial flow, then they diverge before
reaching linear flow straight lines. The amplitude of the pressure change is higher on
curve D than on curve C. For infinite channels, the extrapolation of the linear flow

straight line to /7, + At ~ Y Ar =0 gives the initial reservoir pressure p,.

5.3 TWO INTERSECTING SEALING FAULTS IN HOMOGENEOUS
RESERVOIR

With the intersecting sealing faults model, two linear no-flow boundaries limit the
reservoir drainage area, the wedge is otherwise of infinite extension. The angle of
intersection between the two faults can take any value smaller than 180°.
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Figure 5.12. Pressure and derivative responses for a well with wellbore storage in a homogencous
reservoir limited by two intersecting sealing faults. Log-log scales, pp versus £5,/Cp.
C;)=3000, =0, L, =3000, 8=60°, 6, =30° (curve A) and 6, =10° (curve B).

The effect of two intersecting sealing faults is illustrated on Figures 5.12 and 5.13 for a
well with wellbore storage and skin in a homogeneous reservoir. In these examples, the
angle between the faults is 60° (7/3).

e  The response first describes the infinite reservoir behavior and later, when the two
faults are reached, the fraction of radial flow limited by the wedge.

» In the case of one sealing fault, half of the plane is producing at late times and the
semi-log slope doubles, the dimensionless derivative stabilizes at 1 (see Section 5.1).
When two intersecting faults limit the drainage area, a smaller fraction of the plane
produces: on the semi-log scale, the slope of the straight line is increased by a factor of
360/60 and, with the derivative, the curve follows a second stabilization at a level equal
to 180/ 6. On the examples of Figure 5.12, the wedge shaped reservoir is 1/6 of the
infinite plane (360°) and the dimensionless derivative stabilizes at 3, 6 times above the
first 0.5 line. On semi-log scale (Figure 5.13), the second straight line slope is 6 times
higher than the first.
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e The shape of the transition between the two derivative plateaus depends upon the
location of the well in the angle. If the well is located on the bisector, the two
boundaries are equidistant from the well, and the derivative transition follows a half unit
slope straight line (Figure 5.12, curve A). If the well is close to one of the two
boundaries, one sealing fault is seen before the wedge response: the derivative stabilizes
at 0.5, then | and finally the wedge stabilization (Figure 5.12, curve B). The transition
between the initial and the final derivative plateaus is longer.

5.3.1 Intersecting sealing fault model

The wedge geometry is defined on Figure 5.14: @ is the angle between the faults, 6,
describes the well location in the wedge and Z, is the dimensionless distance between
the well and the intercept of the two faults. The distances L, and L, between the well
and the sealing faults are expressed as

Ly=L,r,sing, (5.9)
Ly=1L,r, sin(O -0,) (5.10)

In 1965, van Poollen used the image well method to generate the effect of intersecting
sealing faults. He considered pressure and derivative curves and showed that the image
well method can be used only for a restricted number of configurations: the angle of
intersection must be z/n (or 2/n if the well is located on the bisector), where # is an
integer. The first possible configuration, for n=2, is then a right angle, when the
reservoir is limited by two perpendicular sealing faults.

A more general solution, using Green's function, was presented in 1975 by Prassad. It
allows any angle of intersection, for any location of the producing well. This solution is
used in the following discussion.

Figure 5.14. Two intersecting sealing faults in a homogeneous reservoir.
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5.3.2 Log-log behavior

On Figure 5.15, the angle of intersection & varies from 10° to 180°, the producing well
is on the bisector.

The distances L, and L,), between the well and the two faults are fixed at 1000, the
distance to the fault's intercept changes with the angle. From Equations 5.9 and 5.10, for
small angles the intercept is far from the producer, for example with 8=10°, L,,=11473
but, with §=135°, it is only 1082.

The level of the second derivative plateau is defined by the angle 6, namely 180/6 in
dimensionless terms. For a single linear sealing fault (8= 180°) the second plateau is at
1, for perpendicular faults (8= 90°) at 2, and for the smallest angle presented on Figure
5.15, 0= 10°, it is at 18.

The start of the transition above the 0.5 derivative plateau, at the end of the infinite
reservoir behavior, indicates the distance to the faults. On the examples of Figure 5.15,
with L, = L, = 1000, the initial infinite behavior ends at about #/C, = 300. When the
well is not centered on the bisector, the shape of the transition is different as shown on
curve B of Figure 5.12: the initial radial flow regime is shorter, and the transition
between the two plateaus lasts longer.

The transition is in general long, even when the well is on the bisector. For small angles,
the transition can last two log-cycles or more, before the final derivative stabilization.
On Figure 5.15, with 8 = 90°, the second stabilization is reached at #,/Cp, = 20,000
whereas when 6= 10°, it is hardly starting at ¢,/Cp = 10°.
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Figure 5.15. Pressurc and derivative responses for a well with wellbore storage near two
intersecting sealing faults in a homogeneous reservoir. Several angles of intersection &, the well is
on the bisector 6, = 0.56, the distance to the two faults is constant L, = L,; = 1000, the distance
L, to the fault intercept changes. Log-log scales, pj) versus £,/Cp.
Cp=1000, S=0, 0=10° L,=11473; 6=20° Lp=15759; 6=45°, L, = 2613, 8=90°,
Lp=1414; §=135°, L, = 1082; =180°, L, = 1000.
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During the transition between the 0.5 and 180/ @ plateaus, the response tends to show a
straight line of slope 1/2. When the angle of intersection & is small, the two faults are
reached a long time before the intercept is seen. Since the characteristic wedge flow
behavior is not established at transition time. the behavior is similar to the response of a
well between two parallel sealing faults (Section 5.2).

5.3.3 Matching procedure with the pressure and derivative data

The early time response is analvzed as usual with the infinite reservoir model and &4, C
and the skin coefticient S are evaluated.

When the response displavs a complete intersecting faults behavior, the ratio between
the two derivative plateaus. at 0.5 and 180/0, is used to estimate the angle of
intersection ¢ With actual data. the angle is expressed. in degrees:

A
0 = 360°-Llstsuab._ (5.11)
Apan stab

The distance L, to the closest fault is accessed by the time of deviation from the 0.5
plateau, as for a single sealing fault. The distance L. to the second fault is then adjusted
from the shape of the derivative transition. The distance L of the fault intercept and the
angular position of the well in the wedge #, are obtained by solving the Equations 5.9
and 5.10.

In many field examples of intersecting faults' responses, the second plateau is not
completely developed at the end of the data curve, and the response is only partially
defined. When the derivative increases after the 0.5 line by a factor greater than 2, one
sealing fault is not sufficient to describe the late time behavior, and the intersecting
faults model has to considered. Provided the transition starts to show a decreasing
curvature after the half unit slope line, the level of the second plateau is relatively easy
to guess, and a good estimate of the angle of intersection ¢ between the two faults can
be obtained.

5.3.4 Semi-log analysis

Two semi-log straight lines can be identified when the complete response of a well near
two intersecting sealing faults is available. The first, of slope m, corresponds to the early
time infinite regime shown by the 0.5 line of the derivative response. The second, with a
slope Mg =(360/8)m, defines the fraction of radial flow limited by the wedge, shown
on the derivative curve by the second plateau. The two semi-log straight lines can be
analyzed, provided the derivative plot confirms the presence of data points during the
two characteristic regimes.
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Figure 5.16. Semi-log plot of Figure 5.15 examples. pj, versus £,/Cp.

Figure 5.16 is a semi-log plot of the six examples of wedge responses presented in
Figure 5.15. The bottom curve corresponds to one sealing fault (6 =180°), the semi-log
slope doubles at late times. For smaller angles, the curve deviates upwards, for example
with 8 =10° the second slope is 36 times greater than the first. The semi-log scale
confirms that the transition between the two straight lines is long, particularly when the
angle is small.

The shape of the semi-log curves for intersecting sealing faults such as on Figures 5.13
and 5.16 is not very different from the semi-log responses of Figures 5.5 and 5.7 for
channel reservoirs: after the initial infinite acting regime, the curves deviates upwards.
On the intersecting sealing faults examples of Figures 5.13 and 5.16, the late time
responses follow a second semi-log straight line, but the channel reservoirs examples of
Figures 5.5 and 5.7 are curved. In practice, the presence of the second line is difficult to
ascertain on a semi-log scale, and the choice of the appropriate boundary configuration
is easier when the derivative log-log data plot is considered.

With actual data, the time limits of the two semi-log straight lines on a plot of Ap versus
log(Ar) must have been previously defined by the identification of the log-log derivative
plateaus, and not decided after observation of the semi-log plot only. The first semi-log
straight line of slope m is used for infinite acting radial flow analysis. The permeability
thickness product £/ and the skin S are estimated with Equations 1.16 and 1.17. When
the two lines are present, the ratio of the first to the second slope gives the angle of
intersection:

m

6° =360 (5.12)

m wedge

On the semi-log plot Figure 5.13 for two intersecting faults at #=60°, well A is centered
(6,730°). Well B is off-centered (8,=10°) and one sealing fault is seen before the other.
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As a result, the final semi-log straight line of well B is parallel to that of well A, but the
amplitude of the response is higher. A similar geometric skin effect has been observed
on Figure 5.5 of Section 5.2 for parallel sealing faults. When several boundaries are
present in a pressure response, the time when the first boundary is reached influences

the pressure response during all subsequent regimes.

5.3.5 Build-up analysis

Log-log pressure and derivative build-up analysis

The limitations of the multiple rate derivative, illustrated with one or two parallel
sealing faults, are applicable for all boundary solutions. In the case of intersecting
faults, the transition between the two derivative plateaus is long, and the build-up
distortion can be significant. The match is preferably made with a computer generated
build-up model, especially when the second derivative plateau, being not well defined,
is estimated by extrapolation of the late transition behavior.

When several solutions are found to provide a good match on build-up data,
extrapolation of the models at times larger than the shut-in duration helps reducing the
number of choices. As discussed in Section 5.2.7, this is achieved with the test
simulation plot. The quality of the match during the flow periods, and the accuracy of
the initial pressure used for simulation. can indicate an inconsistent model.

Semi-log analysis of build-up

If only two sealing faults have been reached during the test, the wedge shaped reservoir
is of infinite extension and the second straight line of the Horner or multiple rate
superposition plot can be extrapolated to infinite shut-in time for an estimate of the
initial reservoir pressure p,.

5.3.6 Field examples

The double porosity example presented in Figure 4.40, and the double permeability
example of Figure 4.50 can also be analyzed with the interesting sealing fault model in
a homogeneous reservoir. With these two examples, only the final stabilization is
accurately defined and the match provides the product k4. In the case of Figure 4.40,
good matches are obtained with 0 ranging from 120° to 160° and, with the example of
Figure 4.50, only the maximum angle can be determined with € < 130°. For the two
tests, the reservoir permeability thickness product is not accurately defined.
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54 CLOSED HOMOGENEOUS RESERVOIR

A closed system behavior is characteristic of limited reservoirs but it can also be
encountered in developed fields, when several wells are producing and each well drains
only a certain volume of the reservoir (Matthews and Russell, 1967).

The analysis of a closed reservoir has been presented in Section 1.2.8 (Cartesian scale
for drawdown pseudo-steady state analysis, Figure 1.25) and in Section 2.3.3
(drawdown pressure derivative Figure 2.19). It is important to note that the responses
are different for a drawdown and a build up. This is clearly illustrated in figure 5.17.

e  During drawdown periods, when all boundaries have been reached after the infinite
acting behavior, the reservoir starts to deplete. The response follows the pseudo steady
state flow regime, and the well flowing pressure becomes proportional to time. Pressure
and derivative log-log curves merge on a straight line of slope unity at late time.

e During build-ups, the shape of the well response is different. After shut-in, the
pressure starts to build-up during the initial infinite regime but, later, it stabilizes and

tends towards the average reservoir pressure p.

On the linear plot Figure 1.25, a characteristic closed system response is illustrated with
a very simple flow sequence. The well, at initial reservoir pressure p;, is opened until all
reservoir boundaries are reached and the pseudo steady state regime is established. This
is shown on Figure 1.25 by a linear drawdown pressure trend. When the well is then

closed for a shut-in period, the pressure builds up until the average reservoir pressure p

is reached, and the curve flattens. The depletion, expressed by the difference (p, —;)

between the initial pressure and the final stabilized pressure, is proportional to the
cumulative production. The longer the duration of the drawdown period, the lower is the

final average reservoir pressure p.

Typical pressure and derivative log-log curves are presented on Figure 5.17 for a well
with wellbore storage and skin in a closed square reservoir. Well A is centered whereas
well B is close to one corner of the bounded system. The dotted curves describe the
drawdown responses, and the build-ups are shown with lines.

The pseudo steady state flow regime, characterized by a straight line of slope unity on
the late time pressure and derivative curves, is seen only during drawdown periods
(dots). If the well is not centered in the closed area, one or several boundaries can be
seen during the transition between the initial radial flow and the late time pseudo steady
state flow. The derivative response of example B shows the behavior of a 90° wedge,
between the derivative 0.5 plateau and the late time unit slope line. Similarly, the
pressure response B deviates above the response A, until the two curves finally reach
the same asymptote.
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Figure 5.17. Pressure and derivative responses for a well with wellbore storage in a closed square

homogencous reservoir. The dotted curves are drawdown. the build-up responses are gencrated
for (¢, /C)p = 1000. Log-log scales. py, versus 1;,/Cy. Cpy = 23000, S = 0. Curve A: (the well is
centered) Ly, =Ly = Ly = Ly, = 30000. Curve B: Ly, = L, = 6000. Ly = Ly, = 54000.

As opposed to drawdown responses, the build-up pressure curves of Figure 5.17 flatten,
and the derivative drops. This illustrates the particular behavior of closed systems,
where drawdown and build-up curves have totally different late time responses. Due to
the presence of two boundaries close to the well. the derivative response of example B
shows an oscillating shape.

Figure 5.18 is a semi-log plot of the two drawdown examples of Figure 5.17. The two
well responses are superposed during the infinite acting radial flow regime. During
pseudo steady state flow. the two responses curve above the semi-log straight line. At
intermediate time, well B shows the behavior of two perpendicular sealing faults with
an increase of the semi-log straight line slope by a factor of 4.
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Figure 5.18. Semi-log plot of Figure 5.17 drawdown examples. pjp versus £;,/C.
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5.4.1 Closed reservoir model

With the analytical solutions used for well test interpretation, several reservoir
geometries can be envisaged but, for most practical purposes, only circular and
rectangular reservoir shapes are considered. This last boundary model is presented in
the following text. It is generated with the image well method as described by Matthews
et al. (1954), the well can have any position in the bounded rectangular area.

The reservoir is homogeneous. The well, with wellbore storage and skin, is at
dimensionless distances Lip, Lap, Lap, and Lap from the four sealing boundaries of the
rectangle. The actual distances are defined by equation 1.34, and the area of the closed
reservoir is expressed as :

A= (LID + Ls/))(LzD +Lyp )GQ (5.13)

5.4.2 Drawdown behavior

During the pseudo steady state flow regime, the drawdown pressure drop is a linear
function of time (Equation 1.35 of Section 1.2.8). Brons and Miller (1961 b) expressed
the dimensionless pressure as:

1 A 2.2458
pp =27ty +—| In—-+1In +S (5.14)
D paT [ P c,
where the dimensionless time ¢y, is defined with respect to the drainage area,
0.0002644
DA :—O——At (5.15)

puc, A
and S is the dimensionless wellbore skin coefficient.

The shape factor C,; characterizes the geometry of the reservoir and the well location.
Brons and Miller (1961), Dietz (1965) and Earlougher (1971) have presented tables of
shape factors for various drainage configurations. As shown in Table C.1 of Earlougher,
Monograph (1977), the term 1/2 In(2.2458/ C,) of the pseudo steady state Equation 5.14
is as low as -1.31 for a well at the center of a closed square such as in example A of
Figure 5.17. In long narrow rectangular systems, it can be greater than I, in particular
when the well is near one or two reservoir boundaries. On the pressure curves, this
constant geometrical factor tends to increase the amplitude of the response at late times,
as shown for example on curve B of Figure 5.18.
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The two dotted derivative curves of Figure 5.17 reach the unit slope straight line at least
one log cycle earlier than the pressure responses. During the pseudo steady state flow
regime, the log-log pressure curve starts to follow the straight line only when the time
group 2y, of Equation 5.14 is large compared to the three constant terms. With the
derivative presentation, all constants are eliminated and the diagnosis of pseudo steady
state is easier.

The location of the late time unit slope straight line is a function of the reservoir area.
On Figure 5.19. several drawdown examples are presented on log-log scale, with p, and
p'y, versus the dimensionless time ¢,, ;.. Three closed square reservoirs are considered,
the areas are 47,” = 10° 10", 10%. When the size is increased by a factor of 10, the line
is displaced by one log-cycle towards late times.

For each square, the well is either centered, or near one boundary with the distance
L,;5=200. In the latter cases. the derivative shows an intermediate plateau at 1, before
reaching the closed system straight line of unit slope. In the following Sections 5.4.4
and 5.4.6. the examples of Figure 5.19 are further used to illustrate the influence of the
reservoir geometry and well location on the shape factor C.

The two drawdown examples of Figure 5.20 correspond to a long narrow rectangular
reservoir. With curve C the well is centered and with curve D it is close to one end of
the channel. In both cases, the derivative responses show a half unit slope straight line at
intermediate time, before the start of the closed system flow regime. A 1/2 slope is
characteristic of the linear flow condition, as discussed in Section 5.2 when the well is
between two parallel sealing faults. For example D, the channel produces in only one
direction and the flow is in fact hemi-linear. The derivative half unit slope straight line
of curve D is double that of example C. The analysis of the hemi-linear flow regime is
discussed in Section 5.4.5.
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Figure 5.20. Pressure and derivative drawdown responses for a well with wellbore storage in a

closed channel. Log-log scales, p;, versus 1,/C;,.
C;, = 1000, S = 0. Curve C, the well is centered: L, = Ly, = 20000, Lyp = Lyp = 2000. Curve D,
the well is close to one end of the channel: L,;, = L,p = Ly = 2000, Ly, = 38000.

5.4.3 Matching procedure with pressure and derivative drawdown data

The early time response is matched on the homogeneous infinite reservoir model. For a
well with wellbore storage and skin, k4, C and S are estimated from Equations 2.9, 2.10
and 2.11.

The late time derivative unit slope straight line defines the reservoir area. When the
type-curve is generated by computer, the shape of the derivative transition between the
0.5 line and the unit slope line is used to estimate the distance of the different
boundaries. Assuming a rectangular geometry, it can be possible to identify one sealing
fault (as on Figure 5.19), two perpendicular sealing faults (Figure 5.17) and also two
parallel sealing faults (Figure 5.20).

In practice, the derivative transition is seldom characteristic of a clear boundary
configuration, and frequently several solutions are possible for the shape of the
rectangular reservoir and the well location. The pressure response is also used for
adjusting the geometry, with the shape factor effect.

5.4.4 Semi-log analysis

Figure 5.21 is a semi-log plot of the six examples of closed square responses presented
on log-log scale Figure 5.19: at late time, during pseudo steady state flow, the curves
deviate above the semi-log straight line. Before, the three examples generated with the
well near one of the boundaries show a typical sealing fault behavior at transition time,
with a doubling semi-log straight line slope.
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Figure 5.21. Semi-log plot of Figure 5.19 drawdown examples. py, versus #,/C,.

On these three examples, the distance to the first boundary is constant with L,,=200 and
the duration of the semi-infinite regime is a function of the reservoir area. The curve
generated for 4/7,7=10° shows the longest hemi-radial flow regime: at time of start of
the pseudo steady state flow. this curve is significantly higher than the curve generated
for the well at the center of the square. Conversely. the transition on the example
A/r,*=10° is short. and the two responses are relatively close. Figure 5.21 illustrates on
semi-log scale the influence of the geometrical effect of boundaries on pseudo steady

state pressure responses: the shape factor is high when the hemi-radial regime is long.

On a Ap versus Az semi-log plot of actual data. provided the correct semi-log straight
line has been identified from log-log analysis, the permeability thickness product 44 and
skin coefficient S are estimated with Equations 1.16 and 1.17. During the transition
before pseudo steady state flow, if the derivative shows a second stabilization such as
on the examples Figures 5.17 and 5.19, the intermediate semi infinite regime also
displays a semi-log straight line (Figures 5.18 and 5.21). It is then possible to estimate
the distance of one or two boundaries (Section 5.1.4 for one sealing fault and Section
5.3.4 for two intersecting sealing faults).

If the log-log analysis shows the behavior of two parallel sealing faults before the
pseudo steady state regime as on Figures 3.20. the linear flow transition regime can be
analyzed with a plot of the pressure change versus the square root of time.

5.4.5 Linear and hemi-linear flow analysis

Figure 5.22 is a plot of the two examples of closed channel reservoir of Figure 5.20,
with the dimensionless pressure p,, expressed versus the square root of the
dimensionless time (,/C; (see Section 5.2.6). With well C, the flow is linear at
intermediate time but, on the second example, well D is close to one end of the channel
and the flow is hemi-linear.
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The two responses show a straight line on the linear flow plot of Figure 5.22. Example
C corresponds to an infinite channel, the slope m,, is expressed in Equation 5.5. In the
case of semi-linear flow curve D, the slope my, is double:

_L H (5.16)
ALy + Ly )\ ke,

Mpey = 16.27

If the semi-infinite nature of the linear flow regime is ignored and Equation 5.5 is used
in place of Equation 5.16, the resulting calculated width is half of the true channel
width.

This illustrates the frequent non-uniqueness of the solution when several boundaries are
acting during a well response. For a closed system, the reservoir area is well defined
from the pseudo-steady state analysis but, in general, several combinations of shape and
well position can be used to describe the transition between the infinite radial flow
regime and the pseudo-steady state flow.
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Figure 5.23. Pseudo steady state flow analysis of Figure 5.19 drawdown examples.
pp versus £/Cy.
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5.4.6 Pseudo-steady state analysis

Figure 5.23 is a cartesian plot of the six examples of closed reservoir responses
presented Figure 5.19 and 5.21: three square areas are considered and two well locations
are assumed, with the well either centered in the square or near one of boundaries.

On a linear plot, the responses follow a straight line during pseudo steady state regime.
With the dimensionless variables p;, and 1,/C},. the slope is inversely proportional to the
reservoir area A and the six straight lines of Figure 5.23 can be grouped into three pairs.
With the smallest area A/,"=10° the two lines are almost superimposed but, as
discussed in the previous section 5.4.4, when the area is larger and the well is off-
centered, a long semi-infinite regime is seen before pseudo steady state flow and the
shape factor C becomes large. For 4/r,”=10°, the two pseudo steady state straight lines
are clearly different.

With real data. the pressure is expressed in Equation 1.35 during the pseudo steady state
flow regime:

-
ap=0234-98_ 5/ 41626954 log‘—f—log(cl)m.ssl+o.87s (135)
(o A kh ¥ ’

M

The slope m* of the pseudo-steady state straight line provides the reservoir connected
pore volume:

gha =0234-98 (1.36)

cm*

When k# and S are known from semi-log analysis of the early time response, the shape
factor C, can be estimated from the time zero intercept Ap*,,, of the pseudo-steady state
straight line with Equation 5.17, or 5.18 (Earlougher. 1971) :

/

23 O}K P, -pl*m j/m—log( Afr2 j—0,875}

C 4 =22458¢ (5.17)
. { 2303 (p, - P )/m]
C}; :5456 [ = (518)
’ m*

The reservoir shape is deduced from a table of shape factors such as Table C.1 in
Earlougher (1977).
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5.4.7 Build-up analysis

As already shown on Figures 1.25 and 5.17, the pressure behavior of closed systems is
different during drawdown and build-up perlods At late time, the bulld -up pressure

stabilizes at the average reservoir pressure p, the difference ( p;, —p) defines the
depletion.

Log-log pressure and derivative build-up analysis

Figure 5.24 presents three build-up examples for a well in a closed rectangle. The length
of the rectangle is twice the width, the distance between the well and one of the small
sides 1s 1/8 of the length the dimensionless rectangle area is A/, 2=8%10°, This
configuration is described in the Shape Factors Table C.1 of Earlougher (1977): Cy is
0.5813, the start of pseudo steady state #,ip is at 7p,=2 and, at #5,=0.6, the error in
drawdown pseudo-steady state analysis (Section 5.4.6) is less than 1%.

In the log-log plot Figure 5.24, the dimensionless pressure and derivative are expressed
versus the dimensionless time ¢,/C,,. The dimensionless wellbore storage coefticient is
Cp =292 and the dimensionless time ¢, of Equation 5.15 can be evaluated as:

Ly = M —3.65x1075 L2 (5.19)
A/FMT Cp Cp

Three production times are considered:

1: The well is closed at start of the pseudo steady state regime (within 1% error:
fl7/)A:O.6; lp/)/CD:16,400),

2 & 3: The well is closed during pure pseudo steady state flow (,4=2 (Ztpss1)) and 10;
£/ C=54,600 and 273,000).
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Figure 5.24. Pressure and derivative build-up responses for a well with wellbore storage in a
closed rectangle. The well is close to one boundary. Three production times are considered.
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In Figure 5.24, the difference between the pressure responses appears negligible and the
three curves merge into one single build-up response. When all reservoir boundaries
have been reached during drawdown, the late time dimensionless build-up pressure
stabilizes at:

Do, = l.lil[logiv log €, 1035140875 | (5.20)

i B
!

The examples are generated with a skin factor S =0. From Equation 520, the

dimensionless stabilized pressure at late time is py;,, =8.62.

Interestingly, when Equation 5.20 is changed to dimensional data, it has the same form
as the constant term of the drawdown Equation 1.35. This shows that the amplitude of

the pressure change during a complete build-up, E:;—pw:m, is equal to

APint = Pi = Pint- The intercept Apy,, of the pseudo-steady state straight line of the

drawdown data (Ar=0 in Equation 1.35) indicates the amplitude of the subsequent build-
up period at infinite shut-in time, and the depletion is expressed by the first term of
Equation 1.35:

- B
3 7p=0.234(/7“m (5.21)
¢, h

When the pressure stabilizes, the derivative drops towards zero. The three derivative
curves are estimated with respect to the natural logarithm of the Horner time (see
Section 2.3.4), and three different dimensionless production times are used:
1,/C1=16,400. 54,600 and 273.000. Even though the pressure curves appear similar, the
late time derivative responses are different on Figure 5.24.

Before the final derivative drop. the build-up responses show the influence of the
closest reservoir boundary and the derivative curves deviate above the 0.5 line,
producing a hump. The examples of Figure 5.24 define the following sequence of flow
behaviors: after the initial wellbore storage effect, the infinite acting regime is followed
by a semi-infinite behavior and finally by the closed system stabilized pressure.

With ¢,,,,=0.6. the derivative is above the two other build-up curves during the hump,
and the final drop is delaved. When the pseudo steady state has been reached during
drawdown (1., = 2 in the examples Figure 5.24). the shape of the build-up curve
becomes independent of ¢,.

Other boundary configurations can generate a similar shape, with a derivative response
curve going up and then down. For example when the reservoir is limited by a constant
pressure boundary (see Section 5.5), the pressure also stabilizes at late time, and the
derivative drops. If sealing boundaries are seen before the constant pressure support, the
derivative increases before falling to zero (Figure 5.31). A semi permeable fault (Figure
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5.33), and double porosity systems with sealing boundaries (Figure 5.41), can also
generate a hump on derivative responses. In such cases, the derivative does not drop to
zero at late time. These different boundary configurations are discussed in later sections.

Semi-log analysis of build-up

The three dimensionless production times 7,,/C;=16,400, 54,600 and 273,000 used for
Horner analysis are considerably larger than the time of end of the semi-log regime,
estimated at #;,yCp=1000 on Figure 5.24. As discussed in Section 2.2.2, when ,>> Ay,
the Horner time can be simplified with Equation 2.16:

tp+At

log ~ logt, ~log At (2.16)

and the semi-log straight line slope m becomes independent of #,.

When the analysis plots were made by hand, the M.D.H. semi-log scale was sometimes
used for build-ups after long drawdown periods, since it required less work. With
computing facilities available today, the Horner or superposition methods are preferred.

When the production time ¢, is greater than the time of start of the pseudo-steady state
Ly, two different definition of Horner time have been proposed (Earlougher, 1977),
using the true production time ¢, as on Figure 5.25, or #,,. The build-up pressure
response being independent of ¢,, the Horner time should ideally also be independent of
the production history, and therefore calculated with a fixed #,.
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Figure 5.25. Horner plot of Figure 5.24 build-up examples. p, versus (£, +ip)/ip.
The Horner production time is 1,,/Cp = 16400, 54600 and 273000 (z,p4 =0.6, 2 and 10).
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Figure 5.26 is the Horner plot of the dimensionless log-log curves of Figure 5.24 where
the Horner dimensionless production time is fixed at £,,,, = 0.6 for the three responses.
This corresponds to the 19 error criteria of the pseudo steady state drawdown straight
line and to 1,,,’/C’,=16400. From Equation 2.16. the choice of the production time, £, or
Ipss. does not change the slope, but only displaces the Horner curve along the time scale.
The two definitions of Horner time give the same permeability thickness product k4 and
skin coefficient S with Equations 1.16 and 2.15, the only difference is in the
extrapolation of the straight line to "infinite shut-in time", p*.

With a fixed ¢, as on Figure 9.26, the same semi-log straight line describes the three
examples during radial flow. When pseudo steady state has been reached during
drawdown (curves £,,,=2 and 10). the two Horner curves are superimposed whereas

with 1,4 = 0.6, the curve deviates and flattens at -/7_,::8.50, slightly below the

theoretical dimensionless stabilized pressure p—,) =8.62. For the three curves, the semi-
log straight line extrapolated pressure p;,*=8.1 is lower than the final stabilized
pressure.

The Horner curve in Figure 5.26 being independent of 7, the relative position of the
extrapolated pressure p* compared to the stabilized pressure p is only a function of the

well location in the rectangle. The final stabilized build-up pressure is higher than p*
when a long semi-infinite regime is seen after the radial flow straight line, due to one or
several boundaries close to the well. In addition to the build-up example Figure 5.24,
the different drawdown examples Figures 5.17, 5.19 and 5.20 with a high shape factor
C,4 correspond to this type of behavior. Conversely, when the well is centered in the
reservoir, the radial flow regime is not interrupted by early boundary effects, and the
Horner curve stabilizes below the extrapolated pressure p*.

In practice, the Horner time is naturally expressed with reference to the true production
time ¢, as shown on Figure 5.25. When compared with Figure 5.26, the Horner curves
are simply displaced by Log[t,/1,] along the time scale (from Equation 2.16), and



Closed systems 237

therefore the straight line extrapolated pressure changes with 1,. For example, the curve
generated for 1,,,~2 is displaced by log(2/0.6) to the right, the dimensionless
extrapolated pressure pp* is then 1.151x0.52=0.60 higher than on Figure 5.26, and

pp*=8.7 is almost the same as the dimensionless stabilized pressure pp =8.62. With

t4=10, the semi-log straight line has to be extrapolated more than one log cycle
further, the new pp* is 1.40 higher, and p,*=9.5 is above the constant stabilized

pressure p,, .

In producing fields, routine shut-in periods are made to monitor the depletion. On a
Horner/superposition plot of real data, both the extrapolated pressure p* and the average

pressure p decrease when ¢, increases. When the same production time, such as on

Figure 5.26, is used for Horner analysis of the different build-up tests, the change of
extrapolated pressure p* from one build-up to the next defines the drop of average

pressure p between the tests. If the actual multiple rate sequence, or the total

production time as on Figure 5.25, are used, the difference (;— p *) is not a constant,
and p* is difficult to interpret.

The M.B.H. method

In 1954, Matthews-Brons-Hazebroek presented a method for estimating the average
reservoir pressure when build-up surveys in bounded reservoirs are terminated before
the final pressure stabilization. The M.B.H. method has been thoroughly discussed and
illustrated in the petroleum literature. In the following, the technique is only
summarjzed in relation to the previous discussion of semi-log build-up analysis.

The M.B.H. method uses results of the Horner analysis based on the production time ¢,
such as on Figure 9.25. In addition to the straight line slope m and extrapolated pressure
p*, the technique requires the reservoir area A and the geometry of the well location to
be known. A set of semi-log curves is presented for various reservoir shapes and well
locations. The x axis expresses, in term of 1,,, of Equation 5.15, the production time
prior to shut-in and the y scale provides the M.B.H. dimensionless pressure, defined as:

*_ .
PDOMBH = 2.303/3 p L 2(131) —Pl)j (5.22)

From the Horner analysis, m and p* are estimated, the permeability is calculated with
Equation 1.16 and, knowing the reservoir area 4, the dimensionless production time ¢,
is evaluated from Equation 5.15. Then, by selecting the proper curve for reservoir and
well location, a direct reading provides the dimensionless M.B.H. pressure and the

theoretical average reservoir pressure p can be evaluated from Equation 5.22.

The M.B.H. curve corresponding to the examples in Figure 9.24 is presented in Figure
6.4 of Earlougher (1977). For the three production times tpa=0.6, 2 and 10, the



238 Reservoir boundaries

dimensionless M.B.H. pressures are respectively p;amn=-0.8, 0.1 and 1.8. Using the
Figure 9.25 previous calculations of extrapolated pressures for the Horner plot defined
with ¢, (pp*=8.1, 87 and 9.5), the expected dimensionless average pressures are

obtained: ;,—) =8.5 for 1,;,4 = 0.6, and ;,T =8.6 on the two other examples.

It is assumed with the M.B.H. method that the production is relatively constant during
the complete flowing time. In case of multiple rate production history, since the M.B.H.
pressure is not available with the superposition method (Larsen, 1983), the equivalent
Horner time is used. In practice, analvtical simulations are preferred today rather than
the M.B.H. method for estimation of the average reservoir pressure. No simplification
of the rate history has to be made. the range of reservoir systems is not limited to a
defined catalog of shapes, and curve matching by siimulation is less prone to error than
the straight line methods.

5.5 CONSTANT PRESSURE BOUNDARY

Sealing and constant pressure linear boundaries express the two limiting cases of the
linear composite solution presented in Section 4.3.3. with a zero and an infinite mobility
in the outer reservoir region. A constant pressure boundary is used to describe the
influence of a linear change of fluid properties. such as the presence of a gas or a water
contact some distance away from an oil well (Figure 5.27). Strictly speaking, the
mobility of the outer zone is not infinite but it must be very large compared to the
mobility of the oil region. In the following Section 5.6 on communicating faults, it is
shown that an infinite conductivity fault also acts as a constant pressure boundary, even
though the reservoir properties can be constant on both sides of the fault.

Vertical changes of fluid properties, such as the influence of a gas cap or a bottom water
drive for example, correspond to a different boundary system. These configurations
have been introduced for partially penetrating wells in Section 3.4.7 and for horizontal
wells in Section 3.6.11 (Figure 3.43). The effect of a gas cap or bottom water drive is
further discussed at the end of the chapter, in Section 5.10.3.

gas

water

Figure 5.27. Physical model for a linear constant pressure boundary: gas or a water drive pressure
support.
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Figure 5.28. Pressure and derivative responses for a well with wellbore storage near one constant
pressure linear boundary in a homogeneous reservoir. Log-log scales, pj, versus £,/Cy.
C[) = 104, S= 0, L[) =5000.

A typical influence of a linear constant pressure boundary is illustrated in Figure 5.28
for a well with wellbore storage and skin in a homogeneous reservoir.

e During drawdown and shut-in periods, the pressure stabilizes and the derivative
tends to zero when the influence of the constant pressure boundaries is felt.

¢ The rate of decline of the derivative response gives an indication of the geometry of
the constant pressure boundaries.

In Figure 5.28, the same dimensionless parameters as on the example of a sealing fault
response presented Figure 5.1 are used, only the boundary condition is changed. With
the two solutions, a common infinite acting regime is seen at early time but the models
diverge when the boundary effect starts to be felt, at £,/C»=1000. In the case of a unique
linear constant pressure boundary, when the pressure stabilizes, the derivative follows a
straight line with a negative unit slope (Abbaszadeh and Cinco-Ley, 1995).

When several constant pressure boundaries are reached, the shape of the response
becomes close to that of a build-up curve in a bounded (closed) system such as in
Figure 5.17 but, with a constant pressure boundary, the same stabilized pressure
behavior is seen during drawdown and build-up periods.

All the configurations of linear sealing boundaries presented in previous sections can be

considered with constant pressure boundaries. When several boundaries are considered,
a combination of the two conditions can be also envisaged.

5.5.1 Single linear constant pressure boundary model

The constant pressure model is identical to the sealing fault analytical solution
presented in Section 5.1.1, except that the producing image well at distance 2L, is
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changed into an injection well, thus introducing the linear constant pressure condition at
a distance L,, from the producing well.

When the producing well has reached the radial flow regime, the influence of the image
well, described by a line source injector. is introduced as:

2
pp =0.5(In7,, +0.80907 +25)+0.5Ei L) (5.22)

4t

When the radial flow condition also becomes valid for the image well response, the

exponential-integral solution Ei{— (2L,))2/4t,)] can be approximated by the semi-log

function — ln[t/)/(EL,)): }—0.80907, and Equation 5.23 reduces to:
p,=In2L, +S (5.23)

In the absence of any skin factor S. the amplitude of the stabilized dimensionless
pressure is only function of the distance /,, between the well and the constant pressure
boundary. On the example Figure 5.28. with a distance L,, = 5000 and a skin S =0, the

stabilized pressure is p,, =9.21.

5.5.2 Behavior
Figure 5.29 presents four constant pressure boundary responses. for the same well
configuration and boundary distances as on the sealing faults examples in Figure 5.2

L;,=100, 300, 1000 and 3000.
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Figure 5.29. Pressure and derivative responses for a well with wellbore storage and skin near one
constant pressure boundary in a homogeneous reservoir. Log-log scales, pp versus £,/Cp.
Cp =100, §=35. Several distances L, = 100, 300, 1000, 3000.
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At late time, when the constant pressure is felt, the four responses become parallel in
Figure 5.29: the pressure curves reach the different stabilized pressures pj, of Equation
5.24, and the derivative negative unit slope lines are displaced along the time scale
proportionally to L, the square of the distance. As for the sealing fault model, the
response for L;=100 does not show any radial flow behavior.

The same examples are presented on a semi-log scales in Figure 5.30: when the constant
pressure is reached, the curves deviate from the radial flow straight line and stabilize.

An example of mixed sealing and constant pressure boundaries is given in Figure 5.31:
the well is near a sealing fault at L,,=340, and the reservoir is under the influence of a
linear constant pressure boundary perpendicular to the fault at a distance L,;,=940 from
the well. The derivative first shows the influence of the no-flow barrier and the response
deviates above the 0.5 plateau, but later the constant pressure is seen and the derivative
drops. This combination of mixed boundaries produces a hump, very similar to the first
part of a finite conductivity fault response as described in Section 5.6.2.
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Figure 5.30. Semi-log plot of Figure 5.29 examples. pjy versus 1,/Cp.
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Figure 5.31. Pressure and derivative responses for a well with wellbore storage near two
perpendicular intersecting boundaries in a homogeneous reservoir. Log-log scales, p,, versus
t/Cp. Cp, = 100, S = 0. The closest boundary is sealing, the second at constant pressure. The
angle of intersection is 8= 90°, the well location is 8, = 20°, the distance to the intercept is Ly =
1000.
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When several constant pressure boundaries are present, or in the case of a circular
constant pressure boundary, the shape of the derivative decline is steeper.

5.5.3 Drawdown and build-up analysis

Like other boundary conditions, a response influenced by constant pressure is analyzed
in two steps. The early time response corresponds to the infinite reservoir solution. On
log-log scales. a C,e™ curve describes the first part of the response in the case of
wellbore storage and skin effects. On semi-log or Horner/superposition scales, the usual
straight-line methods are applicable. This first analysis provides the wellbore storage
coefficient C, the permeability thickness product £/ and the skin factor S.

When the constant pressure influence is seen, the distance L to the pressure support
boundary can be estimated. On a log-log scale, the time of the drop of the derivative
curve indicates L, in the same way as the increase of the derivative response gives the
distance to a no flow barrier. With mixed boundaries, a match on a computer-generated
response describes the influence of the sealing boundaries reached before the constant
pressure one.

In the hypothesis of a single constant pressure boundary, the time of intercept A,
between the semi-log straight line and the constant pressure is used on semi-log and
superposition plots. The Equation 1.33 for a sealing fault is applicable to the constant
pressure boundary. The difference between the pressure at the start of the period and the

stabilized pressure —A; :;- p(Ar=0) can also be used to estimate L. From Equation
5.24,

L:0.5"“‘@[1.151(;—‘0(&:O)) m—S] (5.24)

As the derivative follows a straight line with a negative unit slope when a constant
pressure boundary is reached, Abbaszadeh and Cinco (1995) propose to estimate the
distance from a Cartesian plot of the pressure derivative group Ap’ of Equation 2.23,
versus the inverse of the elapsed time 1/As. The derivative follows a straight line of
slope m, giving the distance to the linear constant pressure with:

mcph A
L=0.0193 B9 (5.25)
qbec,

For shut-in periods, the extrapolated pressure of the semi-log straight line is not used;
the pressure at infinite shut-in time corresponds to the stabilized pressure.

Frequently, on build-up data, the derivative becomes noisy when the pressure stabilizes
at late time and it can be difficult to differentiate a constant pressure influence from a
closed system response, as illustrated in Figure 5.24 for example. The analysis of the
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previous drawdown and the test simulation plot are used to decide between the two
alternative solutions. The comparison of the initial reservoir pressure p; with the build-

up extrapolated or stabilized pressures, p*or p, also shows if depletion has to be
considered.

5.6 COMMUNICATING FAULT

In hydrocarbon bearing formations, faults are frequently non-sealing and allow
communication between two reservoir regions. If the fault shows an infinite
conductivity behavior, a flux parallel to the fault plane is established, improving the
drainage in the reservoir region. By providing pressure support, this configuration
shows the behavior of a constant pressure boundary (Abbaszadeh and Cinco-Ley, 1995;
Kuchuk and Habashy, 1997).

Between the two limiting cases, namely the sealing and the infinite conductivity fault,
intermediate behaviors can be encountered:

1. A partially communicating fault (also called semi-permeable fault) describes a
reduction of permeability in the vertical plane fault.

2. With the finite conductivity fault model, the fault permeability is larger than the
formation permeability.

In the following, partially communicating and finite conductivity fault models are
presented. It is assumed that the fault, of infinite extension, is unique. For clarity of the
presentation, the two reservoir regions separated by the fault are supposed to have the
same characteristic. It is shown that the fault influence is expressed by a temporary
deviation from the 0.5 plateau. The derivative shows a hump above the stabilization
with the semi-permeable fault, and a valley below the stabilization in the case of a finite
conductivity fault.

If high conductivity faults are connected and form a network in the reservoir, the
behavior corresponds to the double porosity model described in Section 4.1

Cinco et al. (1976) investigated the behavior of a well near a single infinite conductivity
fault of limited extension. The shape of the response is close to that of a finite
conductivity fault of infinite extension. They describe the effect of the fault with a
negative pseudo-skin. The fault is acting like a drain, and the pseudo-skin is more
negative when the orientation of the fault is radial.

5.6.1 Semi-permeable linear boundary

The semi-permeable linear boundary is designed to describe the presence of a partially
communicating fault: a flow is possible between the two reservoir regions through the
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fault plane, no flow is allowed along the fault. On the example of Figure 5.32, the throw
of the fault plane is insufficient to cause a complete separation between the two
permeable regions and a leak is possible, depending upon transmissibility in the vertical
plane interface. The reservoir properties are the same on both sides; the linear interface
is only acting like a restriction.

The typical influence of a semi-permeable fault is shown in Figure 5.33, the same
dimensionless parameters as on the sealing fault example of Figure 5.1 are used.

e  The response starts to follow the usual infinite acting regime and, at 1,,/C;, = 1000,
the derivative deviates above the 0.5 plateau and rends to 1. like for the no-flow barrier
of Figure 5.1.

o  When the communication starts through the fault, the derivative slowly decreases
until a second infinite radial flow regime is established, and finally the response returns
to the 0.5 stabilization line.

The influence of the semi-permeable fault is expressed by a temporary deviation above
the 0.5 plateau. The duration of this hump is a function of the fault transmissibility: a
long derivative transition at 1 suggests that the fault is almost sealing.

kf

Figure 5.32. Physical model for a semi-permeable boundary.
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Figure 5.33. Pressure and derivative responses for a well with wellbore storage near a semi-
permeable linear boundary. Log-log scales, pp versus £,/Cp. Cp=10000, S=0, L,=5000, a=0.05.
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Figure 5.34. Pressure and derivative responses for a well with wellbore storage and skin near a
semi-permeable linear boundary. Log-log scales, pp versus ¢p/Cp. Cp) =100, S=5, L, = 300.
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Semi-permeable fault model

The partially communicating fault solution presented in the following corresponds to
the model of Yaxley (1985): the reservoir is homogeneous and the two regions have the
same characteristics. The fault is at distance L from the well, its thickness wy is small
and the fault permeability is called &, (Figure 5.32). Yaxley defines the dimensionless
transmissibility ratio « as the reciprocal of a skin:

k.
o=t /W (5.26)
kL

With the linear composite solution presented in Section 4.3.3, Ambastha et al. (1987)
have considered also the transmissibility in the interface between the two reservoir
regions but they use the concept of an infinitesimal skin. When the reservoir properties
are the same on both sides of the fault, their linear composite solution is equivalent to
the semi-permeable fault model presented in this section.

Kuchuk and Habashy (1997) extended the model of Yaxley (1985) to a series of parallel
partially communicating faults. In their examples of multiple communicating faults, the
maximum of the hump above the 0.5 derivative stabilization can exceed the limit of 1
for a single fault. They also investigated a high permeability fault, allowing flow along
the fault plane. They obtained results similar to Abbaszadeh and Cinco (1995) for a
finite conductivity fault with no skin.

Behavior

In Figure 5.34, several transmissibility ratios « are considered for a semi-permeable
fault located at L,=300 from the well. With =1, the linear discontinuity is hardly
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visible and the derivative response does not deviate much above the 0.5 line whereas
with @ =0.001 the fault appears almost impermeable, and the response is similar to the
sealing boundary response £,=300 of Figure 5.2 (the well parameters are the same with
Cp=100 and S=5). The two intermediate values of transmissibility ratio, ¢ =0.1 and
0.01, show the characteristic response of a leaky fault: a second radial flow regime is
established at late time, and the derivative stabilizes twice on the 0.5 line.

On a semi-log scale, the two limit cases of Figure 5.34 both appear homogeneous with a
single semi-log straight line of slope m for ¢ =1 and, for «=0.001, a sealing fault
response with a second line of slope 2m (Figure 5.35). With the two other examples, the
semi-log curves show nwo parallel straight lines. but the second one is above the first.
During the transition between the two parallel straight lines. the response follows the
behavior of a sealing fault. and a temporary semi-log straight line of slope 2m is
observed.

When the second radial flow regime is reached. the presence of a leaky fault in the
reservoir simply produces an additional pressure drop. like a damage effect on the late
time response. A similar semi-log response, with parallel straight lines separated by a
vertical transition, can also be observed in radial composite systems (see Section 4.3.2,
Figure 4.55), when the storativity decreases in the outer reservoir region. With the two
solutions, the ability to flow is reduced at late time, even though the permeability is
constant throughout the reservoir.

Drawdown and build-up analysis

A preliminary analysis of a semi-permeable fault response can be made with the sealing
fault solution (Sections 5.1). The first infinite acting radial flow regime is analyzed on
log-log and semi-log scales to provide the wellbore storage coefficient C, the
permeability thickness product £/ and the skin factor S. The time of the deviation at the
end of the first semi-log regime is used to estimate the distance L to the semi-permeable
fault, as for a no-flow barrier.
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Figure 5.36. Pressure and derivative responses for a well with wellbore storage near a finite
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The transmissibility ratio « is obtained from the transition between the two radial flow
regimes. When the communication between the two reservoir regions is poor, the
transition is long. On a log-log scale, the derivative hump can last more than two log-
cycles, and frequently the second radial flow regime is not completely established at the
end of the test period. If a complete response is available, the vertical distance between
the two parallel straight lines of the semi-log plot increases as the transmissibility ratio
is reduced.

For build-up responses, the extrapolated pressure of the first semi-log straight line is not
used, p* is evaluated by extrapolation of the second line to infinite shut-in time.

5.6.2 Finite conductivity fault

With the finite conductivity fault model, the permeability of the fault is larger than the
reservoir permeability. Flow is allowed across and along the fault plane, and the fault
enhances the drainage in the reservoir, In their original solution, Abbaszadeh and Cinco
(1995) allow a change of mobility and storativity in the two reservoir regions. It is
assumed in the following that the reservoir properties are the same on both sides of the
fault.

The typical influence of a semi-permeable fault is shown in Figure 5.36 (with no fault
skin S;).

e The response starts to follow the usual infinite acting regime.

e When the finite conductivity fault is seen, the derivative drops along a straight line
of slope -1. First, the fault provides a pressure support similar to a constant pressure
linear boundary.

o Later, as the pressure drops in the fault, a flow is established in the thickness of the
fault plane. As depicted Figure 5.37, this results in a bi-linear flow regime: one linear
flow takes place in the reservoir when the fluid enters and exits the fault, the second
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linear flow describes the flux in the fault thickness. In Figure 5.36, the derivative leaves
the constant pressure negative unit slope straight line, and starts to increases along a 1/4
slope straight line.

e Finally, the derivative response returns to the 0.5 stabilization describing the
infinite acting radial flow regime. At late time, the fault has no effect on the derivative
response.

The bi-linear flow regime has been already discussed for well intercepting a finite
conductivity vertical fracture (Sections 1.2.5 and 3.3). With the fractured well model,
the reservoir flows into the fracture from the two sides of the vertical fracture plane, as
opposed to the finite conductivity fault where flow both enter and exit the interface.

The effect of a finite conductivity fault is shown by a valley on the derivative curve.
This shape appears similar to a double porosity response, but the two reservoir models
describe different flow behavior. With the double porosity model, fluid flow through the
fissure network and the derivative valley defines an increase of storativity from fissures
to the total system. With finite conductivity fault model, radial flow is established in the
matrix, before the conductive fault enhance the drainage in the reservoir. With the two
solutions, the ability to flow is improved at late time, even though the permeability is
constant throughout the reservoir.

Finite conductivity fault model

The fault thickness w, is small, the fault permeability is called &, and the distance from
the well is L (Figure 5.37). Two dimensionless parameters are used to define the fault
properties. The fault dimensionless conductivity F.;, describes the ability of flow in the
fault plane:

Kywy
F,= m (5.27)
i -
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Figure 5.37. Fault diagram.
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Figure 5.38. Pressure and derivative responses for a well with wellbore storage and skin near a
finite conductivity fault. Log-log scales, py, versus £5/Cp. Cp =100, S=5, L, = 300.
No fault skin and several conductivity: ;= 0, F,, = 1, 10, 100, 1000, 10000.

The skin factor Sy describes the resistance to flow across the fault plane. In their model,
Abbaszadeh and Cinco (1995) introduced a region of altered permeability &, with an
extension w, around the fault. The dimensionless skin S;is expressed as:

w
S, 2k w, Wy (5.28)
Lk, 2k,

a

A zero fault conductivity F,; corresponds to the semi-permeable fault solution of
previous Section 5.6.1. The skin factor S; is related to the transmissibility ratio a of
Yaxley (1985) with:

a=r (5.29)

Behavior

In Figure 5.38, the fault has no skin Sy and several dimensionless conductivities £ are
considered. When F.;, <0.1, the pressure derivative stays on the 0.5 line and the fault
has no effect on the well pressure response. With a low conductivity fault, there is no
flow along the fault plane and the fluid transfer occurs only across the interface. The
fault does not improve the drainage but, since no skin is assumed, the response is
similar to the semi-permeable fault of Yaxley (1985) with o > 1 (Figure 5.34).

For larger fault conductivity, the fault is acting like a drain and the derivative drops
along a straight line of slope -1. The time of start of the apparent constant pressure
behavior is a function of the fault distance L. The depth of the valley, and the location of
the subsequent 1/4 slope straight line, defines the fault conductivity F.. For example
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with F,;, =10°, the valley lasts 6 log cvcles in Figure 5.38. This shows that, if the fault is
reached after 1 hour, the second radial flow regime only starts after several years. In
practice, during a standard test, the response is expected to end before the second radial
flow regime.

On a plot of the pressure versus the fourth root of time, a straight line is present during
the bi-linear flow regime, as shown by the dimensionless equation of Abbaszadeh and
Cinco (1995):

245
(lod

DL (3.30)

pp=C+

Equation 5.31 is general; a change of mobility is possible on the two sides of the fault.
When the reservoir properties are constant, the mobility ratio M, defined in Equation
4.78, is set to 1 in Equation 5.31. The constant C describes the flow restriction between
the fault and the well, corresponding to the early time radial flow regime.

When a skin factor S; reduces the ability to flow across the fault plane, the resistance to
flow changes the response to that of a sealing boundary at the beginning of the fault
influence. In Figure 5.39, the finite conductivity fault is affected by a skin S, 0f 10, 100
and 1000. When the fault is reached, the derivative changes from the 0.5 stabilization to
a plateau at 1, then it drops along a straight line of slope -1, reaches a minimum, follows
the 1/4 slope straight line until the final radial flow regime is seen. The presence of a
skin across the fault delays the time of the start of the apparent constant pressure
behavior, with an intermediate sealing fault response. The straight line of slope -1 is
delayed along the time scale, but the 1/4 slope straight line is the same for all skin
factors.
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Figure 5.39. Pressure and derivative responses for a well with wellbore storage and skin near a

finite conductivity fault. Log-log scales, p;, versus t,,/Cp. Cpy =100, S=5, L, = 300.
Several fault skin and conductivity: Fp = 10, 1000, S;= 10, 100, 1000.
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Figure 5.40. Semi-log plot for a well with wellbore storage near a finite conductivity fault.
pp versus i,/Cp. Cp=10°, 8= 10, L;,= 1000, F,;, = 100, Sy=00r 100.

On the semi-log plot Figure 5.40, the finite conductivity fault responses of Floure 5.36
with a skin S, 0f 0 is compared to a similar fault conﬁguratlon with a skin S;=10>. When
there is no fracture skin, the response follows the usual semi-log straight line of slope m
(1.151 in dimensionless terms), flattens during the constant pressure behavior, increases
during the bi-linear flow regime and, finally follows another line parallel to the first
straight line. The degree of deviation below the semi-log straight line is more
pronounced when the fault conductivity F.p is large. When a fracture skin Sy is present,
the semi-log straight line doubles (slope 2m) before the sequence occurs of constant
pressure, bi-linear flow and final radial flow regimes. The apparent flattening is delayed
and the corresponding pressure change is larger than when there is no fault skin. The
semi-log curves of Figure 5.40 shows that the effect of a fault skin increases the
amplitude of the pressure response at late times.

Drawdown and build-up analysis

As for the semi-permeable fault, a preliminary analysis of a finite conductivity fault
response can be made with a single fault solution. The analysis of the early time infinite
acting regime provides the wellbore storage coefficient C, the permeability thickness
product k/ and the wellbore skin factor S. The time of the deviation at the end of the
first semi-log regime is used to estimate the distance L to the finite conductivity fault. If
the derivative drops immediately after the 0.5 stabilization, the fault has no skin Syand a
linear constant pressure boundary (Sections 5.5) is used. When the derivative increases
to 1 before falling, the sealing fault solution (Sections 5.1) is used to estimate the
distance L. A constant pressure boundary can then be used to match the drop of
derivative. The resulting distance L, of the apparent constant pressure boundary can be
used to evaluate the fault skin Sy

(1 2 AN L, ’
+83 2 )_ 3 (5.31)
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When the bi-linear flow regime is present on the data, a plot of the pressure versus the
fourth root of time exhibits a straight line whose slope, defined in Equation 5.31, is
related to the fault conductivity and the mobility ratio. In field units,

gBu

Ap=C+441 VAr (5.32)

Equation 5.33 means that the finite conductivity fault shows the same behavior as a well
intercepting a finite conductivity fracture with a flow restriction near the wellbore
(Abbaszadeh and Cinco-Ley, 1995). By comparing with Equation 1.27, if the mobility
ratio is assumed to be AM=1, the fault behaves like a fracture of conductivity 4kmw;.

As mentioned previously, the shape of the transition valley of a finite conductivity fault
response is very long and actual test data generally end during the transition. The
possibility to identify a change of mobility across the fault plane appears hypothetical,
unless the fault skin and conductivity are low. and the system becomes equivalent to the
linear composite solution of Section 4.3.3.

For build-up responses, the extrapolated pressure of the first semi-log straight line is not
used. When a bi-linear flow regime has been reached during the flow and shut-in
periods, the corresponding Horner or superposition times (see Equation 2.20) can be
used to estimate the fracture conductivity {(with the same slope as in the drawdown
Equation 5.33) and p*. by extrapolation of the hi-linear flow straight line to infinite
shut-in time.

5.7 EFFECT OF BOUNDARIES IN DOUBLE POROSITY RESERVOIRS

When boundary effects are encountered in a double porosity reservoir, two types of
transitions are present on the response. One describes the changes of flow geometry due
to the boundarics. and the other corresponds to the double porosity transition (see
Sections 4.1 to 4.4). Depending upon which transitions are seen first, boundary eftects
can be identified during the fissure flow, the double porosity transition, or during the
total system flow. The number of possible pressure behaviors is large.

If the reservoir limits appear after the double porosity transition, the response is
homogeneous during the total system flow regime and the effects of boundaries are the
same as in a homogeneous reservoir, the different boundary models presented in the
previous sections are directly applicable. Conversely, when the limits are reached
during fissure flow or in transition regime, the double porosity nature of the system
changes the response of boundaries. During the fissure flow regime, the storativity is
only a fraction of the reservoir total storativity (see Section 4.1) and the diffusivity is
high. The presence of limits appears earlier than in the case of homogeneous systems.
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In the following sections, several examples are presented to illustrate the effect of
boundaries during the fissure flow and the transition regimes of double porosity
responses.

5.7.1 One sealing fault in double porosity reservoir, pseudo-steady state
interporosity flow

In Figure 5.41 a double porosity response, pseudo-steady state interporosity flow, is
influenced by a sealing fault during the fissure flow. The fault, at a distance L, = 5000,
is seen immediately after the wellbore storage effect and the derivative starts to increase
as soon as the 0.5 line is reached at #,/C;, = 10%. The double porosity transition is then
observed during the hemi-radial flow regime, and finally the response stabilizes at 1.
The derivative curve presents two valleys: the first corresponds to the end of wellbore
storage effect and the start of the fault influence; the second is the double porosity
transition during the semi-infinite regime.

On this example, there is no infinite acting radial flow regime. The fault is seen at
1,/C=10" but, due to the double porosity transition, the semi-log straight line of slope
2m characteristic of the sealing fault starts after 7,/Cp = 10°. A semi-log analysis of the
hemi-radial flow regime can be performed only when the pressure data is available for
more than three log-cycles after the end of wellbore storage.

In their study of the influence of a sealing fault in double porosity reservoir,
Khachatoorian et al. (1995) indicate that a linear no-flow barrier shows during the
fissure flow regime of the restricted interporosity flow model if the distance is less than
a critical distance L., defined as a function of A. They propose:

Ly =0.54/y2 (5.33)
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Figure 5.41. Pressurc and derivative responses for a well with wellbore storage in a double
porosity reservoir with a sealing fault, pseudo steady state interporosity flow.
Log-log scales, pj versus 1,,/Cp. Cp=104,5=10, L, =5000, ©=0.2, A= 107,
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The critical distance L. is related to the radius of influence r,, of the fissures, presented
in the discussion of interference tests Section 6.4.2, Equation 6.12.

5.7.2 Parallel sealing faults in double porosity reservoir, unrestricted
interporosity flow

Fluvial deposit sandstone reservoirs frequently provide examples of heterogeneous
behavior with boundary effect. In river channels. the sediments are often sorted in
strata, with the high permeability elements accumulated at the base of the deposit body.
Depending upon the permeability contrast between the strata, channel reservoirs can
show a double porosity, or a double permeability behavior. In the following, an example
of double porosity channel response is presented for the unrestricted interporosity flow
hypothesis. Double permeability channels are discussed in Section 5.8.2 and, in the
Section 5.9.1 for composite reservoirs, a different configuration is considered: the
sediments are sorted in strips parallel or perpendicular to the riverbed. Additional
features. specific to channe!l deposits. are further reviewed in Section 5.10.1.

When the permeability of the deposit at the base of the channel sand is larger than in the
higher tight sediment zone, Stewart (1997) reports that this two layers configuration can
produce a bi-linear flow regime during the channel response. A horizontal linear flow
occurs along the channel base, and a vertical linear flow is supported from the tight
overlaying formation. In such a case. a quarrer slope derivative straight line is observed
on the log-log plot of the response. such as illustrated in Figure 5.42. A similar bi-linear
flow behavior has been reported in the case of a horizontal well in a double porosity
reservoir, if the unrestricted interporosity transition is seen when the flow is linear
towards the well (Du and Stewart, 1992: see discussion Section 4.1.4).
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Figure 5.42. Pressure and derivative responses for a well with wellbore storage in a double

porosity channcl reservoir. transient interporosity flow. slab matrix blocks. The dotted curves

correspond to the equivalent infinite double porosity reservoir.,

Log-log scales, pp versus t,/Cp,. Cpy=10,85=0, Ly = Loy = 300, @ = 107, 1 =107
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Figure 5.43. Pressure and derivative drawdown responses for a well with wellbore storage at the
center of closed square double porosity reservoir, pseudo steady state interporosity flow. The thin
dotted curves correspond to the equivalent homogencous closed square reservoir. The infinite
reservoir double porosity derivative response is presented by the thick dotted curve.
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5.7.3 Closed square double porosity reservoir, pseudo-steady state interporosity
flow

On the drawdown example of Figure 5.43, the well is at the center of a closed square
double porosity reservoir, pseudo-steady state interporosity flow. The thick dotted
derivative curve describes the infinite double porosity reservoir response and the two
thin dotted curves the equivalent homogeneous closed square reservoir.

No fissure radial flow regime can be identified on the response. After wellbore storage
eftects, the transition starts and the derivative drops below the 0.5 line but, quickly the
boundaries are seen. As the derivative tends to increase with sealing boundaries, two
opposite trends are superimposed during the double porosity transition, producing an
oscillation on the derivative curve until the total system homogeneous behavior is
reached. The response is then in a psecudo-steady state regime, and the derivative
follows the characteristic unit slope straight line.

When the two transitions are superimposed on the response such as on the example of
Figure 5.43, the diagnosis becomes difficult and frequently, if the data curve does not
display the full response but stops during the transition, the match is not unique.

5.7.4 Square double porosity reservoir with composite boundaries, pseudo-steady
state interporosity flow

In Figure 5.44, the well is near a corner of a square double porosity reservoir, pseudo-
steady state interporosity flow. One of the farthest sides of the square is at a constant
pressure, the three other ones are sealing. The two dotted curves describe the infinite
double porosity reservoir response.
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Figure 544, Pressure and derivative drawdown responses for a well with wellbore storage in a
square double porosity reservoir with composite boundaries. pscudo steady state interporosity
flow. The dotted curves correspond to the equivalent infinite double porosity reservoir.

Log-tog scales. p;, versus (,/Cp,. Cpy = 100. S=0. w=0.1. A= 10° L, = Ly = 500 (sealing).
L5, 1500 (constant pressure) and /.5, = 1500 (scaling).

On this example, the distance of the two first perpendicular sealing boundaries has been
adjusted in order to produce a typical intersecting sealing fault behavior as soon as the
0.5 line is reached. The derivative increases, but the double porosity transition appears
before the plateau at 2, and a second valley is observed on the response. Later, the
derivative reaches the plateau at 2 and finally the constant pressure boundary produces
the final drop of the derivative.

The theoretical example of Figure 5.44 is designed specifically to exhibit three
consecutive Aumps on the derivative response. No radial flow is present, even though
the complete curve is displayed over six log-cycles. The example is not representative
of usual well pressure responses but it illustrates how the individual behaviors of the
different components of the model are superimposed in the derivative response curve.
As discussed in Section 5.11, by knowing the sequence of flow regimes, it is possible to
predict the shape of a response such as Figure 5.44 and, reciprocally, from the
observation of the shape it is possible to propose one (or several) sequence of flow
regimes.

On complex heterogeneous responses, only the derivative presentation is appropriate for
interpretation. Log-log derivative analvsis allows the identification of the complete
sequence of typical behaviors, whereas the straight-line methods are of no use.

5.7.5 Field example

On the two-day build-up test in a fissured reservoir shown in Figure 5.45, the derivative
describes two humps. Several models can be used to match this data, considering that
no constant pressure boundary effect is expected on the well response.
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Figure 5.45. Build-up test for a well in a fissured reservoir. Log-log scales.

A triple porosity solution, similar to that in Figure 4.33, is applicable to describe the test
response. A first transition valley is observed at 0.5 hours, and the test stops during the
second transition, before the bottom of the valley has been reached. The derivative
stabilization for radial flow is located on the top of the second hump, at 5 hours.

A double porosity model with a sealing fault can also be envisaged. The sequence of
regimes is the same as in Figure 5.41, the test is too short to completely describe the
double porosity transition valley. The permeability is estimated by locating the
derivative stabilization on the bottom of the first valley at 0.5 hours. Since the
storativity ratio @ is not defined from the truncated transition valley, the hydraulic
diffusivity during the fissure flow is not known, and therefore the fault distance cannot
be evaluated accurately.

5.8 EFFECT OF BOUNDARIES IN DOUBLE PERMEABILITY
RESERVOIRS

With double permeability responses, two layers, each with different flow capacity are
producing, first independently and later, when the reservoir cross-flow is established, as
a single equivalent homogeneous layer (see Sections 4.2.2). If boundaries are reached
before the final homogeneous behavior, they show first in the high diffusivity layer.

In the following sections, three examples of boundary effects in double permeability
reservoir are presented. One sealing fault, two parallel sealing faults and a closed
system are considered when the boundaries are seen during the two layer no cross flow
regime. The sealing fault solutions are generated with a modified image well method for
multi-layers reservoirs, as described by Larsen (1989).
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Figure 5.46. Pressure and derivative responses for a well with wellbore storage in a double
permeability reservoir with a sealing fault. The dotted curves describe the sealing fault response
in the equivalent homogencous reservoir. Log-log scales. pyy versus £,,/C).
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5.8.1 One sealing fault in double permeability reservoir

Figure 5.46 presents the effect of a sealing fault in a double permeability reservoir. The
sealing fault is at distance L,=500 from the well. the interlayer cross flow parameter is
low A = 10" and the reservoir cross flow is not established when the fault is seen. The
diffusivity of Layer 1 (w =0.15, x=0.7) is higher than in layer 2, the fault is first reached
in this laver 1 and the derivative response starts to deviate shortly after f,/C,FIOZ‘ As
long as the second laver has not reached the fault influence, the derivative tends to show
an intermediate plateau between 0.5 and 1, describing the transition period where one
layer is in a hemi-infinite regime and the other still has an infinite behavior. The platcau
at 1 is reached when the two layers are influenced by the fault. On the equivalent
homogeneous response described by the dotted curve, the start of the fault influence is
seen almost ten times later. at 1, €}, = 107,

The sealing fault example of Figure 5.46 shows that the analysis of a boundary effect in
a layered reservoir is difficult:

o Onalog-log scale, if the layvered nature of the system is ignored and the start of the
fault influence is analyzed with the homogeneous solution, the resulting calculated
distance is under-estimated (one third of the true fault distance on the example in Figure
5.46).

e Ifalayered reservoir model is used. the time of start of the fault influence, and the
shape of the transition between the derivative plateaus at 0.5 and 1, are dependent upon
the refinement used for the layers description (Larsen, 1989). Increasing the number of
layers delays the onset of boundary effect in the high permeability layer.

e On semi-log scales. the point of intersection between the carly and late semi-log
straight lines is a function not only of the fault distance, but also of the layered reservoir
behavior. If the first semi-log straight line for the infinite reservoir response is drawn
during the commingled regime and the second line, after the sealing fault has been
reached, during the equivalent homogeneous total system response, the distance
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between the well and the sealing fault can be over-estimated when the Equation 1.33 for
a homogeneous reservoir is used. During the commingled regime, the apparent semi-log
straight line is affected by the layer pseudo-skin factor of Equation 4.74 (Section 4.2.6),
and the time of intercept A, between the two straight lines is delayed compared to the
homogeneous reservoir response.

5.8.2 Two parallel sealing faults in double permeability reservoir

Figure 5.47 presents the effect of parallel sealing faults in the same double permeability
reservoir as that presented in the previous example Figure 5.46 (=0.15, x¥=0.7 and
A=107"%). The well is centered in the channel with L,;=L,,=1000. The equivalent
homogeneous channel response is described by the dotted curve.

At late time, the double permeability curve apparently follows a half unit slope straight-
line characteristic of linear flow, but it is earlier than the equivalent homogeneous
response. When channel sand reservoirs are made of several layers of different flow
capacity, the width can be under-estimated if a homogeneous model is used for analysis
(Larsen, 1989).

5.8.3 Closed circle double permeability reservoir

Figure 5.48 presents a double permeability drawdown response for a well at the center
of a closed circle. The solution for circular layered reservoir without cross flow was
presented in 1978 by Tariq and Ramey, (1978). In 1986, Joseph et al. discussed the two
layer double permeability closed circle solution.
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Figure 5.47. Pressure and derivative responses for a well with wellbore storage in a double
permeability reservoir with two parallel sealing faults. The dotted curves describe to the channel
response of the equivalent homogeneous reservoir. Log-log scales, p, versus £,/Cp.
Cp =100, $,=8,= 0, L1y = Ly = 1000, 0= 0.15, £= 0.7, A=10".
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Figure 5.48. Pressure and derivative responses for a well with wellbore storage in a closed circle
double permeability reservoir. The dotted curves correspond to the closed equivalent
homogencous reservoir. Log-log scales. py, versus ¢,,/C),.

Cr=100.$,=S-= 0.1 =35000, ©=0.002. x=0.7. A= 10"

As on the previous example, the interlayer cross flow parameter is 2=10" and the
double permeability response is still in the "two layers no-cross flow" regime when the
closed boundary is reached at r,,=5000. After the early time wellbore storage hump, the
derivative tends to stabilize on 0.5 as for an infinite commingled system but, after
l,/C,Floz, the closed boundary starts to be seen. A second unit slope straight line is
observed, followed also by a hump and a new derivative plateau. Finally, a third unit
slope line defines the pseudo steady state regime later. The dotted curve in Figure 5.48
describes the response of the equivalent homogencous reservoir with the same
boundary.

The shape of the second derivative hump is similar to a storage response, such as a
wellbore storage displaced towards late time, or a pseudo steady state regime displaced
towards early time. When the closed circular boundary is reached in layer 1 (0=0.002,
x=0.7), this high diffusivity layer starts to be depleted while layer 2 is still in the infinite
acting regime. The response then shows a storage behavior at intermediate time, but this
storage corresponds to the layer 1 pore volume, a fraction of the total system volume
defined by the storativity ratio w. At the end of the layer | storage effect, the radial flow
in layer 2 is seen (Joseph et al., 1986: Gao et al., 1994), and the derivative stabilizes at
0.5/(1 - x), before the third unit slope straight line for the pseudo steady state regime.
The location of the last unit slope straight line is a function of the reservoir storage
gchA (A/r“2 in dimensionless terms. see Section 5.4.2), that of the intermediate line to
the layer 1 storage (w A/r,2 in dimensionless terms).

For shut in periods, build-up curves show the same pattern as in Figure 5.48 until the
start of the pseudo-steady state regime. As discussed in Section 5.4.7, drawdown and
build-up responses diverge at late time. the build-up pressure stabilizes at the average
pressure, and the derivative curve drops towards zero. The prediction of the average
reservoir pressure from build-up analysis is a difficult question, in particular when non-
communicating layers have different skin factors (Chen et al., 1993). If the recorded
shut-in data curve is not complete and stops during the intermediate unit slope straight
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line, the build-up response can suggest an inexplicable pseudo-steady state behavior,
when it is merely a reservoir storage effect (Joseph et al., 1986).

In Figure 5.48, the first and the last unit slope straight lines, corresponding respectively
to wellbore storage and to pseudo-steady state, are separated by more than five log-
cycles on the time scale. In such a reservoir configuration, a complete drawdown or
build-up response requires unpractical long tests, and the anatysis therefore can only be
made on part of the total response.

A similar behavior has been discussed by Anisur Rahman and Ambastha (1997) for
reservoirs compartmentalized in both vertical. and horizontal directions. In their
example, the well penetrates only one closed body but, at some distance, a
communication is established with another closed compartment. Even though the flow
geometry is different from that of the double permeability example of Figure 5.48, the
same two pseudo-steady state straight lines can be seen on the response (see Section
5.10.1).

Layered reservoirs can also combine infinite and closed intervals. When the
permeability of the closed body is large enough, the derivative response can show a
hump as in Figure 5.48 but, afterwards, it stabilizes at 0.5/(1 - x) when the radial flow
regime in the infinite layer dominates. This configuration, producing a unit slope
straight line at intermediate time, is a limiting case of the radial composite double
permeability behavior illustrated in Figure 4.67 of Section 4.4.3. More generally, a unit
slope straight line on drawdown and build-up responses is characteristic of commingled
layered bounded reservoirs or radial composite systems (see Section 4.3.2 and
discussion Section 5.9.2).

5.8.4 Field example
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Figure 5.49. Build-up test in a multi layer reservoir. Log-log scales.
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The build-up test of Figure 5.49 has been recorded in a well intercepting several layers.
Some layers are small lenses of limited extension, while others show an infinite acting
behavior. The resulting derivative response is very characteristic of a bounded layered
system.

59 EFFECT OF BOUNDARIES IN COMPOSITE RESERVOIRS

In composite reservoirs with boundaries. two tvpes of transitions are also superposed on
the response. One describes the heterogeneous reservoir behavior (radial or linear
composite, see Section 4.3), and the other the change from the radial to a limited flow
geometry. Multiple combinations are possible, depending upon the distance of the
composite reservoir interfaces, and that of the boundaries.

In the following sections, a composite channel configuration is considered for
illustration of boundary effects in reservoir with changing properties. The two
geometries considered by Bourgeois et al. (1996) are envisaged. The interfaces are
parallel to the riverbed when the sediment properties change in the vicinity of the
shorelines, producing a change of mobility from the center to the edge of the channel.
With perpendicular interfaces, the properties change along the channel extension.

5.9.1 Linear composite channel

In Figures 5.50 and 5.51. the well is centered in a channel defined with L,;,=L,,=1000
as in Figures 5.47. The mobility is not constant, the interfaces of the composite channel
are parallel to the boundaries in Figure 5.50 and perpendicular in Figure 5.51. The
mobility &/u of the outer region is either reduced (M=5) or increased (M=0.2) by a
factor of 5, the curve M=1 describes the homogeneous channel. The mobility ratio M is
defined in Equation 4.78. and the distance of the two interfaces d,;, and d,,, are defined
by Equation 1.34.

In Figure 5.50, the mobility changes near the edges of the channel. The distance to the
interfaces is d,,=d»,=500: a central channel region of width 1000 is surrounded by two
border channels of width 500. The three curves exhibit a half unit slope straight line at
late time, but they are not superposed. When the mobility is reduced (M=5), the
response is equivalent to a channel of smaller width. Conversely, when the mobility is
increased (A=0.2), the derivative drops below the 0.5 stabilization and finally reaches a
half unit slope straight line corresponding to a /arger channel.

In the specialized plot of Ap versus Jar, Bourgeois et al. (1996) found that, in the

Equation 5.5 for the slope of the channel flow straight-line m.y,, the permeability must
be weighted with the widths of each zone.
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Figure 5.50. Pressure and derivative responses for a well with wellbore storage in a composite
channel. The interfaces are parallel to the boundaries. Log-log scales, py, versus #,/Cp.
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Figure 5.51. Pressure and derivative responses for a well with wellbore storage in a composite
channel. The interfaces are perpendicular to the boundaries. Log-log scales, pp, versus 1,/Cy.
Cp=100,S=0, Lip=Lyp= 1000, d,, = dy;= 2000, M, = M, =0.2, 1 and 5.

When the width of the border channels become large compared to that of a center
channel region of high mobility, the behavior is equivalent to a linear composite model
(see Section 4.3.3) before the sealing boundaries are reached. The derivative follows
two stabilizations before the late time half unit slope straight line and, at transition time,
it can show an increasing trend with a slope smaller than 1/2 (Bourgeois et al., 1996).

In Figure 5.51, the mobility changes along the channel length in both directions. The
distance of the interfaces are d,=d,;=2000. The responses first show the typical
channel behavior corresponding to the well region and, when the two interfaces are
reached during the linear flow regime, the derivative curves deviate to follow a second
half unit slope straight line. As in the previous example of Figure 5.50, when the
mobility is reduced (M=5), the response becomes equivalent to a channel of smaller
width and the second linear flow straight line is displaced upwards. This configuration
can be compared to curve D of Figure 5.20, when the channel is limited in one direction
(see Section 5.4.5), or to the double permeability channel response of Figure 5.47.
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When the mobility is increased (A/=0.2), the derivative flattens and then reaches a half
unit slope straight line corresponding to a larger channel.

When the contrast of mobility is large, the composite channel response tends towards
one of the two limiting cases of composite reservoirs, namely the closed channel and the
channe! with constant pressure boundaries. In Figure 5.52, the mobility changes by a
factor of 50 along the channel length (M=0.02 and M=50). When the mobility is
reduced (M=50), the transition between the two linear flow straight lines follows a unit
slope straight line. As shown by the dotted derivative curve, this unit slope straight line
corresponds to a pseudo steady state regime in a channel closed on the two interfaces at
dy;, and ds),. After the initial derivative stabilization, the response can be described with
three straight-line segments, of slopes respectively 1/2, 1 and 1/2. Conversely, with a
large increase of mobility (A=0.02), the behavior tends towards that of constant
pressure boundaries during the transition. In the corresponding dotted derivative curve,
the interfaces are changed into constant pressure boundaries. With build-up data, the
effect of the time superposition can introduce a distortion on the response. Build-up
analysis in composite reservoirs is discussed in the next section with the curve M=50 of
Figure 5.52.

If a semi-permeable boundary closes the channel, the derivative response can exhibit a
hump above the half unit slope straight line. When the reservoir properties are not
changed on both sides of the fault. the same linear flow straight line describes the
response before and after the fault influence. If the transmissibility ratio a is small and
the fault appears to be sealing (o =0.001 or less), the hump can describe the response of
a channel closed at one end (such as curve D of Figure 5.20), before returning to the
half unit slope straight line.
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Figure 5.52. Derivative drawdown responses for a well with wellbore storage in composite
channel. The interfaces are perpendicular to the boundaries. On the dotted curves. the interfaces
are changed into sealing and constant pressure boundaries. Log-log scales, p;, versus £,,/Cy,.

Cp=100,5=0, Lip = Lyp= 500, d\;p = dy= 1500, M, = M, =0.02, 1 and 50.
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In the examples Figures 5.50 to 5.52, a simple symmetric geometry is assumed. With
practical field configurations, the geometry is in general complex and, even when the
match is made by computer, the results of analysis are frequently not unique. Composite
channel responses are further discussed in Section 5.10.1.

5.9.2 Apparent boundary effects in composite reservoirs

Composite reservoirs with a reduction of mobility some distance away from the well
can be interpreted by mistake with sealing boundary models. A no flow approximation
may be acceptable to describe the response during the duration of a test but, when the
sealing boundary model is used to predict longer well behavior, the result could lead to
a pessimistic forecast.

For example, in the discussion of the radial composite model, it is shown in Section
4.3.2, Figure 4.57, that when the mobility of the outer region is greatly reduced, a build-
up period can exhibit the characteristic response of a depleted closed reservoir under
certain circumstances. After radial flow, the derivative starts falling similar to the
example of Figure 5.17. Later, the infinite outer region re-compresses the depleted
region, and the derivative increases to finally reach a stabilization corresponding to the
reduced external mobility.

Chen et al. (1996) report similar behavior in gas reservoirs with edge-water drive. They
state that, because of the large mobility contrast between gas and water, the water
behaves first like an impermeable medium. Drawdown responses exhibit a unit slope
straight line after the initial radial flow regime. During shut-in periods, the pressure
derivative, such as in the radial composite example of Figure 4.57,demonstrates the
sequence of stabilization, valley and final unit slope straight line.

The apparent closed reservoir behavior is illustrated as follows with a build-up example
in a limited composite reservoir. In Figure 5.53, a build-up response of the example
M=50 of Figure 5.52 is compared to the original drawdown response (presented with
dotted curves). The well is closed at 1,,/C, = 650, before the start of the two parallel
boundaries influence. The derivative response shows several oscillations: after the radial
flow stabilization, the build-up derivative follows a first valley, similar to curve C of
Figure 5.9 and the 1/2 slope channel response is delayed. Later, the two composite
interfaces are reached and the derivative shows a second decreasing trend, until the
influence of the outer channel regions is seen and the derivative starts increasing again,
to ultimately reach a 1/2 slope straight line. With such response, if the build-up data
stops at £,y/Cp, =10" when the derivative is dropping, a log-log analysis with a depleted
closed reservoir model would be possible. If the model can be checked over a longer
time, such as in a test simulation plot with a long production history prior to shut-in, the
hypothesis of a closed reservoir model will be inconsistent with the data (see Section
10.2.3).
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5.10  OTHER BOUNDARY CONFIGURATIONS

5.10.1 Channel reservoirs

In the previous sections, several extensions of the basic two parallel sealing fault model
of Section 5.2 have been proposed for the analysis of channel reservoir responses. The
behavior of a closed channel has been discussed in Section 5.4.5, double porosity,
double permeability and linear composite channel models have been presented in
Sections 5.7.2. 5.8.2 and 3.9. Yet. the geological description of fluvial reservoirs can be
more complex than the simple assumptions used with these models. In the following
sections, specific features encountered channel reservoirs are discussed in relation to
transient test interpretation.

The constant thickness hypothesis is not always valid for fluvial reservoir. Frequently,
the channel section is not rectangular but the shape of the sand body is parabolic
(Stewart, 1997). The resulting response tends towards the linear composite channel
behavior described in Figure 5.50. When the well is located in the maximum thickness
region, the response corresponds to a reduction of mobility Af>1. Conversely, when the
well is close to one of the boundary. the thickness increases before the start of the linear
flow regime and the channel response can show a drop of derivative before the linear
flow regime, as in the curve AM<1 of Figure 5.50.

Larsen (1993, 1996 b) investigated intersecting channel reservoirs. When two
independent channels intersect, the response describes first the channel corresponding to
the well location and, when the intersection is reached, a larger area contributes to the
flow. By using an equivalent linear channel model, the response can be described as a
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stepwise increase of the channel section. The derivative curve shows two half unit slope
straight lines, similar to the curve M<I of the linear composite channel example of
Figure 5.51.

When more than two independent channels intersect, the response shows an increase of
flow area each time a new channel is reached. When a large number of channels make a
connected network, the response tends to a pseudo radial flow regime and the derivative
ultimately stabilizes. This flow configuration becomes similar to the fissure regime of a
double porosity reservoir. Assuming the infinite channel network can be described with
a regular square grid network, the pseudo radial flow regime in the channel network can
be approximated by the response of a reservoir with two intersecting sealing faults. The
author concludes that the angle is determined by the ratio of sand volume to bulk
volume of the pattern involved.

With self-intersecting linear reservoirs, the infinite channel makes a loop. The well can
be located in one of the two infinite segments, or in the loop. The loop influence can be
described as an increase of the channel section, some distance away from the well and
on a limited extension along an equivalent rectilinear channel. The derivative curve
deviates temporarily below the half unit slope straight line corresponding to linear flow.
The amplitude and the duration of this valley shaped transition is a function of the
distance from the well to the channel intersection point, and to the length of the loop. At
late time, the derivative returns on the early time half unit slope straight line and the
loop has no effect any more on the derivative response.

The case of stacked channels has been discussed by Anisur Rahman and Ambastha
(1997). They considered two intersecting closed channels when the well is located in
the smallest channel sand body. A skin factor is used to define the communication at the
interface between the two channels. When the flow restriction at the interface is large, a
response similar to the double permeability closed reservoir example of Figure 5.48 is
obtained. A first pseudo steady state regime is seen for the small volume
communicating with the well and, later, a second pseudo steady state regime describes
the depletion of the complete system.

5.10.2 Complex boundary systems

The identification of complex boundary systems has been the subject of many recent
publications. Two examples of new approaches are briefly discussed in the following
section. One aims at automatic imaging of the boundary system, the other discuss the
use and limitations of numerical simulations for boundary interpretation.

Slevinsky (1997) proposes an original method for the identification of an arbitrary
reservoir boundary system. The increase of radius of investigation in the reservoir is
viewed as a transient wave phenomenon. In the case of a single sealing fault for
example, after the circular front has reached the fault, it is reflected back towards the
well (as shown in Figure 1.22). Since the radius of investigation is a function of the
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square root of the elapsed time, the reflected wave reaches the well four times later than
when the first contact with the boundary occurred (see Section 10.3.3). With this
description of the wave expansion, Slevinsky defines an "angle of view" of the
boundary, which asymptotically approaches 180 degrees as radius expands.

By analyzing the "angle of view", the distance and shape of any system of boundaries
can be determined. A first match of the early time test data is used to define the infinite
acting reservoir model. A "boundary ratio type curve", built by dividing the actual test
response by the non-boundary predicted response. defines the variation of "angle of
view" as a function of time. This is used to build a diagnostic image, similar to a sonar
display, of the boundary svstem. Indeed. the results of analysis are dependent upon the
accuracy of the initial match.

For complex geological shapes, Rahon et al. {1997) proposed to use an optimization
algorithm with a classical numerical simulation to match pressure data. Using a
synthetic channe! example with a parabolic section, they demonstrate that the algorithm
converges towards the correct section shape. The sensitivity of the method to the
assumed parameters used for numerical simulation, and to noise of real data is not
documented.

With a numerical approach. a high degree of refinement in the results is reached to the
detriment of the uniqueness of the inverse problem solution. The introduction of
geostatic techniques can reduce the range of uncertainty. Schildberg et al. (1997)
propose to integrate the numerical simulation of well test data as a constraint for
geostatic modeling. In their study of a heterogeneous reservoir example, they use
analytical simulations for a quick test of different hypothesis, and numerical simulations
associated to an optimization algorithm. They conclude that, even though the results are
not unique, the approach provides new information in terms of size of the reservoir
bodies.

5.10.3 Effect of a gas cap or bottom water drive

In this section, a different type of boundary is considered. When the upper or lower
limit of the reservoir is not sealing but at a constant pressure, such as in the case of a gas
cap or a strong lower water drive, the effect of boundary is a function of the vertical
permeability, not the radial permeability. The effect of a constant pressure upper or
lower limit has been presented in Chapter 3 for wells in partial penetration and
horizontal wells. Results are summarized in the following section for completeness of

the boundary discussion.

When the well intercepts a gas cap or an aquifer, limited-entry completion or horizontal
well techniques are used to prevent gas or water production. The well is opened in the
oil interval away from the supporting gas or water zone and, as long as coning is not
established, the high mobility of the adjacent zone maintains a fairly constant pressure
at the interface with the oil-bearing interval. The resulting pressure behavior then
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becomes similar to a constant pressure boundary in the horizontal plane (see Section
5.5): the pressure stabilizes and the derivative drops.

A solution for limited entry wells influenced by a gas cap has been presented by
Streltsova (1981) and Kuchuk derived in 1990 a solution for horizontal wells with gas a
cap or aquifer. Abbaszadeh and Hegeman (1988) presented a general study of pressure
and derivative responses for different well configurations under the influence of a
constant pressure support, comparing the responses to the usual no-flow upper and
lower limits.

In the case of a limited entry well, after a first radial flow corresponding to the opened
interval h,, a spherical flow regime is established until the upper and lower limits are
reached (see Section 3.4.7, Figure 3.21). When the two limits are impermeable, a
second radial flow develops in the complete reservoir thickness but, if one limit is at
constant pressure, the pressure response stabilizes and the derivative drops towards zero
at the end of the spherical flow regime.

For horizontal wells, the first reservoir flow regime is a vertical radial flow, followed by
a linear flow when the upper and lower limits are sealing. If one of the two limits is at
constant pressure, as soon as this boundary is reached the pressure becomes constant
and the derivative drops (see Section 3.6.11, Figure 3.43). No linear flow regime is
seen, and no horizontal radial flow.

5.11 CONCLUSION

The effect of reservoir boundaries is in general easy to identify in homogeneous
systems. The different types of boundary configurations are characterized by a specific
pressure behavior, well evidenced with the derivative presentation. When several
boundaries are seen, the effect of the different limits is synchronized with the different
distances.

Figure 5.55 illustrates, with the example of closed reservoir depicted in Figure 5.54,
how it is possible to predict a derivative response from the geometry of the flow barrier
and the well location. In this example, the well is in the corner of an elongated trapezoid
reservoir, close to one of the system boundaries.

Figure 5.54. Well and reservoir geometry of Figure 5.55 example.
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On this drawdown example. six characteristic flow regimes can be identified:

. Wellbore storage with a wnir slope straight line at early time.

2. Infinite acting radial flow with a derivative stabilization at 0.5.

3. Hemi-radial flow when the first sealing boundary is reached. The derivative
stabilizes at 1.

4. After the second fault is reached. the derivative describes the wedge response with
a stabilization at 180/0.

5. The third boundary. parallel to the first. produces a semi-linear flow regime with a
derivative half unit slope straight line.

6. Finally, the reservoir is closed with a fourth boundary, and the derivative follows
the unit slope straight-line characteristic of the late time pseudo steady sate regime.

In heterogeneous systems, the characteristic derivative shapes are additive and the
influence of boundaries is simply superimposed on the derivative heterogeneous
behaviors. The effect of boundaries can appear on the early time response, even when
the boundaries are far from the producing well. In some cases, boundary effects are
identified before the heterogeneous reservoir response. With some practice, it is
possible to predict derivative responses for heterogeneous bounded systems, or
conversely to define the sequence of flow regimes in order to explain unusual well
pressure responses.

For shut-in periods in bounded systems, the time superposition used for build-up
analysis can introduce distortions on the derivative curve. Several examples have been
presented where sealing boundaries produce a decrease of the derivative response,
before a final upwards trend similar to that of the drawdown response. Heterogeneous
reservoir with boundaries can show an oscillating derivative shape.

When several solutions are found to be applicable to match build-up data, consistency
of the models during the drawdown periods, and examination of the test simulation plot,
are used for reducing the number of choices. An accurate measurement of the initial
pressure before the test can be the key point for the selection the appropriate boundary
configuration (see discussion in Section 10.2.3).
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The question of extrapolated pressure p* from straight line analysis has been the subject
of much attention in the specialized literature. In partially bounded systems, p* gives an
estimate of the initial reservoir pressure p,, provided the correct straight line is used

(versus log(Af), \/E or M). In practice, the test period frequently stops in transition
before the proper straight line, and p* is difficult to estimate accurately. When the
match is made using a build-up or multiple rate type-curve generated by a computer, the
initial pressure p; is implicitly defined by the match. For example in the case of a build-
up type-curve, once the pressure match [PM] is defined:

p, = p(At = 0)+ (5.34)

pplt,p)

PM
This method is more general and more accurate than straight-line extrapolation. In the
case of a closed system, the average pressure p is also estimated directly from the
computer model.
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CHAPTER 6

MULTIPLE WELL TESTING

With multiple well tests, the pressure response is measured in an observation well some
distance away from the active well, which may be a producing or an injection well. The
purpose is to establish communication, and to determine average reservoir properties in
the area separating the wells. The analysis of the observation well response provides, in
addition to the permeability thickness product £k, an estimate of the apparent storage
capacity (¢ ¢, h), which cannot be accessed from tests of active wells. When several
observation wells are located in different directions, any permeability anisotropy can
also be evaluated.

For interference tests, the response of the observation well corresponds either to a
production period, or to a shut-in of the active well. When the interference has reached
the observation well, the change of pressure can be analyzed on log-log scales and on
specialized plots. In the case of a homogeneous reservoir, the log-log pressure type-
curve of Figure 6.1, presented by Theis in 1935, is used. This type-curve, called the
exponential integral solution, expresses the dimensionless pressure p, versus the
dimensionless time-distance group tp/rp> on a unique response curve. In the case of
heterogeneous systems, the log-log analysis of the response provides a diagnosis of the
reservoir behavior, and defines the choice of the appropriate interpretation model.

In 1966, Johnson et al. proposed the pulse testing method as an alternative multi-well
testing procedure. A series of relatively short flow and shut-in periods is applied at the
active well, and the resulting pressure oscillations in the observation well are analyzed
in terms of amplitude and time lag. The measured parameters are compared to
theoretical simulated responses, and the permeability and storativity are estimated.

The amplitudes of interference or pulse tests responses are small, frequently less than 10
psi and sometimes less than 1 psi, but the test duration can be as long as 2 or 3 months.
Interference tests require great skill, particularly in producing fields where the general
pressure trend is decreasing and operational requirements may take precedence over
reservoir studies. Even though they are more difficult to interpret, pulse tests are often
preferred because the oscillating response is easier to identify in a noisy reservoir
environment, and it is less affected by a possible drift of the pressure gauge.

In this chapter, the interpretation of interference tests is presented first. After a review
of the homogeneous reservoir behavior, the following well and reservoir configurations
are considered:
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¢ Influence of wellbore storage and skin at the two wells,
e Effects of boundaries and reservoir directional anisotropy,
¢ Interference tests in composite. double porosity and double permeability systems.

The interpretation and optimization of pulse tests have been explained in detail in the
petroleum engineering literature (Earlougher, 1977; Bourdarot, 1998), only the recent
developments in the pulse testing methods are presented in this Chapter.

6.1 INTERFERENCE TESTS IN RESERVOIRS WITH HOMOGENEOUS
BEHAVIOR

6.1.1 Pressure and derivative line-source solution

The exponential integral solution of Figure 6.1 is also called the /ine source response.
The effect of wellbore storage and skin are considered as negligible at the two wells: the
wellbore of the active well has no volume and the well is described as a simple line
intersecting the formation, the observation well has no influence on the reservoir
pressure.

In dimensionless terms, the exponential integral of Equation 1.18 is expressed:

| -}
Pp 5 [ 4, j

Pps tp, and rp are defined respectively in Equations 2.3, 2.4 and 1.21. The time group
t,)/r,)' is:

o O.OOO264/(N

(6.2)
o gucr’
The interference pressure drop of Equation 1.18 is expressed versus the elapsed time by
combining the dimensionless Equations 6.1, 2.3 and 6.2.

The exponential integral pressure type-curve of Theis (1935) is now associated to the
pressure derivative for practical interference test analysis, as shown in Figure 6.1. (In
1980-a, Tiab and Kumar proposed an interference derivative type curve using the rate of
pressure change versus time, and not the logarithm derivative. Their type curve is
equivalent to the curve presented in Figure 6.1 by multiplying the time derivative by
Af). The type-curve of Figure 6.1 exhibits two important characteristics:
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I. The two curves infersect. At the start of the response, the amplitude of the
derivative curve is higher than the pressure change but, later, the two curves intersect
and the derivative stabilizes on the 0.5 line while the pressure continues to increase.
Provided the interference test data also demonstrates a cross-over of pressure and
derivative response curves, the match point is uniquely defined. In dimensionless terms,
the intersection point is defined at tp/r*=0.57 and pp=p'r=0.32.

2. The start of the semi-log straight line is /ate. The semi-log radial flow behavior,
characterized by the derivative stabilization, starts at approximately t,)/r,)ZZS (Ramey,
1975 b). When the distance » between the two wells is in the order of a few hundred
feet, the corresponding time Af to reach the radial flow regime can be as long as several
weeks and many interference tests are stopped before data suitable for semi-log analysis
is obtained. Only the log-log matching technique can be used to interpret such
interference tests.

With interference test data, the log-log match is adjusted on a unique theoretical
response and not a family of curves as for producing wells. The interpretation would
appear to be very simple and to allow the reservoir parameters to be defined without
difficulty but, in the next sections, it is shown that practical type-curve analysis of
interference test is frequently difficult.

6.1.2 Typical interference responses

Figure 6.2 compares on a linear scale the response of a producing well to the response
of an observation well some distance away. The test sequence is a 200 hours drawdown
followed by a 300 hours build-up period. The two wells have the same wellbore storage
and skin damage. The reservoir is homogeneous and infinite.
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Figure 6.2. Response of a producing and an observation well. Linear scale. p versus f. On the
sccond graph. the observation well pressure is presented on enlarged scale at time of shut-in.

At the start of the flow period. the pressure drop is instantaneous at the active well but,
at the observation well, the drawdown response is only established very slowly. At the
end of the 200 hrs of production, the pressure change is 1000 psi at the producer and
less than 100 psi at the observation well. At shut-in time, the pressure at the active well
increases immediately but not at the observation well. As shown on the expanded scale
of Figure 6.2, the pressure continues to fall for several hours. until the influence of the
shut-in has traveled the distance separating the two wells. Then it starts to turn upwards.

Figure 6.3 is the log-log pressure and derivative plot of the two build-up responses. For
each well, the pressure difference Ap=p, - p,, is calculated with respect to the flowing
pressure p,, defined at the time of shut-in, At = 200hr. At the observation well, the
pressure is still decreasing at the shut-in time (see Figure 6.2) and the pressure change
Ap is negative. This first part of the response cannot be plotted on the log-log scales.

Figure 6.3 illustrates that the analvsis of interference tests is more difficult than for
producing wells:
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Figure 6.3. Build-up response of the producing and observation wells.
Log-log scales, Ap versus At.
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e at the observation well, the build-up response starts to be identified after 5 or 10
hours, the intersection of the pressure and derivative curves is seen at Ar =33 hours
when Ap =25 psi, and the 300 hour long build-up period covers less than two log-cycles
on the log-log plot. The semi-log approximation is reached only at the end of the 300
hours shut-in.

e In the producer, the build-up response curve extends over more than four log-
cycles, and the semi-log approximation is reached after 5 hours of shut-in.

A 10 hour build-up response is interpretable for the producing well but, in the
observation well, a period 10 times longer is needed in order to define the match
uniquely. If the reservoir is affected by a general pressure trend or if the pressure gauge
is drifting, the error of pressure and derivative log-log curves can frequently be
neglected during the first 10 hours of shut-in but it becomes significant at later times,
when the interference response is seen.

For the same reason, when the test period is long enough to reach the semi-log
approximation, the straight line analysis is seldom very accurate. At large elapsed time
At, the interference pressure is barely changing and the response must be strongly
compressed on the logarithm scale in order to display the straight line of slope m (see
discussion Figure 2.7 in Section 2.2.2). The noise in the pressure signal can become
dominant compared to the transient reservoir response.

As an alternative, when the rate history of the producer is a simple drawdown and build-
up sequence such as in the example of Figure 6.2, Ramey (1982) suggests matching the
complete observation well response on the drawdown and build-up interference type-
curve,

6.1.3 Influence of wellbore storage and skin effects at both wells

During the wellbore storage dominated regime, the sand-face flow rate at the active well
is not fully established, and the reservoir pressure drop is smaller than for a well with no
storage (Section 1.2.2). When the influence of the active well reaches the observation
well, the early time pressure response may not follow the exponential integral curve of
Figure 6.1.

As discussed in Section 3.1.3, the duration of the wellbore storage regime is a function
of both the wellbore storage coefficient and the skin. For damaged wells, the effect of
wellbore storage lasts longer. In interference responses, the influence of wellbore
storage and skin at the active well was first investigated by Jargon in 1975. Later, Ogbe
and Brigham (1984 b) considered the effect of wellbore storage and skin at the
observation well. They concluded that the two well conditions have a similar influence
on interference response and, when welibore storage and skin are present in both wells,
the early time deviation from the exponential integral solution can be doubled.
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In Figure 6.4, three interference pressure curves, generated with wellbore storage and
skin at the active well, are compared to the original Theis solution of Figure 6.1 (shown
by a dotted curve). At early time, the three responses are delayed until the influence of
the wellbore effect becomes negligible and the constant sand face rate condition is
established. The interference responses then follow the line-source type-curve. The
responses A and B are generated with »;, =1000. The active well is defined with
Cp=3000, S =0 for curve A, and Cp, =10%, S =10 for curve B. For larger inter-well
distances ry, the difference with the Theis solution would quickly become negligible.
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Conversely, when the distance is very small such as on curve C (rp =300) and, if the
producer is strongly damaged (C;, =3000, S =30), the interference response shows a
large deviation from the exponential integral curve. The same responses are presented
with the derivative of pressure in Figure 6.5: with example C, the influence of wellbore
storage starts to produce a sump above the 0.5 stabilization line.

In Figure 6.6, the two examples generated for r, =1000 are presented with the pressure
and derivative responses (derivative = thick curve, pressure = thin curve).

1. Example A (Cp=3000 and S =0), the influence of wellbore storage is finished at
tD/rDZ:O.57, when the line source pressure and derivative curves intersect. This
characteristic intersection point defines the match, independently of the deviation of the
response earlier. In such a case, the line-source curve can be used to analyze the
interference response accurately.

2. Example B (C,=10000 and S=10), the wellbore effect is still acting at tplrp’=0.57
and the intersection between pressure and derivative is delayed. The match is not
possible with the exponential integral solution, and an interference type-curve with
wellbore storage and skin effect has to be used. The need for an interference model with
wellbore storage is clear when the shapes of the two derivative curves are compared at
early time: on curve B of Figure 6.5, the transition from the initial response to the 0.5
stabilization is short and a good match can not be obtained with the line source type-
curve.

In 1972, Gringarten and Witherspoon envisaged the interference response of a vertically
fractured active well, and Jargon (1976) considered in his study the effect of a negative
skin at the producer, using a radial composite model. They showed that, with a
stimulated well condition, the response reaches the observation well earlier than for a
line source active well, and tends to produce a deviation above the exponential integral
curve at early time. This conclusion is consistent with the discussion of interference
tests in radial composite reservoirs presented in Section 6.3. The degree of deviation is
related to the degree of stimulation of the well, but it decreases for a large distance r.
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Figure 6.6. Influence of wellbore storage and skin effects. Log-log scale, pressure and derivative
responses of Figure 6.4 examples A and B versus £p/rp’.
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In 1989, Meehan and Horne investigated the effect of the well orientation in
interference tests between two wells intercepting a finite conductivity fracture. They
concluded that the deviation above the exponential integral curve is larger when the
path between the wells is parallel to the fracture orientation. Malekzadeh and Tiab
considered interference tests between horizontal wells (1991). They reached a similar
conclusion.

When the wellbore storage is also considered on the stimulated active well, the two well
conditions have an opposite influence on the response. The result seems to be in most
cases a delayed response (Jargon. 1976), similar to the examples of Figures 6.4 to 6.6.

Several correlating groups have been proposed to define the effect of wellbore storage

. . . 2
and skin of one well. Jargon suggested to group the curves in terms of C,/r;,” and Ogbe

.
28 )C I

and Brigham (1984 b) preferred (C/)e . The different groups have been

established from interference response data, they have not been theoretically
demonstrated and no group has been proposed when both wells are affected by storage
effect.

In conclusion, wellbore conditions can be neglected in most interference tests. Wellbore
storage has to be considered only when the distance between the wells is relatively
small and the wellbore effect large. The response then is delayed at early time compared
to the original exponential integral response and the match becomes uncertain in
particular if the radial flow regime is not reached at the end of the test period. When the
wellbore storage effect is ignored and the line-source solution is used, the time match
can be significantly underestimated and the resulting (¢ ¢, #) product is then too large.

6.1.4 Semi-log analysis of interference responses

When t,)/r,f:S, the infinite acting radial flow regime is reached (Ramey, 1975 b) and
the semi-log approximation is expressed, from Equation 1.19, as:

162.6 4B k
P =Py = ——TH logAr + log —— - ~32275 (6.3)
kh gucr”

The slope of the semi-log straight line provides the &4 product and the intercept of the
line with Ar =1hr is used to estimate the storativity product ¢ ¢, A.
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Figure 6.7. Interference in a reservoir with a sealing fault.
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6.2 FACTORS COMPLICATING INTERFERENCE TESTS IN
RESERVOIRS WITH HOMOGENEOUS BEHAVIOR

6.2.1 Influence of reservoir boundaries

As long as there is no flow barrier between the producing and the observation wells, the
effect of outer reservoir boundaries has a similar influence on active and observation
well responses. The different characteristic derivative behaviors presented in Chapter 5
can be observed on interference test data. In the case of one sealing fault, the derivative
stabilizes at p',=1 at late time. When two parallel sealing faults are present, the pressure
and derivative curves follow a straight line of slope 1/2. With a closed system, the
pseudo steady state flow regime is described by a unit slope log-log straight line.

When an analytical model is used to generate interference responses with boundary
effects, the relative focation of the wells in the boundary geometry must be known. This
is illustrated on the following interference test example:

In Figure 6.7, the reservoir is limited by one single sealing fault. The observation well
"0¢" is located between the sealing boundary and the active well "A", and the
observation well "O," is located in the opposite direction. It is assumed that the two
observation wells are at the same distance r from the producer A. The boundary is
observed at a different time on the three well responses. The sequence of regimes can be
summarized as follows:

1. The interference has not reached the observation wells. "A" shows the infinite
acting reservoir behavior, "O;" and "Q," are at initial pressure.
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2. The interference has reached the two observation wells but not the sealing fault.
The behavior of three wells "A". "0," and "0," show the infinite reservoir response (the
inner circle in Figure 6.7 describes the radius of investigation reached at time of period
#2).

3. The sealing fault influence is seen on "O;" but not on "A" and "0,", which are still
in an infinite acting regime (period #3 corresponds to the outer circle).

4. The influence of the sealing fault reaches "A": "O," and "A" change to the hemi-
radial flow behavior but "Q," shows the infinite acting regime.

5. The influence of the sealing fault reaches "O;" and the three wells show the hemi-

radial flow condition.

In the example of Figure 6.8, the sealing fault is located at 3r from A (the fault is
therefore at 2» from O, and 4r from O,). The derivative interference response of O,
shows the fault influence before that of O,. The derivative of the active well A (dotted
line) describes the fault response at an intermediate time.

The analysis of interference test responses influenced by boundaries requires the use of
a model generated for the specific reservoir geometry. The solution is frequently not
unique, and the quality of the results depends upon the choice of the appropriate
reservoir boundary system.

6.2.2 Interference tests in reservoirs with permeability anisotropy

On producing well responses, it is shown in Section 3.1.5 that the effect of permeability
anisotropy can frequently be neglected. The resulting apparent negative skin S,y is, for
most practical cases, smaller than unity (Table 3.1). For interference tests, the time to
reach the observation well is very dependent upon the directional permeability towards
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the active well, and results of interpretation are more sensitive to a small anisotropy of
permeability.

It is assumed that the permeability anisotropy can be described by a tensor. According
to Papadopulos (1965), the pressure distribution created by a line source well is changed
from Equation 1.18 to Equation 6.4:

141298 .

—— [— (rpz/‘“p)x,v] (6.4)
Vkmakain h ’

As for producing well responses, the apparent permeability is defined as the geometric
mean of the major and minor reservoir permeability (Equation 3.3), which is the same
whatever the direction of the observation well. In Equation 6.4, the effect of the
reservoir anisotropy is only present in the definition of the dimensionless time group

Ap(At,x,v)= 0.5

(tp / r,)2 )r., - In other terms, the apparent distance rp., is a function of the orientation
of the observation well (Ma and Tiab, 1995).

With a coordinate system centered on the active well, the observation well location is
defined as (x,y) shown in Figure 6.9. We call &, k, and £, the components of the

permeability tensor corresponding to the coordinate system. From Equation 3.3, the
apparent permeability is defined as:

}(_ = Vkmakain = \jk\'k) _k.fy (6:5)

Ma and Tiab (1995) express the apparent distance rp,, as:

ey + k., x® —2k
Fpey = LBy AT Lid (6.6)
[3,x,) o k
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well at (x, y)
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kmln k\ //’/ krnax
\\\\ Pid -7 0 \ X
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Figure 6.9. Interference in an anisotropic reservoir.
Location of the active well and the observation well.
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and the dimensionless time corresponding to well (x,y) is:

tr ~0.000263A¢ K max Kmin
L (6.7)

oo, buce | hoy? +kyxt =2k xy

X,
R

Ramey (1975 b) shows that observation wells are needed in three directions in order to
estimate the reservoir anisotropy. When the three observation well responses are
matched against the exponential integral type curve of Figure 6.1, the pressure match is
the same for the three responses and only the time match changes. The product &,k
is estimated from the pressure match.

Solving Equation 6.7 with the time match for three observation wells yields 4., 4, and
ky as a function of ¢u c,. Equation 6.5 is then used with the pressure mach permeability

ki b

max

and k,,, can be defined with:

to estimatedy ¢,. Finally, the major and minor reservoir permeabilities %,

min

koo = oAs{kY\. T+ [(k kP eakd ]l, 3} o

kyin = O.S{kv\. +k, - [(k»\ —k, )3 n 4/(»\3_'1 ]1/3} 69)

The angle between the major permeability axis and the x axis of the coordinate system
1s expressed with (Ramey, 1975 b):

ks (6.10)

max

= arctan

Xy

In practice, the solution of the system of the three Equations 6.7 is valid only when the
two permeability terms 4, and k,,. and the @u ¢, product are constant over the
reservoir region involved by the test. This condition. difficult to verify, is not always
satisfied.

When the interference pressure is monitored in one observation well only, the reservoir
anisotropy cannot be estimated. As the radial homogeneous reservoir solution is used

for analysis, the average permeability /&, k., - 1S estimated from the pressure match

but the gu ¢, product obtained from the time match with the radial Equation 6.2 can be
wrong by a factor of two or even more.
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6.3 INTERFERENCE TESTS IN COMPOSITE RESERVOIRS

The practical analysis of interference tests in composite reservoirs has not been fully
discussed yet. In 1985, Satman presented an analytical solution for a radial composite
reservoir with changing mobility and diffusivity from inner to outer zone. In 1985,
Yaxley derived a linear composite solution with a variation of mobility between two
reservoir regions separated by a partially communicating interface. Two years later,
Ambastha et al. (1987) completed the linear composite reservoir description by
introducing a change of diffusivity through the linear interface. In 1991, Chu and
Grader presented an analytical three composite reservoir model with any location for
the active and observation wells.

The interference pressure responses have been very briefly discussed with the different
models, but the derivative behavior has not been presented in detail. Yet composite
reservoir behavior must frequently be present during interference tests, for example
when the active and the observation wells are in different fluid systems (change of
viscosity, compressibility and temperature with water injection wells or wells in the
aquifer). A more complete description of interference responses in radial composite
reservoirs is given below.

The same definitions for mobility and storativity ratios M and F are used for
interference models and for the active well solutions (see Section 4.3.1). By definition,
the active well is in region 1, and the observer can be in region 1 or in region 2.

(k/ﬂ)z
" o (4.79)
(#e,),
(k) ),

/,’lv/\\\ \\\\

e A o, o,
E’ \\. ° ": .
'\ e S .

N well ;

. R/2 / IR

Figure 6.10. Interference in a radial composite reservoir.
Location of the active well A and the observation wells O, and O,.



286 Multiple well testing

The distance from the active well to the radial and linear interface are given respectively
by Equations 1.21 and 1.34.

6.3.1 Radial composite reservoirs
Influence of M

On the interference responses of Figure 6.11 and 6.12, the active well A is centered in a
radial composite reservoir of radius R. As described in Figure 6.10, the observer Oy is at
R/2 from A (in region 1), and the observer O, at 2R (in region 2). It is assumed that the
storativity @c, is constant (£ =1). but the mobility of the inner region is 4 times larger
(Figure 6.11) or smaller (Figure 6.12). On the log-log plots, the interference responses
of the two observation wells are shown with lines (derivative = thick, pressure = thin),
the derivative of the active well A and the exponential integral derivative corresponding
to O, (homogeneous reservoir with region 2 parameters) are shown with dotted curves.

If the mobility of the inner zone is /arger than the mobility in region 2 [(&/1)> (10,
i.e. M>1, Figure 6.11], the interference signal reaches the region 2 (observation well O,)
faster than the equivalent homogeneous reservoir of mobility (&/u), (the dotted
derivative curve).

When the observation well is in the high permeability region 1 (well Oy), the
interference response tends to follow the line source response corresponding to region 1
parameters at early time, with possibly a first derivative stabilization defining (&/z),.
Later, when the radial interface is reached, the derivative increases to follow the (k/p),
stabilization.
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1

Figure 6.11. Interference responses in a radial composite reservoir. Log-log scales, Ap versus At.
The mobility of the inner zone is 4 times larger (A/=4).
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Figure 6.12. Interference responses in a radial composite reservoir. Log-log scales, Ap versus Af.

The mobility of the inner zone is 4 times smaller (M=1/4).

Conversely, when the mobility of the inner zone is smaller than the mobility of region 2
(K1) <(k/11),, i.e. M<1, Figure 6.12] the interference signal in the outer reservoir region
is delayed at early time (well Q,). In region 1, the derivative response of well O,
describes a hump, with a first stabilization corresponding to (k/u), before the final (/2.

stabilization.

In Figure 6.13, the pressure curves of the two observation wells are compared in the

hypothesis AM>1 and M<1:
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Figure 6.13. Interference responses in a radial composite reservoir. Log-log scales, Ap versus At.

Pressure curves of examples Figures 6.11 and 6.12.
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e Inregion 2, the pressure of well O, is not affected after the early time deviation by
the change of mobility near the active well. The curves merge at late time with the line
source corresponding to region 2 parameters (dotted curve). When Af>1, the early
response deviates above the exponential integral response, as mentioned in Section
6.1.3 for a stimulated active well. (In 1976, Jargon evaluated the effect of a negative
skin on the active well with a radial composite model).

e In region 1, the amplitude of the interference response describes the mobility
hypothesis. When M<1, the observation well O, shows a larger interference signal than
when A>1. This reservoir configuration produces a geometrical positive skin on the
active well A (Equationl.13).

Influence of F

It is now assumed that the mobility (k') is constant in the reservoir (A/=1), and only the
storativity ¢c, changes (in the inner zone. it is 4 times smaller in Figure 6.14 and 4 times
larger in Figure 6.15). The derivative response of the observer O, in region 2 (thick
line) is compared to the derivative curves of well A, and to the exponential integral
curve defined for region 2 parameters (shown with dotted curves). The pressure
response of the observer O, is shown with a thin line.

With Jow storativin: in the inner zone [(@u ¢,),<(du ¢,)-] the diffusivity is increased, and
the interference signal reaches the observation well faster than for a homogeneous
reservoir with region 2 properties (Figure 6.14). The response deviates above the
exponential integral curve at early time.

If the inner zone has a high storativity [(du ¢)>(@u ¢,),] and the reservoir mobility is
constant, the early time response is delaved compared to the exponential integral
homogeneous curve (Figure 6.15).
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Figure 6.14. Interference responses in a radial composite reservoir. Well O,.
Log-log scales, Ap versus Az, The storativity of the inner zone is 4 times smaller (M=1, F=1/4).
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Figure 6.15. Interference responses in a radial composite reservoir. Well O,.
Log-log scales, Ap versus Ar. The storativity of the inner zone is 4 times larger (M=1, F=4).
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Figure 6.16. Interference responses in a radial composite reservoir. Well O,. Log-log scales, Ap
versus Af. The mobility and the storativity of the inner zone are 10 times larger (M=10, F=10).

Change of mobility and storativity

When both the mobility and the storativity change, it is difficult to summarize the
different types of response illustrated by Satman (1985). It is noteworthy that when both
the mobility ratio and the storativity ratio are high (M>10 and F>1), the interference
response tends to follow a unit slope straight line at early time. Satman describes this
effect of the inner zone as similar to an equivalent wellbore storage behavior. As
discussed in Chapter 4 for producing well responses (Figures 4.52 and 4.57), this 45°
line could be also interpreted as a closed system response as illustrated in Figure 6.16.

In this example, the observation well is in region 1, (k/1),=10(k/1); and (¢ ¢,)1=10(¢ ¢))
(M=10 and F=10). Since the diffusivity is constant, the radial composite interference
response is seen at the same time as the exponential integral curve for region 2
parameters (when Ap<1 psi in Figure 6.16). Later, the derivative flattens and goes under
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the homogeneous response of the outer zone, then it increases along the unit slope line
and merges with the derivative curve corresponding to the active well. Before the
influence of the outer region is felt, the radial composite reservoir behaves like a closed
circle of radius R and the response describes the pseudo steady state regime
characterized by a unit slope pressure and derivative straight line.

In the case of a radial model such as in the examples of Figures 6.11 to 6.16, the
derivative behavior of the observation wells tends to merge with that of the active well
after the early time interference response. This demonstrates that, at any point in the
drainage area, the rate of pressure change is the same.

6.3.2 Linear composite reservoirs

With the linear composite model. the interference model responses have not yet been
addressed. The information available today can be summarized as follows (Yaxley,
1985; Ambastha et al., 1987):

o The late time equivalent homogeneous behavior provides an estimate of the average
permeability thickness product, defined as £4=0.5(k,+4,)h (see Section 4.3.3).

e The effect of changing storativity (g ¢,) between the two regions and the effect of
the distance L, between the interface and the producer have not been evaluated on
interference responscs.

»  When the linear interface is partially sealing between the active and observation
wells, the early time response observed before the equivalent homogeneous behavior is
delayed.

6.4 INTERFERENCE TESTS IN DOUBLE POROSITY RESERVOIRS

In the following section, the pressure behavior of observation wells in double porosity
reservoirs is discussed. It is shown that the presence of fissures affects the propagation
of the interference signal around the producing well:

e During the fissure flow regime, the interference response travels very fast up to a
certain distance to the producing well.

e  When the distance between the active and the observation wells is large, the
heterogeneous nature of the response disappears (Kazemi et al, 1969 b).

The two double porosity models introduced in Chapter 4, with restricted and transient
interporosity flow, are used for interference test interpretation. The models are not
described in the present Chapter, only their application to observation well responses is
presented.
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6.4.1 Pressure type-curve for restricted (pseudo-steady state) interporosity flow

In Figures 6.17, the pressure type-curve for an observation well in a double porosity
reservoir with restricted interporosity flow is presented (Bourdet and Gringarten, 1980;
Deruyck et al., 1982). The dimensionless time group t,)//r,)2 is defined with reference to
the fissure system storativity (¢ Vc), (the double porosity nomenclature has been
presented in section 4.1.1):

Iy 0.000264k A
rl% (¢VC1 )f ﬂ”z

(6.11)

The type-curve is plotted with a set of exponential integral solutions labeled in terms of
o values for the two homogeneous flow regimes, and a family of transition curves, with
typical values of Ar)’ for the transition period.

The first exponential integral curve corresponds to w =1 and it describes the fissure flow
regime. When the transition starts, the response deviates from the fissure curve and
follows a lr,)l transition curve. Later, the total system equivalent homogeneous regime
is reached. A second exponential integral curve, displaced by the reservoir storativity
ratio w, is seen at late time.

101
&
o 0.01
2 0.1
a 1
4
[
U, 1
[72]
Q
5 -
5 101 =5
C
£
s

102 / w =0.1 o =0.01 o =0.001

101 1 101 102 108 104

Dimensionless time, t /1?2

Figure 6.17. Pressure type-curve for double porosity reservoirs with restricted (pseudo-steady
state) interporosity flow. Log-log scales, p;, versus ID//I”,)Z.
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6.4.2 Pressure behavior in double porosity reservoirs with restricted interporosity
flow

The three typical regimes of the double porosity model are not always present on an
observation well response. The level of the pressure change Ap during the transition
between fissure and total system flow is defined by a Ar;,” transition curve of Figure
6.17. For a large distance r,, the transition curve stabilization corresponds to a low Ap
value on the pressure scale and. beyond a certain distance r,,, Ap becomes less than the
pressure gauge resolution. This distance r,, represents the radius of influence of the
fissures around the active well. It can be approximated from the minimum Appyi,
measurable at test conditions (Deruyck et al., 1982):

2 .
In Pl (AP )/) (6.12)
1.78y Ar7,

If the observation well is at a distance greater than r,, the interference signal is
measurable only after the transition regime, when the response is in total system flow.
In such a case. even though the active well response is clearly double porosity, the
observation well shows the behavior of a homogeneous reservoir (Kazemi et al, 1969
b). The interpretation of the interference test provides the permeability and the total
system storativity (¢ Ve, but the heterogeneous parameters @ and A cannot be
estimated.

If however the observation well is located inside the radius of influence »,,, the fissure
flow regime is observed before the equivalent homogeneous total system flow. On the
log-log tvpe-curve of Figure 6.17. the distance between the early time and the late time
exponential integral curves defines the storativity ratio . For example with @ =107, the
fissure curve is seen on the logarithm time scale one cycle before the total system
homogeneous response, and the time needed to observe the start of the interference
signal is 10 times smaller than for the equivalent homogeneous reservoir. With @ =107,
the time ratio is 100.

Interference responses in fissured reservoirs can be relatively fast, and frequently they
can be observed after only a few minutes, even when the observation well is several
hundreds of feet away from the producer. This does not mean that the test duration can
be reduced. In the next section, it is shown that the early time response does not define
the match and a complete response of the total system radial flow regime is needed for
interpretation. The time to reach the total svstem equivalent homogeneous behavior is as
long as for interference tests in standard homogeneous reservoir.
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6.4.3 Pressure and derivative analysis of interference tests in double porosity
reservoirs with restricted interporosity flow

In Figures 6.18 and 6.19, the responses of two observation wells in a fissured reservoir
are compared. Well A is at r, =1000 from the producer and well B is farther away
(rp =5000). The interporosity flow parameter is A=5x10" and the storativity ratio is
w=10".

In Figure 6.18, the pressure and derivative curves are presented versus the
dimensionless time £, and, in Figure 6.19, the usual tD//r,)z group of the type-curve
Figure 6.17 is used (Equation 6.11). On ¢, time scale of Figure 6.18, the response of the
well B at r;; =5000 is delayed by a factor of 25 compared to the response of the well A
at r;, =1000. With the dimensionless time scale tlg,/r,)z of Figure 6.19, the two well
responses are superposed at early time during the fissure flow regime.

As already mentioned in Section 6.3, the rate of pressure change in the reservoir is not
space dependent, and it is the same at any point in the drainage area. In Figure 6.18, the
derivative response at the active well is also presented. The time of the transition is the
same for the three wells (the derivative curve of well B does not match exactly the
derivative response of two other wells because, at this well, the radial flow regime has
not been reached before the start of the transition).

When the interference is measured at r,, =1000 (well A), a long homogeneous fissure
regime is seen at early time and the derivative stabilizes at 0.5 during the fissure radial
flow. The point of intersection between the pressure and derivative curves can be used
to define the match point. The permeability thickness product is estimated from the
pressure match (Equation 2.9) and the fissure system storativity (¢ Vc,), from the time
match with Equation 6.11.
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Figure 6.18. Interference responses in double porosity reservoirs with restricted interporosity
flow. Log-log scales, ppy versus ¢ w=0.1, 1= 5x 108, two distances.
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Figure 6.19. Interference responses in double porosity reservoirs with restricted interporosity
flow. Log-log scales. pyy versus 1, /1,7 Same as Figure 6.18.

After the fissure radial flow. the valley shape of the derivative curve during transition is
characteristic of a double porosity response with restricted interporosity flow. The
heterogeneity parameters @ and 4 are adjusted in the same way as for a producing well
(see Section 4.1.2).

More frequently. a response similar to the thick curves (well B. r;, =5000) is obtained.
The fissure flow regime is short lived and the transition starts before the pressure and
derivative curves intersect. The early time behavior does not describe a characteristic
regime and the match has to be adjusted by trial and error on pressure and derivative
theoretical responses.

6.4.4 Interference tests in double porosity reservoirs with restricted interporosity
flow and permeability anisotropy

In double porosity reservoirs, the fractures are frequently more dominant in one
direction than another. The permeability is then maximum in the direction of the
fissures and minimum in the direction perpendicular. Interference tests are used to
define the directional flow properties with the method presented in Section 6.2.2.

When several observation well interference responses are analyzed to estimate the
permeability anisotropy, the same interporosity flow parameter A should be used for all
wells. Ma and Tiab (1995) propose using the effective distance ry) . of Equation 6.6 in
the Arp’ group to define the match of the transition regime.
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Figure 6.20. Pressure type-curve for double porosity reservoirs with unrestricted (transient)
interporosity flow. Log-log scales, p;, versus t,;//rpz.

6.4.5 Pressure type-curve for unrestricted (transient) interporosity flow

The type-curve of Figure 6.20 corresponds to a double porosity reservoir with
unrestricted interporosity flow (Bourdet and Gringarten, 1980; Deruyck et al., 1982).
The time scale is defined with the #;,/r,” group of Equation 6.11. A family of Theis
solutions, labeled in @ values, is superimposed on transition curves labeled ,Hr,)z.

For slab matrix blocks, the £ interporosity parameter is defined by:

p= 2 (6.13)

Sw

and for sphere matrix blocks:

ﬂ:;_ (6.14)

> w

With unrestricted interporosity flow, the fissure flow is very short and seldom seen. The
interference response starts on a fransition ﬂr,f curve and reaches the exponential
integral fotal system curve at late time. The shape of the £ r,,” transition curve is smooth
and not very characteristic compared to the final total system homogeneous response.
When the derivative is not used, the match is sometimes difficult.

As for active well responses, a first straight line of slope m/2 can be seen on a semi-log
scale, if the transition regime lasts long enough before the equivalent total system
homogeneous regime.
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Figure 6.21. Interference responses in double porosity reservoirs with unrestricted interporosity
flow. Log-log scales. pj, versus t,)_,/ruz. Same parameters as on Fig. 6.19.

6.4.6 Pressure and derivative analysis of interference tests in double porosity
reservoirs with unrestricted interporosity flow

The two observation well responses presented in Figure 6.21 are generated with the
same parameters as in the examples of Figure 6.19 (the two distances are respectively
1 =1000 and #,, =5000 for wells A and B and the double porosity reservoir is defined
with 2=5x10™ and @ =10"'). The reservoir cross flow is not restricted and the matrix
blocks are assumed to be spherical. The time scale is 7,,/r,,%.

For well A, the response shows a very short fissure flow regime, similar to the curve
Figure 6.19 for a reservoir with restricted interporosity flow. When the pressure and
derivative curves intersect, the response is already in transition behavior. In Figure 6.19,
the intersection between the two curves A is defined at p,, =p’, =0.32 as on a
homogeneous response. In Figure 6.21, it is only p, =p’ =025. The point of
intersection between the pressure and derivative curves cannot be used to define the
match in reservoirs with unrestricted interporosity flow.

During the double porosity transition of example A, the derivative response tends to
stabilize at approximately p’, =0.3. Finally, when radial flow in the total system
equivalent homogeneous behavior is seen, the derivative reaches the usual 0.5 plateau.

The response of well B is less characteristic. The fissure flow regime is not seen and the
signal is delayed compared to curve A. The transition is short and no intermediate
derivative stabilization is seen before the 0.5 plateau. If the test period is short and the
final radial flow has not been reached. the analysis can be difficult to conclude.
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6.5 INTERFERENCE TESTS IN LAYERED RESERVOIRS

With layered reservoirs, the interference test responses depend upon the two well
conditions: if the same layers are perforated in the active and observation wells or not,
and if there is cross flow in the observation well or not:

s  When the perforated layers are different, the pressure response in the observation
well is due to reservoir cross flow.

o If several layers are communicating with the observation well, the interference
pressure drop can be different in the layers. Cross flow is then established though the
observation well and, even though it is not producing at surface, the well is active and
influences the reservoir pressure response (the flow lines are not radially symmetric
around the active well any more).

Many combinations are possible depending upon the layered system and the completion
of the wells. In 1981, Chu and Raghavan and, in 1989 Onur and Reynolds have
discussed interference tests in non-communicating layers with crossflow in the
observation well. They concluded than the effect of the skins at both wells can be
greater than the effect of the contrast in the layers properties. Streltsova (1984 a)
considered vertical crossflow in a two layers reservoir by assuming only one layer is
producing to the well, and radial flow in the second layer is negligible.

In the following, a "two layer" configuration is considered with the double permeability
model (Bourdet, 1985) described in Chapter 4. The theoretical responses of several
interference test configurations are presented to illustrate some basic characteristic
behaviors. The examples can be extrapolated to more complex configurations, and they
show that a layered reservoir interference model is needed for analysis.

6.5.1 Line source well in a two layers with cross flow reservoir

On the double permeability responses presented in Figure 6.22 and 6.23, the contrast
between the layers is small enough to produce an apparent homogeneous behavior in the
active well (see Section 4.2): x=0.7 and @ =0.4. The cross flow parameter is =10 and
the distance of the observation well is r;, =1000.

The dimensionless pressure pp and the dimensionless time group tp1salry’” are defined by
the parameters of the total system (Equations 4.49 and 4.50). The active well is a line
source communicating with the two layers and three different observation well
configurations are considered: in Figure 6.22, only one of the two layers, respectively
layer 1 or layer 2, is perforated (Bourdet, 1985), and in Figure 6.23, they are both
perforated (Houzé and Viturat, 1985). The pressure and derivative of the Theis solution
corresponding to the total equivalent homogeneous reservoir system are shown with the
dotted curves.



298 Multiple well testing

1
[a]
joX
o
3 [}
% [oR
¢ g
[algs—1
@ ‘%’ 10!
L9
e
.% e
@ ©
E
0 Line source

N total system
10»2 : 4 y
102 107 1 101

Dimensionless time, t, ,,, /1,
Figure 6.22. Interference responses in a double permeability reservoir. one layer is perforated in
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If the observation well is only perforated in the higher permeability layer (#1), the
response is seen before the equivalent homogeneous solution for the total system
(Figure 6.22). At f;,.2/r;,’=0.1 for example, the amplitude of the layer 1 pressure
response is 10 times larger than the Theis solution. Later, about at 7, .g/r,f:S, the layer
1 double permeability response reaches the equivalent homogeneous behavior.

In the opposite configuration, when only the low permeability layer (#2) is
communicating with the observation well, the early time response is delayed compared
to the Theis solution for the total system. The responses of layer 1 and that of layer 2
merge on the dotted pressure and derivative curves when the equivalent homogeneous
behavior is reached.
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Figure 6.23. Interference responses in a double permeability reservoir, the two layers are
perforated in the observation well. Log-log scales, pp versus .2 /ry*.Same parameters as on Fig.
6.22.
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At the start of the response, the two layers show a different pressure. If they are both
perforated, this pressure differential produces a cross flow in the observation well. The
resulting response is shown in Figure 6.23: it is also ahead of the Theis solution for the
total system, and it appears not very different from the layer 1 response. When several
layers are perforated, the high permeability layer dominates the global observation well
behavior. Chu and Raghavan (1981) reached a similar conclusion in their investigation
of non communicating layered reservoirs. They concluded that if a homogeneous
reservoir model is used for analysis, the total formation permeability thickness £k can
be slightly overestimated but porosity compressibility product ¢ ¢, can be
underestimated by a factor of 2 or more.

The responses presented Figure 6.22 and 6.23 are generated with no skin effect on both
wells. With this hypothesis, the time of start for the total system equivalent
homogeneous behavior is defined, as for double porosity reservoirs, with the Ary
group. If the skin is different between layer 1 and layer 2, the response follows a
different behavior. It is difficult to differentiate the influence of the skin factors to that
of the diffusivity ratio between the two layers (Chu and Raghavan, 1981), and the match
is frequently not unique.

The interference examples of Figure 6.22 and 6.23 show that, even with a low contrast
between the layers and an apparently homogeneous active well, the observation well
response is clearly heterogeneous. This change of well behavior is inverse to that of
double porosity reservoir responses, where the heterogeneity is visible in an active well
but not always in the observation well.

6.6 PULSE TESTING

6.6.1 Advantages and limitations of the pulse testing method

With pulse testing, the active well is produced in a series of alternate flow and shut-in
periods. The rate and the duration of each flow are the same. All shut-in periods also
have the same duration, not necessarily equal to the flow time. With three or four
pulses, the observation well response is easier to identify in a noisy pressure
environment than a single pulse interference signal.

Pulse and interference tests may be used for the estimation of reservoir permeability and
storativity, but the choice of the best procedure has not been completely discussed.
Some of the parameters considered during the selection of the test procedure are
summarized in the following, taking into account the recent advances in accurate
pressure measurements and computing facilities.
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Model identification

The analysis technique of pulse tests (Johnson et al., 1966; Brigham, 1970; Kamal and
Brigham, 1975; Earlougher, 1977) is based on a completely different approach than that
for interference tests. Only the amplitude and the time lag of the pressure pulses are
considered and the type of reservoir behavior is not identified. A reservoir pressure
trend or a possible drift of the gauge does not affect the analysis, but the type of
reservoir behavior is assumed during the interpretation. Frequently the line source
response for a homogeneous infinite reservoir is used but, with the modern analysis
tools, the complete catalog of well and reservoir solutions is available.

The question of the choice of the proper interpretation model is not solved yet. When
the reservoir behavior is not known from previous tests, only the interference procedure
provides a diagnosis of the response by log-log pressure and derivative curve analysis.

Test history

It is frequently believed that the duration of pulse tests is shorter than the time usually
needed for interference tests. In practice. the testing time is at least the same with both
types of tests (Kamal, 1983) and only the shut-in time is less, which has some economic
benefit. It is noteworthy that the period of the pulse test sequence should be different
from 12 hours in order to prevent any confusion with a possible tidal effect in the
observation well, and the measured time lag must be less than the duration of the flow
or shut-in period (Brigham. 1970; El-Khatib, 1991).

Low diffusivity reservoirs

In the case of reservoirs with a low diffusivity (k/¢u ¢,) and a large distance r;, between
the wells, the time needed to produce three pressure oscillations in the observation well
can be so long that pulse testing is not possible (Bourdarot, 1998). Only the interference
procedure can be envisaged in such conditions.

High diffusivity reservoirs

Conversely in high permeability reservoirs. the amplitudes of interference responses are
low and they can be masked by the noise of the pressure signal. When the wells are
close enough to produce a quick response at the observation point, the puise testing
approach is the recommended procedure.
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6.6.2 Analysis of pulse tests

When the analysis is made by hand, the response amplitude and time lag are measured
with the "tangent method" (Johnson, 1966) and the correlation curves presented by
Kamal and Brigham (1975) are used to estimate the reservoir permeability and
storativity. A homogeneous reservoir response is then considered, the active well is a
line source. When the test or the reservoir response does not satisfy these conditions,
results from hand analysis are not completely correct.

Several recent studies have discussed the effect of wellbore condition and reservoir
heterogeneity on pulse test responses. No manual interpretation method has been
proposed and the analysis is made by test history matching on simulated pressure
responses.

Wellbore storage effect

The effect of wellbore storage at the active or observation well increases the time lag
and reduces the amplitude of the pulse response (Prats and Scott, 1975; Ogbe and
Brigham, 1984 a). When the magnitude of the wellbore storage is defined (from the
analysis of the producing well response for example), it is possible to introduce this
effect on the pulse test simulation used for analysis.

Wellbore storage is an important parameter to consider in the design of a pulse test:
when a short pulse period appears feasible (if the inter-well distance is small for
example), the flow and the shut-in periods must be longer than the effect of wellbore
storage.

Heterogeneous reservoir behavior

The effect of reservoir anisotropy is treated in the same way as for interference tests
(Kamal, 1983), the dimensionless time lag and time period are simply changed
according to Equation 6.7. Little information is available on the effect of reservoir
boundaries on pulse test responses (Vela, 1977) and, to our knowledge, pulse tests in
double porosity reservoirs have not been considered yet. Prats (1986) used a numerical
approach to investigate pulse test responses in double permeability reservoirs. He
concluded that for large distance between wells and low reservoir heterogeneity, the
analysis of pulse tests with the homogeneous solution yields a good estimate of the
average reservoir properties. When the contrast between layers is large and the inter-
well distance short, the results of homogeneous analysis provide a diffusivity (k/¢u c))
close to the better layer characteristics. A similar conclusion is presented in the
discussion of interference responses in layered reservoirs (Figure 6.23 of Section 6.5).
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6.7 CONCLUSION

When only mechanical pressure gauges were used, the main purpose of multiple well
tests was to establish communication between wells. With the high accuracy pressure
data available today, multiple well testing is recognized as a very powerful testing
method, more sensitive to many types of reservoir heterogeneity than single well tests.

The operating conditions are very important in interference tests. In addition to the high
accuracy pressure data requirement. the reservoir pressure trend must be defined
accurately. and it must remain constant during the test time. The influence of other
active wells in the reservoir must be considered, in particular when the production rates
are not constant (see discussion of the influence of neighboring producers in Section
10.1.2).

Pulse testing is less affected by a noise in the reservoir pressure but, during the analysis,
the model is not identified. Research is needed in pulse testing to develop practical
testing procedures. A systematic analysis of pulse test responses generated for different
well conditions and reservoir types would be useful to establish a general methodology
for test design and interpretation. In case of fissured or layered reservoir for example,
additional information is probably needed from cores, logs or producing well analysis,
in order to conclude a pulse test interpretation successfully.



CHAPTER 7

APPLICATION TO GAS RESERVOIRS

Two different types of tests are used for gas wells. Historically, the first testing methods
were only designed to define the well deliverability in order to predict the flow rate, as a
function of the wellhead pressure. The results were used in the design of the surface
production equipment, setting taxes and also for regulating production, particularly in
North America. Backpressure tests and isochronal or modified isochronal tests are the
usual deliverability testing methods. The theoretical rate at which the well would flow if
the sand face was at atmospheric pressure is called the "4bsolute Open Flow Potential,"
AOFP. The analysis of deliverability tests does not yield a description of the well nor of
the reservoir,

More recently, transient testing has become current practice for gas wells. The analysis
provides a description of the producing system, and therefore the well deliverability is
also defined.

The transient response of gas wells is very different from that of liquid systems because
the fluid properties vary with changes in pressure. The analytical models presented in
earlier Chapters for liquid flow are not directly applicable, and the interpretation of
transient tests in gas wells is more complex. The test data have to be modified before
starting the analysis; in general, the pressure data is converted into "pseudo-pressures”.
Another difficulty of gas well test interpretation is the high velocity reached by the flow
around the wellbore, which affects the well responses by inertial effects or turbulent
flow conditions. The skin effect is then rate dependent and changes from one test period
to the next.

In this Chapter, the behavior of natural gas is first described, the resulting transient
analysis methods are presented and deliverability testing is discussed afterwards,
together with the corresponding analysis plots. Only dry gas well responses are
considered, test interpretation in multiphase reservoirs is the subject of Chapter 8.

7.1  DESCRIPTION OF GAS WELLS PRESSURE BEHAVIOR

The hypothesis of slightly compressible fluids, used in previous Chapters to describe
liquid flow in a porous medium, is not valid for gas systems. In the following sections,
the behavior of natural gas is presented, and the pressure responses of gas wells are
compared to those of liquid wells.
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7.1.1 Gas compressibility and viscosity

The compressibility of gas ¢, is a function of the pressure. For a real gas, the equation of
state is defined as:

pl" = ZnRT 7.
Where Z is the real gas deviation factor. For an ideal gas Z =1, and the compressibility

is ¢, =1/p. For a real gas, Z changes with the pressure, and the compressibility is
expressed as:

| I 4 (72)
¢, =———— :
& P Z (Ap

In gas systems, the viscosity w is also a function of pressure. The resulting partial
differential equation governing the pressure transient response of real gas is not linear
and. as opposed to liquid flow, it cannot be solved by analytical methods.

7.1.2 Pseudo-pressure

As shown by Al-Hussainy et al. in 1966 (a and b), by changing the pressure variable to
pseudo-pressure m(p), the differential equation can be linearized approximately and it
becomes very similar to the diffusivity equation for slightly compressible fluids.

The pseudo-pressure. also called "real gas potential”. is defined as:
/7

m(p)=2 J.

ro

P

d (7.3)
u(p)z(p) Y

The reference pressure py is an arbitrary constant. smaller than the lowest test pressure.
All pressures are expressed in absolute units, the pseudo-pressure has the unit of
(pressure)’ / viscosity, psia*‘cp with the usual system of units. For the calculation of
m(p), ¢ and Z must be known as a function of pressure. When the results of P.V.T.
analysis are not available, gas property correlations are used.

For practical analysis of gas well tests. the complete pressure data is converted into
pseudo-pressure and, by using m(p) as the working variable, the solutions derived for
liquid flow can be applied to the data. The pseudo-pressure change, expressed as
Am(p)= m(p)-m[p (Ar=0)]. is independent of the reference pressure po of Equation 7.3.

The pseudo-pressure corrects the effect of change of gas viscosity in the calculation of
permeability. However, in the case of a large change of gas compressibility during the
test, this transformation does not exactly reproduce an equivalent liquid behavior.
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7.1.3 Pseudo-time

In 1979 (b), Agarwal introduced pseudo-time, ¢,, in order to linearize further the
differential equation describing gas flow. The pseudo-time is defined as:

!

dt

= f _ (7.4)
o #(Plec(p)

! ps

uand ¢, are pressure dependent. The calculation of #,, requires the pressure to be known
during the complete flow rate sequence. Frequently, the pressure has not been recorded
during part of the production history, and changing the test data into superposition of
pseudo-time becomes cumbersome.

Except in very low pressure wells, when the gas compressibility changes significantly
after a small variation of pressure, or during reservoir limit testing with a large
depletion, using the pseudo-time does not really improve the quality of the analysis
results. These situations are exceptional, and the pseudo time transformation is seldom
necessary and usually ignored.

A typical example of low-pressure behavior can be observed in some damaged gas
wells. When the last flowing pressure is only a few hundreds of psi, the build-up
pressure and derivative curves immediately after shut-in do not follow the usual log-log
unit slope wellbore storage straight line, but increase faster (see discussion of changing
wellbore storage in Section 10.1.2). By using the pseudo-time, the first part of the
response can be corrected to improve the aspect of the log-log match. As the match
parameters are not changed, the results of log-log analysis are the same as when the
pseudo-pressure is simply expressed versus the elapsed time.

In the case of significant depletion, Bourgeois et al. (1996 ¢) proposed correcting the

analytical model instead of using the pseudo-time. Gas well material balance correction
is discussed in Section 7.2.5.

7.2 PRACTICAL TRANSIENT ANALYSIS OF GAS WELL TESTS

7.2.1 Simplified pseudo-pressure for manual analysis

Before computers became generally available, the pseudo-pressure was calculated for
each pressure data point by estimating the area of a graph of 2p/u Z versus p. Such a
procedure is time consuming, and a simplified form of m(p) was frequently preferred.

Figure 7.1 is a graph of z« Z versus p for a typical natural gas at constant temperature:
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Figure 7.1. Isothermal variation of g Z with pressure. Linear scales.

*  When the pressure is less than 2000 psia, the product z Z is almost constant and
m{p) simplifies into:

, 7 2
m(p)=-= [pdp=2"L0 (7.5)
1z M,z
20
On low-pressure gas wells, it is thus possible to analyze the test in terms of pressure-
squared p’.

* When the pressure is higher than 3000 psia, the product x#Z tends to be
proportional to p, p/u Z can be considered as a constant and the pseudo-pressure m(p)
becomes:

2p 1
m(p):u—/j fdp=(p-py)-" (7.6)

~ po Mz

On high-pressure wells therefore, the gas behaves like a slightly compressible fluid, and
the pressure data can be used directly for analysis.

®  Between 2000 psi and 3000 psia, no simplification is available, and m(p) must be
used.

The two limits of validity of the simplified forms ( <2000 psia and >3000 psia) are
approximate, and depend upon the gas composition and temperature. When m(p) can be
estimated with a computer program, the pseudo-pressure is preferably used for the
complete range of test pressure. However, the practical engineer sometimes prefers to
see the analysis in real pressure or even in pressure squared, rather than m(p) values of
10" psia*/cp, for which he or she has no "feel".
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7.2.2 Definition of the dimensionless parameters

The gas standard conditions are used for the definition of the dimensionless terms. In
the usual field units, the standard pressure is p,. = 14.7 psia and the temperature is 7, =
520°R (60°F, all temperatures are expressed in absolute units). The gas rate is expressed
in standard condition as g,. in 10% scft/D or Mscf/D.

The gas properties used for reference in the dimensionless terms depend upon the
treatment applied to the raw data, namely the "pseudo-pressure”, the "pressure-squared”
or the "pressure”. When the pseudo-pressure is considered, the dimensionless terms are
defined with respect to the gas properties at initial condition (subscript /) whereas, with
the pressure and pressure squared approaches, the properties are defined at the

arithmetic average pressure of the test (symbol B ).

In the following section, the dimensionless interpretation variables are given
respectively for m(p), p* and p.

Dimensionless pressure
The dimensionless pressure (Equation 2.3 for oil) is presented first in the general form,

and a simplified expression is given for the usual standard conditions (p,. = 14.7 psia
and T,.= 520°R).

m(p):
kh T,
- m m
Po= 503007¢, [ (p)=m(p) (1.7)
“Tars [ (p,)-m(p)]
P
kh T.
pp=—— T (2 p2)
SOJOO/IZTC]\L P (7.8)
1422,2Tq,,
p: B
kh [
pD :fln_—( i _'p)

711;ZTC]SC<AD’ p)
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Dimensionless time

For gas wells. the dimensionless time of Equation 2.4 is expressed as:

m(p):
0.000263k
,D:;__ij (7.10)
ILII cll r\\‘ B
p”and p:
0.000263%
r/):—¢_—_—7m (7.11)
He,

Dimensionless wellbore storage

As for oil wells, the wellbore storage coefficient is expressed in Bbl/psi. In
dimensionless terms, the Equation 2.5 for oil wells is changed into:

m(p):

Cp = M (7.12)
pe,hr?

p-and p:

c, = 2893C (7.13)
pc

Dimensionless time group

The usual dimensionless time group #,/C;, of Equation 2.6 becomes:

m(p):
t kh A
10— 000029522 2L (7.14)
D u, C
p”and p:
! ;
L= 0.000295@%’ (7.15)

Cp H
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7.2.3 Straight line parameters

The different characteristic flow regimes presented in previous Chapters (wellbore
storage, linear flow, spherical flow, radial flow and, to some extent, pseudo steady state)
are always described by straight lines on a plot of pressure versus a specialized time
scale. For gas wells, the equation of the corresponding straight line can be obtained in
terms of m(p), p* or p, by introducing the appropriate definition (Equations 7.7 to 7.13)
into the dimensionless Equations corresponding to these flow regimes (Equations 5.1
and 5.14 for example in the case of parallel sealing faults or a closed system).

In the following section, the straight-line equations for the wellbore storage regime and
infinite acting radial flow are presented in the general form, and in terms of the usual
standard conditions (p,. = 14.7 psia and 7T, = 520°R).

Wellbore storage analysis

On a Cartesian plot, the wellbore storage straight-line slope myp of Equation 1.9
becomes, for gas:

m(p):
Tq. p.
My =14.85 -5 Psc
/UiC T.\'e
. (7.16)
=04197 -1
u;C
2,
P B
ZTq,, p..
My =14.85 2 T Psc.
T
c T (7.17)
Z7q,,
=0.4197 5 T
C
& B
ZTq,, p.
My = 7425225 Pse
c T,
_p s¢ (7.18)
ZTq,,
= 0.2098 22T
pC

Semi-log analysis

The slope m of the semi-log straight line, expressed in Equation 1.15 for oil, is now
defined as:



m(p):

Ta. p.
m=5.791x10+ 29 P

N

3 TC/\
=1.637x10" —~
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7T
m=5.791x10* £ De P
kh T,
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and the skin equation 1.17 for drawdown is changed into:

m(p):
| Am ! k
s=1as] AP0, 4323
m ¢IL1I CII r\\_‘
,
p~and p:
2 . :
R el T P
m Pucry

Gas reservoirs

(7.19)

(7.20)

(7.22)

(7.23)

The pseudo-skin S’ is the global skin, including the wellbore damage, possibly a
geometrical skin component, and the inertial-turbulent flow effect discussed in the next
section. It is frequently rate dependent, the higher is the flow rate, the higher is S".

7.2.4 Non-Darcy flow

Inertial and turbulent flow effects

Due to the high velocity of the flow in the immediate surroundings of the well, inertial
effects are frequently not negligible. In some cases, the flow is not even laminar but
becomes turbulent. Darcy's law is then no longer applicable in the vicinity of the well,



Transient analysis 311

and the inertial and turbulent effects produce an additional pressure drop (Houpeurt,
1959; Wattenbarger, 1968; Mattar and Brar, 1975). The skin coefficient S', measured
during well tests, is expressed with a rate dependent term as:

S'=S+Dgq, (7.24)

where D is called the non-Darcy flow coefficient. In order to separate the two
components of the skin effect, S’ has to be evaluated at several rates.

Estimation of S and D

During drawdown periods in a multiple rate test, the total skin effect of Equation 7.24
is, for period #n, S', =S + D g,,. and during the previous period #n-1, S, =S +
D gu14. The corresponding pressure drops due to skin are Am(p)svn =
(14227¢, . Jkh)S', and Am(p)g, , =(14227g, ;. [kh)S',.;. When the superposition

method is used (see Chapter 2), the period ## is analyzed for a change of flow rate (g, -
Gn1)se» and the pressure at the start of the period is the last pressure of period #n-1. The
skin pressure drop measured on period #n is expressed with the difference (Bourdarot,
1998):

Am(p).\'km :(1 422T/kh)(Qn,ch'n _qVI‘],.\‘L’SIH—I )
4227 /) = 02,5+ Dl ~ a2 ) (125)
:(l 42271//(/7)(6],7 - CIn~l),\~C {S + D(C]” +qu-1 )A-c]

During shut-in periods (g, = 0) and during the periods immediately affer shui-in (g, =
0), the measured skin coefficient corresponds to S’ of equation 7.24 but, for all other
flow periods it corresponds to [S+ D (g, + Gn-1)s]-

12
& 10
g
g
a
¥
? .
i 8 S=intercept
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Figure 7.2. Variation of the pseudo skin with the rate (¢,+g,.,). Linear scales.
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In Figure 7.2, the pseudo-skin [S + D (g, + g,.1).] is plotted on linear scales versus the
rate term (¢, + ¢,.1),. The straight-line intercept gives the true skin S and the slope gives
the non-Darcy flow coefficient D. When only build-up periods are analyzed in a
multiple rate test, the linear plot simplifies into S', versus g,.;.

7.2.5 Material balance correction

During a reservoir limit test. the average pressure can be estimated with the usual
material balance relationship:

_ G
gzg[l_ G[J (7.26)
4 ’

!

where G, is initial gas volume and G, the cumulative gas production,

When the pseudo-steady state Equation 5.14 is used with the pseudo-pressure of
Equation 7.7. the resulting average pressure p . Is different (Equation 5.21 for oil

wells) :
— T
m(pm) =m(p,)— 2.349¢/1—q“hz At
; Gyt
(7.27)
. T
=m(p,)-2349 ———
¢/11 Cu hA

As mentioned in Section 7.1.3, transforming the pressure variable into pseudo-pressure
does not correct the changes in gas compressibility when there is significant depletion.
Instead of using the pseudo-time, Bourgeois, and Wilson (1996 c) propose correcting

the analytical model by m(p)— m(; o )

For each time step of the calculation. the cumulative gas production G, is used to

estimate ; from the material balance relationship of Equation 7.26, and then p is

changed into m(p)A The second term m(;ﬂp) is estimated from Equation 7.27. With

this correction, the model response follows the linear relationship of p/Z versus the
cumulative production, and therefore the overall material balance is honored.
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Figure 7.3. Deliverability plot for a backpressure test. Log-log scale, pressure-squared method.

7.3  DELIVERABILITY TESTS

Even though it is possible to predict gas flow rate against wellhead pressure from the
results of transient test analysis, the deliverability testing procedure is still used on gas
wells. By flowing the well at several different rates, deliverability tests are in fact well
adapted to the analysis of the non-Darcy flow effect. The two analysis methods,
transient and deliverability, can be applied to the data.

7.3.1 Deliverability equations
Empirical approach

In 1936, Rawlins and Schellhardt presented an empirical relationship between flow
rates and the stabilized flowing pressures p,,,:

g, =Clp? - Pas y (7.28)

where the pressures p; and p,.rare in absolute units, C and » are two constant terms. The
coefficient » can vary from 1 in the case of laminar flow to 0.5 when the flow is fully
turbulent.

As shown in Figure 7.3, a log-log plot of (p” - p,/) versus g, yields the "stabilized
deliverability straight line", of slope 1/n. The Absolute Open Flow (AOF) Potential is
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estimated by extrapolating the stabilized deliverability line to atmospheric pressure (p,,,
= 14.7 psia). The deliverability analysis illustrated in Figure 7.3 is also called the "C &
n" or Fetkovich (1973) method.

In infinite or closed systems, the pressure never stabilizes during drawdown: it first
follows the semi-log approximation and, during pscudo-steady state regime, it is a linear
function of time (sece Chapter 5.4). A stabilized flowing pressure condition is seen only
when the gas reservoir is in contact with a constant pressure support. In the empirical
relationship of Equation 7.28, the flowing pressures p.; is said to be stabilized when the
pressure variation is no longer measurable. It is therefore related to the sensitivity of the
pressure gauge.

Theoretical approach

A more rigorous treatment of deliverability tests in closed systems can be developed if
the stabilized pressure is replaced by the pressure during the pseudo-steady state regime
(see Chapter 5.4). In theory, the initial pressure p, has to be replaced by the average

reservoir pressure p. but it is assumed that the depletion is negligible and p is

constant. A new form of the deliverability equation, including a term g, for turbulent
flow is obtained.

In a closed system, the difference between the pseudo-steady state flowing pressure p,,
and the following shut-in average pressure p is constant (see Section 5.4.7). When the

pseudo-pressure of Equation 7.7 is used, Equation 520 gives the laminar-inertial-
turbulent (LIT) flow relationship:

-

— Alr T
nlp - mlpy, )=1637 1 tog 2/ 035140.87S g, +1422-- D (7.29)
khloCoC, ‘ kh

With a circular reservoir of radius r,, C, = 31.62 and the Equation 7.29 reduces to
(Houpeurt, 1959; Mattar and Brar, 1975):

- 0.472r,
nlp)-mlp,, )=1637 %[2 log —— ey 04875% 11422 ;T}; D> (7.30)

7 s

i
Before the pseudo-steady state regime, the response follows the semi-log approximation

and Am(p) is expressed as:

— T T
mlp)-mip,, )=1637 1| log— 2132340875 g, +1422--Dg?. (7.31)
kil " gueyry kh



Deliverability analysis 315

40,000

35,000

30,000

25,000

m{p)/q (psia2D/cpMscf)

20,000 * y y
0 2000 4000 6000 8000
Rate, g, (Mscf/D)
Figure 7.4. Deliverability plot for an isochronal or a modified isochronal test.
Linear scale, pseudo-pressure method.

The two Am(p)deliverability relationships can be expressed as a(f)q,. + bq‘wz. During the
infinite acting regime, a(¢) of Equation 7.31 is an increasing function of the time

whereas "g" is constant when pseudo-steady state is reached (Equation 7.30). The
coefficient "&6" is the same in the two equations.

In Figure 7.4, the ratio lm(p,)~m(pMA,/v)J/qSC is expressed versus g, on linear

coordinates (Houpeurt or LIT or "a & 4" method). The two characteristic behaviors of
Equations 7.29 and 7.31 are described by two parallel straight lines of slope "5". The
lower line, of intercept a(t,), describes the transient deliverability response at ¢,, and the
higher line is the "stabilized deliverability straight line", of intercept "a". The Absolute
Open Flow Potential is estimated by solving the quadratic Equation 7.30 at p,, = 14.7
psia:

—a+ya’ +4ab{m(p) - m(14.7))
2%

95, AOF = (7.32)

7.3.2 Back pressure tests

The well is produced to stabilized pressure at three or four increasing rates gy, (Figure
7.5), the different flow periods have the same duration. This testing sequence is also
called a "Flow after flow test". In low permeability reservoirs, the total production time
can be relatively long.

When the empirical approach is used, the stabilized pressures p,;; and rates g, are
plotted on log-log scale with (p,2 - p“‘,‘/z) VErsus ¢, as shown Figure 7.3. If the pseudo-
pressure is preferred, the deliverability plot is as shown in Figure 7.6, with

[m(p,)—m(pw/- )l/qm versus ¢,.. The intercept "a" and the slope "5" of the stabilized
deliverability straight line are measured, and the AOF is estimated from Equation 7.32.
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Figure 7.5. Pressure and rate history for a backpressure test.
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Backpressure tests were the first method to evaluate well deliverability. The testing
procedure is time consuming, a large volume of gas is produced and there is only one
build-up period. Since the procedure is not well adapted to transient analysis, the
isochronal or modified isochronal tests are frequently preferred.

7.3.3 Isochronal tests

With isochronal tests, the well is again produced at three or four increasing rates but a
shut-in period is introduced between each flow. The drawdown periods at g,.; are
stopped during the infinite acting regime after the same production time £, and the
intermediate build-ups last until the pressure is back to /mitial conditions p;. The final
flow is extended, sometimes with a reduced flow rate, to reach the stabilized flowing
pressure (Figure 7.6).
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The total produced gas is smaller during isochronal tests than with the back pressure
procedure but, due to the shut-in periods, the test duration is relatively long. A complete
transient analysis can be carried out on each of the build-up periods of the isochronal
test procedure.

On the log-log plot (p/ - Puf) versus gy, of Figure 7.7, the different pressure points py,
measured at £, follow a transient deliverability straight line parallel to the stabilized
deliverability line. The slope 1/n is then defined from the short flow periods, and the
final deliverability line can be drawn with a slope of 1/m through the point
corresponding to the stabilized pressure of the extended flow.
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With the pseudo-pressure method, the pressure points p,,, follow a straight line on the
linear plot of [m(p,)—m(pw/-)l/q\.L versus ¢, (Figure 7.4). The slope is "b" and

intercept "a(t,)". The stabilized deliverability straight line is then drawn parallel and
passing through the point corresponding to the stabilized pressure of the extended flow
period. The AOF is estimated from Equation 7.32.

7.3.4 Modified isochronal tests

With the modified isochronal sequence, the procedure is similar to isochronal tests
except that the intermediate shut-in periods have the same duration as the drawdown
periods and, as shown in Figure 7.9. only the last flow is extended until the stabilized
flowing pressure is reached. The total test duration is relatively short, and several build-
ups are available for transient analvsis.

For the pressure points measured at 7,. the difference on the y axis of the deliverability
plots are calculated with reference to the pressure at start of the period p,,, (Katz et al.,
1959), with p,,, = p,. The point for the final stabilized flowing pressure is expressed
with respect to the initial pressure p,.
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Figure 7.9. Pressure and rate history for a modified isochronal test.

With the empirical procedure, the log-log plot of (pw2 - p\,_,z) versus ¢, displays the
transient deliverability straight line of slope 1/x. The stabilized pressure of the extended
flow period is used to define the stabilized deliverability straight line parallel to the first,
and passing through the point (p, - p,/) (Figure 7.7). With the pseudo-pressure method
(Figure 7.4), the plot of [m(pm )= mp,y )J/q_\( versus ¢,. defines the transient straight

line of slope "A" and intercept "(r,)". The parallel stabilized deliverability straight line
is drawn through the extended flow period point, [m(p,)—m(pw, )l/q\.v , and "a" is

known. The AOF can be estimated from Equation 7.32.
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7.4 FIELD EXAMPLE

Figure 7.10 presents an example of a four point modified isochronal test sequence.
When the build-up periods are compared on a rate normalized log-log plot (Figure
7.11), the different derivative responses are correctly superposed during the radial flow
stabilization. It can be concluded that the flow rates are accurately measured during the
multiple rate test sequence.
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The following conclusions are established from the examination of the log-log plot of
Figure 7.11:

1. The radial flow regime is reached after approximately 0.1 hours. The duration of
the shut-in periods (and the three first flow periods) could have been reduced.

2. During the five initial minutes of shut-in, the wellbore storage effect is not
constant. Due to the variable gas compressibility at early shut-in times, the shape of the
derivative hump does not correspond to the usual wellbore storage behavior described
on the type-curve of Figure 2.22 (see Section 10.1.2).

3. Even though the derivative responses are correctly superposed, the pressure curves
are not. The skin is changing from one period to next; the well is affected by the non-
Darcy flow condition common with gas wells.
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Figure 7.12. Deliverability plot of the modified isochronal test. Log-log scale of AP vs. .

On the deliverability plot of Figure 7.12, the four flow periods define a single
deliverability line: the flowing pressures are close to stabilization at times of shut-in.
The straight-line slope indicates » = 0.72, confirming thus a moderate non-Darcy flow
effect.



CHAPTER 8

APPLICATION TO MULTIPHASE RESERVOIRS

The well test interpretation methods described in previous Chapters are designed for
wells producing a single-phase fluid, either liquid or gas. At surface, most wells
produce oil and gas phases but the reservoir fluid can frequently be considered as a
single phase fluid, and the usual interpretation methods for liquid or gas are applicable.

This Chapter describes test interpretation when the flow in the reservoir is multiphase.
A two-phase flow condition is encountered in solution gas drive reservoirs, when the
flowing pressure in the reservoir is below the bubble point, or in retrograde gas
condensate reservoirs below dew-point pressure. When water is produced, the flowing
fluid can be three phases. Multiphase flow is different from the wellbore phase
segregation phenomenon discussed in Chapter 10, where the second phase appears in
the wellbore.

When several phases are flowing together in a porous system, each reduces the ability
of the other phases to flow and the effective permeability for each phase is /ess than the
permeability for a single phase. The relative permeability of each phase is a function of
its saturation, which is not constant, either in space or in time. For example, in
reservoirs flowing below the bubble point, the effective permeability to oil is reduced
by the high gas saturation near the well. In retrograde gas condensate reservoirs flowing
below the dew point, the liquid saturation is highest around the well. The gas flow is
more restricted in this area than in the outer reservoir region, and the presence of a
liquid phase originated by retrograde condensation produces a non-Darcy flow
condition (Kniazeff and Naville, 1965). As for gas wells (see Chapter 7), the skin effect
S’ can be rate dependent in multiphase systems and change from one test period to the
next.

Several approaches have been proposed to analyze tests in multiphase reservoirs but
they all make simplifications for modeling the flow behavior. The simplest and most
widely used is the method presented by Perrine in 1956: an equivalent liquid flow rate is
considered, and the analysis methods of oil wells are applied. Other methods have been
presented, using multiphase pseudo-pressure (Fetkovich, 1973; Raghavan, 1976) or
pressure squared (Al-Khalifah et al., 1987). These are more difficult to use, the quality
of the results depends largely upon the validity of the saturation curves and the P.V.T.
properties introduced in the models.

In this Chapter, only the Perrine method is described in detail, the pressure squared and
the pseudo-pressure methods are simply introduced.
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8.1 PERRINE'S METHOD

The method s a modified single-phase approach. An equivalent liquid of constant
properties is defined as the sum of the three phases: oil, water and gas (Perrine, 1956;
Martin, 1959). The analysis vields the effective mobility of this equivalent fluid, but it
does not give the absolute reservoir permeability directly.

8.1.1 Hypothesis

1. The three phases are uniformly distributed in the reservoir

2. The saturations are constant and independent of the pressure

3. The capillary pressures are neglected: the pressure is the same in the different
phases.

In practice, the saturation gradients are not always negligible and the equivalent single-
phase fluid concept of Perrine can fail to describe multiphase flow (Weller, 1966;
Raghavan. 1989). This is particularly the case in the low-pressure area around the

wellbore, where the saturations can change significantly compared to the outer reservoir
zone.

8.1.2 Definitions

The flow rate of the equivalent single-phase fluid is defined, at sand-face conditions, as:

(4B), =4q,B, +q,B, +1,000q, B,

8.1)
= C]() B(} + Q\I'B\I' + (17000q\g - CI(J R\ )B},’

where ¢, is the gas rate measured at surface (expressed in Mcf/D), and ¢.R, the
dissolved gas at bottom hole conditions.

Perrine uses an empirical definition for the total mobility (4/u), of the equivalent single-
phase fluid. It is expressed as the sum of the effective phase mobility:

(k) = ko faa, + b faa +hy faag (8.2)
The effective total compressibility ¢, is expressed as (Martin, 1959):

¢ =c, +S,e, +S,0, +S,c, +5, (Bg/Bo)%+SW (, /B, )?J (8.3)
' p p
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The two last terms of Equation 8.3 correspond to free gas being liberated (or dissolved)
in the oil and the water phases after a change of pressure. The component of the
compressibility due to the change of gas-oil ratio at reservoir condition is frequently
larger than the other terms of Equation 8.3.

8.1.3 Practical analysis

Using the equivalent single-phase liquid concept and the effective compressibility, all
interpretation methods for oil wells can be applied directly to multiphase systems. The
analysis does not provide the absolute permeability, but only the fotal mobility (k/ 11),.

Dimensionless terms

The multiphase dimensionless pressure (Equation 2.3 for oil) is:

- (8.4)
o= 1412(4B),
The dimensionless time (Equation 2.4 for oil):
0.000264{k/ 1
t) = ——ﬁﬁ)—’ At (8.5)
per,

The dimensionless wellbore storage coefficient (Equation 2.5 for oil) is not changed :

c, - 0.89367C @)
e hr,

The dimensionless time group #;,/C), of Equation 2.6 is:

t kju) h
1 _ g opoa9s KA, (8.6)
D C
Semi-log analysis
The slope m of the semi-log straight line, expressed in Equation 1.15 for oil, is:
B
162692 87)

(k/ ),
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and, for drawdown periods, the skin equation 1.17 is expressed:

(k/ ),

APy,
P —log Ly

& e,

§=1.151 23 (8.8)

(%)

8.1.4 Discussion of the Perrine's method

The results of Perrine's method become less reliable with increasing gas saturation
(Weller, 1966). Furthermore. by ignoring the changes of saturation around the wellbore,
the skin can be over-estimated and the effective permeability is frequently
underestimated (Al-Khalifah, 1987; Raghavan, 1989).

When the relative permeability 4, . of the different phases is known, the absolute
permeability can be estimated from the effective mobility (&/20);:

(k/ﬂ)/ = k(kl'()//tl() + k!’H‘//IH + k}"g’ //Ig) (89)

The individual phase mobility (k/u)-,, .~ is sometimes estimated by introducing the
corresponding phase flow rate in the permeability Equations 8.4 and 8.7. This procedure
appears questionable when the saturations are not uniform or the producing fluid ratio is
not representative of the investigated zone.

8.2 PSEUDO-PRESSURE METHOD

Multiphase pseudo pressure functions have been proposed for tests in solution gas drive
reservoirs and gas condensate reservoirs. As opposed to the real gas pseudo-pressure of
Al-Hussainy et al. (1966 a) presented in Chapter 7, the multiphase pseudo-pressure uses
relative permeabiliny data,

The sensitivity of the pseudo-pressure methods to the quality of the relative
permeability curves deserves further examination. To our knowledge, the multiphase
analysis methods presented below have not been used intensively in the industry. The
methods need to be validated with documented examples.

8.2.1 Solution gas drive reservoirs
Definitions

In 1973, Fetkovich defined the multiphase pseudo-pressure as:
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Pk, (S
m(p) = jMdp (8.10)
; HoB

0 0

where the relative oil permeability 4,, is a function of the oil saturation S,,.

The relationship between pressure and saturation must be known to calculate the
integral m(p). During drawdown periods in solution gas drive reservoirs, the pressure
gradients and the saturation profiles around the well depend upon the rate sequence.
Thus, the multiphase pseudo-pressure function is not only dependent on pressure, but
also on the test history. During shut-in periods, the saturation-pressure relationship used
for the m(p) calculation is different. The pressure build-up reflects the initial conditions
(Raghavan, 1976; Boe et al., 1981), namely the pressure distribution and saturation
profile at time of shut-in (A=0). Contrarily to the gas pseudo-pressure of Al-Hussainy
et al., the multiphase pseudo-pressure is not the same for drawdown and for build-up
periods.

Interestingly, m(p) can be generated with wellbore data only as the saturation at sand
face S, is used in Equation 8.10 (Raghavan, 1976; Boe et al., 1981). Raghavan (1989)
presented a method in which the permeability ratio k,/k, is estimated from the gas-oil
ratio Equation 8.11. For drawdown, the instantaneous producing gas-oil ratio R versus
the pressure is used. For build-up, it is assumed that R is constant during the shut-in
period, and it is equal to the producing gas-oil ratio at time of shut-in (A7 =0).

k cHo B(
gt (8.11)
kotty By

R=R

5

The relative permeability curves are used to convert k,/k, into the oil saturation at sand
face S,, and finally into &,, versus the wellbore pressure.

Discussion
The multiphase dimensionless pressure (Equation 2.3 for oil) is:

kh

=——Am 8.12
141.2¢q, 2 12

Pn

and the dimensionless time (Equation 2.4 for oil) is defined with the initial system
properties :

0.0002644
=N\

2

- (8.13)
Puiciry

D
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The validity of the multiphase pseudo-pressure function has been checked against
numerically simulated pressure data (Raghavan, 1989). During the transient period, the
method gives the absolute formation permeability and corrects for the skin effect due to
free gas saturation near the wellbore. During pseudo steady state flow the results are
less accurate.

The main drawback of the pseudo-pressure is that. as the calculation of the pseudo
pressure is not the same during flow and shut-in periods, drawdown and build-up are
not exactly reversible. This implies that the concept of superposition cannot be used,
and therefore the analysis of transient tests becomes questionable.

8.2.2 Gas condensate reservoirs
Definitions

For gas condensate reservoirs, Jones et al. (1988, 1989) developed a pseudo pressure
function with the same concept as the solution gas drive Equation 8.10, but it is
expressed with the two phases:

P k /( y N
m(p)= J. 2., $+pg L dp (8.14)
o i, U,

where p, . is the molar density of the oil and gas phases. It is assumed that the pressure
drops below dew-point pressure around the well. but the outer reservoir region is still
above dew point. in single-phase gas.

In order to express the saturation with the pressure. Jones and Raghavan (1988) suggest
using a steady-state relationship between the relative permeability for oil (4,,) and for
gas (k,,):

k, Mo L
Kro _ Pello® (8.15)

krg p()lugV

Here, L and }" are the mole fractions of liquid and vapor. for each step of equilibrium of
a Constant-Composition-Expansion test.

In the calculation of the integral Equation 8.14 with respect to the wellbore pressure, an
equation of state is used to define molar density and viscosity, and relative permeability
curves are needed.
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Discussion

In transient analysis of gas condensate reservoirs, the estimated skin factor appears
smaller when the multiphase pseudo pressure function is used instead of the usual gas
pseudo pressure of Al-Hussainy et al (1966). The multiphase analysis takes into account
the saturation profile when the pressure is below dew point, and therefore it corrects for
the "damage" caused by condensate drop-out near the well. On the other hand, the
steady-state approximation used in Equation 8.15 can introduce errors in the total
mobility.

When the single phase gas pseudo pressure is used for analysis, the radial changes of
mobility due to variable saturations are not accounted for, and test pressure responses
usually describe a composite reservoir behavior. As for falloff tests in injection wells
(see Section 4.3.5), Gringarten et al. (2000) defines several zones around a well flowing
below dew point. Between the outer reservoir region, at initial liquid saturation, and the
near wellbore region where the two phases are flowing and the apparent gas mobility is
reduced, a transition zone with increasing condensate saturation develops. Possibly, a
fourth region with a low liquid saturation and an increased gas mobility can be present
in the immediate vicinity of the wellbore.

8.3 PRESSURE SQUARED METHOD

Because of the limitations of the pseudo-pressure approach discussed earlier, and when
relative permeability curves are not available, the pressure squared method of Al-
Khalifah et al. (1987) offers an interesting alternative for the analysis of multiphase
flow tests.

Definitions

Al-Khalifah et al. showed that, by approximating the group (k,/¢,B,) to a linear function
of the pressure, the multi-phase flow equation can be simplified to a diffusivity equation
expressed in terms of pressure squared. Therefore, multi-phase pressure data can be
analyzed with p* instead of p, using the usual interpretation solutions.

Calling "a" the constant proportionality,

k
Lo —ap (8.16)

4, B,

the multiphase dimensionless pressure (Equation 2.3 for oil) is defined with respect to
the oil parameters a and g,
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h
Py == alp?) (8.17)
2824q,

The effective total compressibility and the dimensionless time are the same as with
Perrine's method (respectively Equation 8.3 and, using the effective mobility (&/u),
Equation 8.5).

For semi-log analysis with p* versus log Az, the straight-line slope 1 is expressed as:

m=3252 o (8.18)
ah
and, for drawdown periods, the skin equation is:
2 2
S —pf k/ i
§=1151 L P —1og(“),’+3.23 (8.19)
pe,r,

Several choices of reference pressure p,., are proposed for evaluating the empirical slope
"a" in Equation 8.16. In the case of high volatile oil, and in low volatile oil when the
drawdown is low, the authors suggest estimating this constant at initial pressure p, for

drawdown periods and, for build-ups, they recommend using the average reservoir
pressure p. When the oil volatility is low and the drawdown high, p,.,=p.{A=0.1hr)
for drawdown, and p,./~p.,(Ar=10hr) for shut-in.

The effective oil permeability is obtained from the pressure match of Equation 8.17 (or
the semi-log straight line Equation 8.18)

2824%, Pret (/1{) Bo )/’ru/
k(} i h PM (8.20)

the gas and water effective permeability are estimated from the following:

1, B,
k, :(GOR—R\)/ g (8.21)
; IL[{)B{)
/IH BH'
k, =WOR ok, (8.22)
ILI[) €

where the viscosity g, and the formation volume factor B, are evaluated at p; for
drawdown, and p for build-up periods. The total mobility is then expressed with
Equation 8.2.
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Discussion

As with Perrine's equivalent fluid, the producing fluid ratio must be representative of
the investigated zone. Only the effective permeability can be estimated with the
pressure-squared method, not the absolute permeability. The results depend directly on
the choice of the constant of proportionality for the (k,/u,B,) group. Al-Khalifah et al.
(1987) report that the oil effective permeability and the skin are more accurately
estimated than with the Perrine's approach, especially for build-up tests.
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CHAPTER 9

SPECIAL TESTS

In the previous Chapters, well pressure responses to constant flow rates were considered
for analysis. Other testing procedures are used in some cases, and the interpretation
methods must be adapted accordingly. In the first part of this Chapter, different types of
well tests with varying rates are described.

In Sections 9.1 and 9.2, the pressure response to a step pressure change is considered,
such as in tests with down hole shut-in devices (drill stem tests) and impulse tests, when
the well is opened for only a few minutes. The DST procedure is presented and the
analysis methods are reviewed with the hypothesis of the well flowing to surface or not.
Specific techniques are required for the interpretation of DST's. The impulse test
procedure is then described as an alternative.

Section 9.3 covers tests of wells flowing at constant pressure. The transient flow rate
analysis methods are presented for oil and gas reservoirs, and the practical limitations of
constant pressure tests are discussed.

In a second part, Section 9.4, vertical interference tests are briefly reviewed. It is shown
that this single-well testing technique can be used for accurate determination of the
vertical permeability.

9.1 DST

9.1.1 Test description

With the drillstem testing technique, the well is controlled by a down hole shut-in valve.
For safety reason, the drill string is not usually used for the test, and production tubing
is preferred.

Before the test, the well is partially filled with a liquid cushion designed to apply a
hydrostatic pressure p, above the valve smaller than the formation pressure p;,. When the
tester valve is opened, an instantaneous drop of pressure is transmitted to the sand face,
and the formation fluids start to flow into the well.
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Figure 9.1. Example of DST pressure response. The sequence is initial flow. initial shut-in. flow
period and final shut-in. The rate is fess than critical.

In case of liquid flow, the fevel rises in the production string and the backpressure due
to the liquid column increases. As long as the liquid level has not reached the surface
(and provided the flow rate is less than critical, Ramey et al., 1975 a), the rate decreases.
This is called a "s/ug resr”, which requires specific analysis techniques.

The well is then shut-in for a pressure build-up. When no flow to surface is desired, the
down hole valve is closed before the liquid level has reached the surface. As illustrated
in Figure 9.1, the usual drill stem test procedure consists of a first short initial flow
followed by the initial shut-in to reach p,. The well is then opened for the slug test and,
due to the backpressure of the rising liquid column, the bottom hole pressure increases.
Finally. the well is shut-in for a build-up period.

If surface production is possible, the flow time is extended until the well produces at
surface and the rate tends to stabilize. The DST procedure then becomes similar to that
of a standard production test.

In low-pressure wells, the flowing pressure can reach the initial reservoir pressure
before the down hole valve is closed. In these cases, the well kills itself and the pressure
build-up cannot be monitored after the liquid flow has stopped. Only a slug test analysis
can be attempted.

When the flowing condition is c¢ritical, the rate is not controlled by the downstream
pressure but by the completion or perforations configuration. The rate is constant and
the pressure increases linearly with time during the flow. The flowing bottom hole
pressure is not suitable for interpretation and only the shut-in period can be used for
analysis of such tests,
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9.1.2 Slug test analysis
Slug test type-curves

In 1975 (a), Ramey et al. presented a set of pressure type curves for the analysis of slug
tests on log-log and semi-log scales (the log-log type curve is presented in Figure 9.2).
The pressure, expressed by the dimensionless ratio ppg, is presented versus the
dimensionless time 1,,/C),. The different curves describe the well condition with the
usual correlating C, e* group.

The dimensionless pressure ratio pp; is defined by the drop of pressure (p; -puy),
normalized by the instantaneous drop of pressure (p; - po) applied when opening the
valve:

pi—pu (1)
pDR:_’____/__ 9.1
P = Po

When the well is opened, the pressure ratio ppy is 1. As the liquid level rises in the well,
(p; - py) decreases and the ratio becomes less than one.

With the slug test type curves of Figure 9.2, the same pressure ratio is used for the data
and the dimensionless curves. Only the time match and the curve match have to be

adjusted.

The permeability thickness product is accessed from the time match (Equation 2.6):

h = uc (’/) /Coj ©.2)
0.0002950 A1 )ypren
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Figure 9.2. Slug test type curves. Log-log scales, ppp versus £p/Cp.
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The wellbore storage coefficient must be known. With a changing liquid level, C is
expressed, in oil field units:

C :144—L (1.8)
prle/g.)

where I, is the wellbore volume per unit length in barrels per foot, p the density of the
liquid in pounds per cubic foot and g/g. the gravitational acceleration in lbg/lb,,. The
skin is estimated from Equation 2.11:

C )2.\' N
S:O.Sln(L)M‘% (9.3)
0.8936C / ¢gc, hr,,

Analysis of slug test pressure with derivative type-curves

The pressure behavior during a slug test can be expressed with the usual drawdown
pressure response Ap of Equation 1.1 by a simple relationship: the response to an
instantaneous change of pressure is proportional to the time derivative of the pressure
response to a constant flow rate (Ramey et al., 1975 a; Cinco-Ley, et al., 1986; de
Franca Correa and Ramey. 1987. Ayoub et al. 1988).

Using the dimensionless pressure p;, of Equation 2.3, Peres et al. (1993) express the
pressure drop (p, - p.,) during a slug test as:

0.000295kh d,
A[(p[ ~ Py (f))_ 'L 94)

Culp, — py) _dlnt,)

From Equation 9.4 it can be seen that. the product of the slug test pressure change (p, -
puwy) and the elapsed time Ar can be matched directly against a derivative type-curve,
without having to differentiate the data. Any of the derivative type-curves presented in
previous Chapters can be used to analyze slug test responses, in homogeneous and
heterogeneous reservoirs.

The permeability thickness product is estimated either from the time match with
Equation 9.2, or from the pressure match of Equation 9.4:

_ /
kh= #C(p, Po)( dpy /dInt), } (9.5)
MATCH

0.000295 | Adlp, - p,, (1))

As with the slug test type-curves of Ramey et al., the wellbore storage and the skin
coefficients are calculated from Equations 1.8 and 9.3.
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Limitations of slug test analysis

Several other analysis methods have been presented for slug test interpretation. Peres et
al. (1993) proposed integrating the slug test pressure response and using the
conventional pressure type curves as a complement to the derivative curves.
Conversely, Ostrowki and Kloska (1989) suggested using the time derivative of Ramey
et al. slug test type curves to match the derivative of slug pressure.

Whatever method is used, the analysis of slug tests is not as accurate as the analysis of a
standard drawdown response with a constant surface rate. The following two factors are
identified as the main limitations for slug tests interpretation:

1. Definition of the initial pressure: All slug test analysis methods use the
dimensionless pressure ratio of Equation 9.1. With this group, the initial reservoir
pressure p, must be known accurately and a small error in p; can introduce a large
distortion on the late time data curve. This is especially true in low-pressure wells, when
the flowing pressure becomes close to the initial pressure and the difference (p; - p.y)
relatively small.

2. Wellbore storage effect: Due to changing liquid level, the wellbore storage
coefficient C is large and, as the duration of the flowing period is in general short, the
response is often influenced by the wellbore storage effect for the entire flowing time.
The radial flow regime is not seen, and the match is difficult to conclude uniquely.

9.1.3 Build-up analysis

At the end of the drill stem test procedure, the well is shut-in down-hole for a pressure
build-up. Two possibilities have to be considered, depending on whether the well is shut
in before the liquid level has reached the surface or not:

1. Ifthe surface flow rate is well established before shut-in, the build-up is analyzed in
the same way as the shut-in period of a producing well (Section 2.2.2).

2. When, as illustrated in Figure 9.1, the well is shut-in while the liquid level is still
rising, the decreasing sand face rate has to be known as a function of time in order to
analyze the subsequent build-up. Due to the high cost of down-hole flow metering, and
for safety reasons, rate measurements are in general not considered for non-surface
flowing DST's and flow rates must be estimated.

Rate estimation

In the following section, an example of flow rate estimation for a DST with no flow at
surface is presented. As shown in Figure 9.3 with the simulated DST example of Figure
9.1, the slug test response is described by several pressure steps. Knowing the liquid
gravity and neglecting inertial and frictional effects in the production string (which is
reasonable since fluid velocity is low), the pressure difference between each step is
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converted into the corresponding height of fluid. From the capacity of the production
pipe, the height is converted into volume. With this hydrostatic calculation, the final
build-up period can be analyzed with the multiple rate methods described in Section
222,

In this example, the one-hour flow period is divided into 6 time intervals. During each
interval /, the constant pressure p  is defined as the average pressure between the start

and the end of the time interval ;/ =(p,, +p,)/2 . Seven pressure points are used: po

is the pressure in the string immediately before opening, and pg is the last flowing
pressure p (Ar =0). The rise of liquid level is estimated from pressure difference

between two steps (p, —p, ;). Assuming a specific gravity of 0.75, the oil gradient is

estimated at 0.325 ft/psi. The capacity of the drill string is 0.007 bbl/ft.
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Figure 9.3. Example of rate estimation during a DST {low period. Lincar scales.

Table 9.1. Rate calculation example

point time,  pressure, average fluid rise, rate of fluid flow rate,
# hr psi pressure. psl ft rise, ft/hr BOPD
Jooo p » Ak, = PiTpn Al = AT 01007.)(
J / p, / 0375 [,=1, 24xAh
0 1.1000 472451
1 1.2095  4753.13 4738.82 44.05 (*) 805.06 135.25
2 1.3414 4783.17 4768.15 90.25 684.00 114.91
3 1.5110 481647 4799 .82 97.45 576.04 96.77
4 1.7120 4848.19 4832.33 100.04 497.42 83.57
5 1.8983 4875.02 4860.61 87.00 466.09 78.30
6 2.1000 4900.73 4886.88 80.83 399.73 67.15

(*) the first rate g, is estimated with 1—70 = p, and the time rate of fluid rise Ah' is
doubled.
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As shown in Table 9.1, the flow rate decreases from 135.25 to 67.15 BOPD, the average
rate during the one-hour flow period being 91.05 BOPD.

Inertial and frictional effects can be ignored for the usual DST conditions. In high rate
producing wells, they could become significant (Saldana-C and Ramey, 1986).

Practical analysis of DST's

As for any build-up test, the final shut in period is analyzed using log-log and semi-log
methods. Due to the down hole shut-in device, the effect of the wellbore storage is short
lived during a DST build-up period. Frequently, the response reaches the radial flow
regime before the first recorded point and, on log-log scale, the pressure and derivative
responses tend to be flat. As a result, both the time match and the curve match Cpe®
can be difficult to fix on the p, versus #p/C); dimensionless type curve. The match of the
build-up data is not uniquely defined, and the analysis does not provide the wellbore
storage coefficient C but only the £k product and the skin coefficient S,

Computer analysis allows a simulation of the complete test to be made as a checking
procedure but, with most interpretation programs, the wellbore storage coefficient C
used in the simulation is constant during the complete test sequence. With DST's, when
the down-hole valve is closed for build-up, C is two or three orders of magnitude
smaller than the wellbore storage of a flowing well. As a result, the DST simulation,
generated from the build-up analysis results, does not match the flow period accurately.

de Franca Correa et al. (1987) view the flow / shut-in sequence of non-surface flowing
DST's as a single slug test period, with a sharp change of wellbore storage at time of
shut-in. After the initial instantaneous pressure drop, the wellbore storage first
corresponds to the changing liquid level of Equation 1.8. When the down-hole valve is
closed, the storage becomes the compressibility term of Equation 1.7. With this
description of the DST sequence, the complete test can be simulated accurately.

9.2 IMPULSE TEST

9.2.1 Test description

In impulse tests, the well is produced from or injected into the reservoir for only a few
minutes and then closed. The impulse technique is a variation of the DST analysis
method:

e ForaDST, a step pressure drop is applied to the formation and, during the resulting
slug test period, the well is considered to be flowing. A build-up test is made after the
flow (second flow and shut-in of Figure 9.1).
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Figure 9.4. Impulse pressure response.

e  With impulse tests, the pressure drop is generated by a short production, and the
following pressure increase is analyzed as a shut-in period (first flow and shut-in of
Figure 9.1, or Figure 9.4).

9.2.2 Impulse analysis

With the impulse analysis method of Ayoub et al. (1988), a single analysis plot of the
complete well pressure response is used to obtain all well and reservoir parameters.
During the short flow. the impulse response is expressed as (p, — p,, ), and, during

the shut-in, as (p, — p,,, )1, +Al).

As with the Perez et al. method. the derivative type curves are used to analyze the
pressure response. The impulse match of the homogeneous reservoir example of Figure
9.4 (1,=5 min., shut-in = 2 hr.) is shown in Figure 9.5. During the flowing time, the
impulse response is matched on a pressure type curve and, during the shut-in period, the
response deviates from the usual pressure response to reach the derivative curve with
the same C), ™.

The pressure match is adjusted to the 0.5 line of the derivative type-curve. Since the
flow rate is not measured during the short flow period and only the amount of fluid 0,
produced or injected is known, the pressure match is expressed by replacing
C(p, — py) in Equation 9.4 by O, (Ayoub et al., 1988):

0.000295kA d
00295 (,+ac)p, - p)=—22
O, 1 dint,

(9.6)
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The time match is obtained by matching the early time data with the pressure type-
curve, giving the wellbore storage coefficient C with Equation 2.10. The skin is then
estimated with Equation 2.11.

9.2.3 Discussion of impulse analysis

Frequently, the rate is not constant during the short flow period and the early time
match is not accurate. In these cases, the response is properly defined only during the
radial flow regime at shut-in time, with a stabilization of the pressure response on the
0.5 derivative line. Both the wellbore storage coefficient C and the type curve parameter
Cp,¢* are difficult to define, and the calculation of skin is approximate.

For accurate analysis of impulse tests, the initial pressure must be known. When p; is
not known, Cinco et al. (1986) propose starting by analyzing the derivative of the
impulse, on a second derivative type-curve.

The impulse method has also been used (rather than the Horner method) to analyze
build-up tests after relatively long production periods (Soliman, 1982; Cinco et al.,
1986), when Az >> ¢, The pressure change (p; — p,,) is analyzed versus (¢, + Ar), thus

avoiding the compression effect of the Horner time on the analysis plot.

The conventional pressure derivative (Chapter 2) does not compress the time scale
either. When the derivative response can be accurately defined, it offers the best
alternative for the analysis of build-up tests, whatever the duration of the flowing period
fp, and the shut-in time As. The derivative analysis is not affected by a possible error in
initial pressure, and the pressure curve can be used to estimate the skin accurately. This
is illustrated in Figure 9.6, where the conventional build-up analysis of the shut-in
period after S minutes flow of the example Figure 9.4 is presented.
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9.2.4 Well responses after an instantaneous source: summary

Slug and impulse test theories are based on the response to an instantaneous source.
During non-surface flowing DST's. slug test responses are affected by a large wellbore
storage effect and the analysis is frequently not unique. With the impulse technique, the
effect of wellbore storage is shorter. and the start of the characteristic radial flow regime
is seen earlier. The main limitation of the impulse technique during early time is the
change of behavior, between the short flow and the shut-in period. The best analysis
data is obtained during build-up tests with down-hole shut-in.

The response to an instantaneous source can be used not only for specifically designed
tests, but also for a quick and reliable analysis of the well pressure behavior after
underbalanced perforation, after backsurging operations, or for a repeated formation test
(Ayoub et al., 1988; Cinco-Ley et al., 1986; Waller and Krase, 1986).

9.3 CONSTANT PRESSURE TEST, AND RATE DECLINE ANALYSIS

Wells are sometimes producing at constant wellbore pressure. This condition is
obtained for example when the well produces into a separator or a pipeline at constant
pressure. In such cases, the rate is not constant but declines with time.

As shown by van Everdingen and Hurst (1949), there is a simple relationship between
the constant rate solution and the constant pressure solution. Any of the constant rate p,,
functions presented in previous chapters can be changed into a constant pressure g
function. Transient rates can be analyzed using techniques analogous to that of transient
pressures for constant rate flow.
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9.3.1 Radial homogeneous oil reservoir response

Several analysis methods of rate versus time have been proposed, using log-log type
curves or using semi-log straight line analysis. In 1952, Jacob and Lohman presented
the type curve shown in Figure 9.7, as the infinite reservoir response.

For log-log analysis, the dimensionless flow rate is expressed as:

= t 97
qn mé]() 9.7)

and the effective dimensionless time f;,, based on the equivalent wellbore radius of
Equation 1.14, is used (Uraiet and Raghavan, 1980; Ehlig-Economides and Ramey Jr.,
1981 a). The kh product and the skin factor S are estimated from the rate and time
matches.

Except at very early time, the rate does not change significantly with time, and the
shape of the ¢ versus At log-log curve is not very characteristic. Frequently, the

uniqueness of the match is difficult to establish.

For semi-log analysis, the reciprocal of the rate 1/q is plotted vs. log Ar.

~323+0.87S (9.8)

I
L 66— B logAr + log 5
q kh(P, _'pw/') ¢/JC‘[}”W

The relationship expressed in Equation 9.8 is similar, except for the slope m, on the
right hand side, to the usual semi-log pressure response of Equation 1.15 (homogeneous
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reservoir and constant rate production). However, the time to reach the semi-log straight
line is /onger with constant pressure tests than with the constant rate pressure responses
(Uraiet and Raghavan, 1980; Ehlig-Economides and Ramey Jr., 1981 a).

The permeability is estimated from the slope m, and the skin is estimated from the
intercept of the 1/q straight line at 1 hour:

q

Bu

kh=1626——"———
mz/ (pr ~ Py )

(9.9)

L g(1hr
so115 L4l ')—log £ 303 (9.10)
", pucr,

Fetkovich (1980) presented a set of flow rate type curves for closed circular reservoir
(Figure 9.7). Dimensionless flow rate and time are the same as on the Jacob and
Lohman type curve (1932). the curves are labeled in terms of dimensionless reservoir
radius r./r,.. Before boundary effects. the rate response is similar to the Jacob and
Lohman type curve. During pseudo steady state flow, the decline of flow rate is
exponential when a constant pressure is imposed on the well.

The practical aspects of long-term constant pressure tests make the identification of
boundary effects by decline curves analysis difficult. A late time deviation from the
infinite reservoir curve can be caused by a small change in the flowing pressure, or a
variation in the wellbore skin damage during the production. Fetkovich decline curves
have been designed not only for the analysis of constant pressure tests, but also for
production forecasting.

9.3.2 Other well and reservoir configurations

Double porosity reservoirs

Ozkan et al. (1987) discuss deliverability responses for double porosity reservoirs with
transient interporosity flow. The rate decline curves follow the same pattern as double
porosity constant rate pressure responses. On a semi-log plot of 1/g vs. A, the double
porosity response exhibits two parallel straight lines of slope m,. During transition, the
semi-log straight line has a slope of m,/2.

Finite conductivity fracture
Decline type curves for a well intercepting a finite conductivity fracture were first

generated with a numerical simulator by Agarwal et al. (1979 a) and, in 1981, Guppy et
al. used a semi-analytical solution. On the log-log type curves, the reciprocal of the
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dimensionless rate 1/g) is presented as a function of the dimensionless ¢, of Equation
3.8, and different fracture conductivities kywy, are considered. The dimensionless
reciprocal rate 1/¢, has the same form as the usual dimensionless pressure of Equation
2.3, but Ap is a constant (p; - p,), and g varies with time:

1 _kilp-py) 1

(9.11)
qn 141.2Bu g(¢)

Interestingly, the 1/q), deliverability curves look similar in shape to the p;, constant rate
pressure type curve of Figure 3.9, and therefore are easy to understand. The values of
the 1/g;, curves are greater than the pj, curves, but on the log-log scale, they show the
same characteristic 1/4 and 1/2 straight line slopes during the bi-linear and linear flow
regimes.

Massive hydraulic fracturing is a common practice in low permeability gas reservoirs.
Such wells normally produce at constant well pressure. The use of the 1/g, finite
conductivity fracture log-log type curves on gas well responses is discussed in the next
Section "Gas reservoirs',

Multiple well production

Other well and reservoir configurations can be envisaged for decline rate analysis. Any
well test interpretation model, designed for pressure analysis, can be used to generate
decline curves. In addition, Bourgeois and Couillens (1994) proposed a general
superposition method to predict pressure or flow rate responses in the case of multiple
well production. The van Everdingen and Hurst (1949) relationship, between the
constant rate pp function and the constant pressure g function of a single well, is
generalized to the case of “n" interfering wells producing with mixed constant pressure
or flow rate constraints. A computer program is required to generate the responses, but
the simulations predict the rate behavior accurately for complex producing system and
any well test model.

Gas reservoirs

In 1989, Berumen et al. investigated gas rate decline analysis. When radial flow is
established, and assuming the skin is not rate dependent, 1/q,. versus log At follows a
semi-log straight line. The slope m, is expressed with the gas pseudo pressure m(p) (as
in Equation 7.19 for constant gas rate pressure response, Agarwal et al., 1979 a):

m, =1.63x10° d (9.12)

kh [m(p))-m(p,)]

The skin is calculated with Equation 9.10, where u and ¢, are estimated at initial
pressure p,.
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Figure 9.8. Transient gas rate with rate dependent skin factors. Linear scale.

By incorporating a rate dependent skin (S '= S +Dg) in the analytical solution used to
generate decline rate curves. Bourgeois and Wilson (1996 ¢) showed that the shape of
the rate transient is changed significantly compared to the constant skin response.

This is illustrated on the simulated example of Figure 9.8, with a well flowing at
constant pressure in a homogeneous infinite reservoir. First, a constant skin is assumed
(D=0, S" = S =15) and the rate at 3000 hours is estimated at 17,180Msct/D. Two
additional simulations are generated with the same global skin (S’ =15) at 3000 hours. In
one case. § =7.5 and D=0.000446 and. in the other case. S =0 and D=0.000893. On the
two simulations with non-Darcy flow effect. the flow rate starts to be smaller than in the
case of constant skin, at 3000 hours the curves cross each other, and it becomes larger.
If the reservoir was closed, the rate curves would intersect again during the pseudo
steady state regime. and the constant skin rate would end-up the larger (Bourgeois and
Wilson, 1996 ¢).
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Figure 9.9. Semi-log plot of transient gas rate of Figure 9.8 with rate dependent skin factors.
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In Figure 9.9, the data of Figure 9.8 is presented on a semi-log scales in terms of the
reciprocal of the rate 1/g,.. The three simulations follow an apparent semi-log straight
line but, when D#0, the slope is smaller than m, defined in Equation 9.12 for D=0 (by
25% and 40% respectively in this example). When the skin is rate dependent, the
permeability is over estimated by semi-log straight-line analysis.

In the case of finite conductivity fractured gas wells, when the well response is not
affected by non-Darcy flow effects, the deliverability type curves of Agarwal et al.
(1979 a) or Guppy et al. (1981) can be used to estimate the well and reservoir
parameters (namely &k, x,and kw)).

Using the gas pseudo pressure function m(p), the dimensionless reciprocal rate 1/q), is
expressed as (Equation 7.7 for the dimensionless pressure)

1 kilm(p)=m(p,)] 1

— (9.13)
qp 14227 Gy ()

In the dimensionless time ¢, i and ¢, are estimated at initial pressure p;.

During the bilinear flow regime, a Cartesian plot of 1/g,. versus (An"™ displays a
straight line of slope mg ¢ (similar to Equation 1.27 for the constant oil rate pressure
response, Guppy et al., 1981):

493.8T

e = [m(P, )= 1Py )] h‘/k/—W; W

In practice, when the fracture is long and £ is small, radial flow is not reached before
several years, and the transient rate data does not exhibit the three characteristic flow
regimes. A complete analysis with the deliverability curve frequently requires a
previous knowledge of the k4 product from a pre-fracturing build-up test (Agarwal et
al., 1979 a). Alternatively, when the three parameters k4, x; and kpw, are known, the
curves can be used for performance prediction of fractured gas wells.

(9.14)

Guppy et al. (1981) report that when the well response is affected by non-Darcy flow
effects, the 1/4 slope straight line of the of 1/g,. log-log plot is distorted, resulting in an
apparent varying fracture conductivity.

Build-up analysis after a constant pressure flow

When a build-up test is conducted after a period of constant pressure flow, the time
superposition should be used in order to take into account the declining rate prior to
shut-in. As shown Section 9.1.3 for DST analysis, the superposition function is
generated by approximating the rate curve with several constant flow rate periods.
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When the equivalent Horner time is used for simplification, the production time is
defined as the cumulative production divided by the last flow rate. Ehlig-Economides
and Ramey (1981 b) report that the analysis results are sufficiently accurate in the
majority of cases.

9.3.3 Discussion

Even although tests at constant pressure yield in theory the same information as
constant rate pressure data, they appear to have limited applications due to practical
problems:

e Maintaining a constant flowing pressure can be difficult, especially at early time,
when the analysis of near wellbore effects is desired. In addition, a constant wellhead
pressure does not imply a constant sand face pressure. The pressure drop from flowing
friction in the wellbore varies with the transient rate, and a correction is needed for
interpretation of constant wellhead pressure tests (Ehlig-Economides and Ramey, 1981
a).

e The wellbore skin must be conszant for rate decline analysis. This point must be
checked before analysis of long-term production tests. For gas wells, the occurrence of
non-Darcy flow distorts the transient rate response, thus significantly reducing the
accuracy of constant pressure test analysis.

e The technology for measuring flow rates does not provide data as accuratc as the
pressure gauges now available.

Caution must be exercised when planning or interpreting transient rate tests.

9.4  VERTICAL INTERFERENCE TEST

The knowledge of vertical permeability is of prime importance for field development
strategy. Some usual examples of the application of this knowledge are:

e Completion decisions. such as the evaluation of possible productivity increase by
horizontal drilling,

e  Production strategy, in the event of gas or water coning,

e  Enhanced recovery projects in the case of layered systems, when a tight zone is
separating two permeable intervals.

Feasibility studies related to underground storage in aquifers also require an accurate
evaluation of the vertical flow properties.

Vertical interference testing has been proposed by many authors for homogenous or
stratified formations, with different approximations of the vertical flow properties
(Bremer et al., 1983; Kamal, 1984; Ehlig-Economides and Ayoub, 1984). The vertical
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interference test model described in the following text is an extension of the Kuchuk et
al. multiple layer horizontal well analytical solution (1991 b). Both homogenous and
layered systems are envisaged, with a spherical flow geometry.

9.4.1 Test description

For a single-well vertical interference test, the well is perforated at two different depths,
but only one interval is active (flowing or injecting). The pressure is monitored on the
two perforated segments, isolated in the wellbore (see first diagram of Figure 9.10).
Several types of well completion can be used during such tests.

With the double-stage testing approach, which has been developed for gas storage
studies in low permeability formations, two tests are performed: one test on a discrete
short interval, and the other on a longer interval that includes the short interval. A
coupled interpretation of both tests allows independent calculation of horizontal and
vertical permeability.

9.4.2 Vertical interference test responses

On the examples of vertical interference responses of Figure 9.11, a homogenous layer
is assumed. The active segment is centered in the interval, the corresponding dotted
pressure and derivative curves are the same as the partial penetration example of Figure
3.17 for z,/h=0.5. Several vertical distances are considered for the observation segment.
If the vertical distance is small (z,.,»/#=0.6), the interference response describes the
spherical flow regime and the final radial flow over the entire reservoir thickness. When
the vertical distance is increased (z,,.,5,/#=0.8), the response is delayed and only the final
radial flow regime can be observed. As already discussed in the multiple well
interference test, Chapter 6, the three interference derivative curves of Figure 9.11 show
that, within the drainage volume, the rate of pressure change is the same at any point.
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Figure 9.10. Well and reservoir configurations.
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With the same well configuration, the influence of the vertical permeability k- is
demonstrated in Figure 9.12 (the dotted pressure and derivative curves correspond to the
same example of Figure 3.17. for k,7k;, = 0.005). When £;- is increased, the time of the
start of the vertical interference effect is reduced, and the magnitude of the pressure
response is larger.

Figure 9.13 presents three examples of vertical interference response across a low
permeability interval. The reservoir configuration, depicted on the second diagram of
Figure 9.10, is the same as for the horizontal well example of Figure 3.42 where a low
permeability interval divides the pay zone in two main layers. The dotted pressure and
derivative curves describes the response of a partial penetration well perforated in the
bottom layer. The three interference responses, shown by the solid lines, are monitored
in the top layer, above the low permeability interbed.



Vertical interference test 349

102

10" k.

0.5 line

and Derivative p'y

101 ¢

Dimensionless Pressure p,

102 . L L
102 103 10¢ 10° 108 107
Dimensionless time, t,/Cy
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Several permeability: ky=kiy3=ky» or =10k, or =100 kg, (k/ky)=0.1.

When the permeability reduction in the central interval is large (kg =102 ki 5), the
magnitude of the vertical interference response is significantly smaller than when there
is no flow restriction (ky, = ku13). The tight zone delays the start of the interference
response and, on the derivative curve kg, =107 ki3, no spherical flow regime is
evident. Only a long transitional behavior is seen before the final horizontal radial flow
regime.
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CHAPTER 10

PRACTICAL ASPECTS OF
WELL TEST INTERPRETATION

In this final Chapter, the practical application of the theory presented earlier is
discussed. First, different types of problems with the test data are envisaged. Preparation
and validation of the raw data used for analysis are thoroughly discussed. Then, usual
distortions in the pressure response are described, and guidelines are established for
proper analysis of such test responses.

The second part deals with the interpretation methodology. After a synthesis of the
diagnosis methodology, the different model responses are summarized and two
examples of interpretation consistency checks are presented.

Finally, the question "how representative are the interpretation results” is addressed.
The implication of using analytical models for interpretation is reviewed, the meaning
and the accuracy of the interpretation results are evaluated and, for illustration, a
discussion of the radius of investigation is presented.

10.1 FACTORS COMPLICATING WELL TEST ANALYSIS

Results of interpretation are directly dependent upon the quality of the pressure and rate
data used for analysis. Data preparation is crucial in well test interpretation, and
frequently it takes more time than the analysis of well pressure responses. In the
following section, the usual problems encountered when preparing the data for analysis
are discussed in detail, and data checking and validation are presented.

In the second part of this section, it is shown that the well or reservoir conditions can
affect, in some cases, the pressure recorded down hole. The identification of wellbore
problems is discussed for test responses that do not follow the usual wellbore storage
behavior described in Chapters 1 to 3, and the recommended analysis approach is
presented. In developed fields, the effect on well test responses of interference from
neighboring producing wells is addressed.
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10.1.1 Data preparation and validation

The final build-up of the test sequence presented in Figure 10.1 is used in this Section to
illustrate several possible errors during the data processing. In this example, the well has
been produced for 100 hours, shut-in for 50 hours and re-opened at the same flow rate
for a 20 hour flow test before the final build-up. During the test sequence, the reservoir
behavior corresponds to the infinite acting radial flow regime.

Rate history definition

Two different difficulties can be encountered when the rate history is prepared for a
well test analysis:

1. The well production history is not complete, or accurate. The rate must be
estimated during some flow periods of the test sequence.

2. Too many rate changes occurred, sometimes for a very long period before the test
period of interest. The history has to be simplified.

First, the influence of an inaccurate production history is illustrated with the simple test
example of Figure 10.1. Then guidelines are presented for the practical definition of the
well production history used for interpretation.

Rate simplification example

Two approaches are currently used in order to simplify the rate history of a test:

1. An equivalent production time is defined as the ratio of the cumulative production
divided by the last rate (called equivalent Horner time). On the example in Figure 10.1,
the final build-up period is analyzed with a previous rate history simplified into a single
drawdown of £,=120 hr.

2. When there has been a shut-in period in the rate history and if the bottom hole
pressure has almost reached the initial pressure p,, it is wrongly assumed that the rate
history prior to this shut-in has no effect on the final build-up response and it is ignored.

On the test example, ¢, =20 hr with this method.
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Figure 10.1. Example of test sequence with two drawdown periods. Linear scale.
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Figure 10.2. Log-log plot of the final build-up. The derivative is generated with three different
rate histories.

On the log-log plot of Figure 10.2, the correct multiple rate derivative response is
compared to the curves generated with the two simplified rate sequences. When
t, =20 hr is used, the correction introduced by the superposition time is too large (see
discussion of Figure 2.7), and the derivative deviates above the theoretical stabilization
corresponding to radial flow. Conversely, with £,=120 hr, the intermediate shut-in from
100 hr to 150 hr is ignored, the time superposition function does not completely correct
the influence of the previous rate sequence, and the derivative curve drops below the
stabilization at intermediate time. As this later approximation honors the cumulative
production, the derivative response is correct on late time data.

Definition of the rate history

In practice, it is possible to simplify the rate history when the production changes
occurred a long time before the analyzed period, but not if the rate variations happened
immediately before the test period. The closer to the time of the start of the test period,
the more accurate must be the flow rate profile. Bourdarot (1998) proposes the
following rule of thumb: if the duration of the analyzed period is As, any rate changes
that occurred at more than 2 As before the start of the period can be simplified. The
equivalent Horner time is then used to reduce the number of rate changes, keeping only
the most significant rate variations and long shut-in periods.

When the total production time prior to shut-in is long compared to the duration of a
build-up test, the interpretation of the model extrapolated pressure is difficult. In
Chapter 5, it is shown with the discussion of Figure 5.25, that the slope of the Horner
semi-log straight line is not affected by initial flow periods of a long production history,
but the extrapolated pressure p* is.

Introducing years of accurate production data in the well flow history does not always
improve the quality of the interpretation results. With the time superposition method
presented in Section 2.2.2, when the first flow periods are extrapolated into the time of
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the final shut-in, the total production time for the initial flow rates becomes very large
compared to the final shut-in time. and the corresponding radius of investigation also
becomes large. Many changes of reservoir characteristics and boundaries may affect the
extrapolated flow periods. when they are not visible on the short build-up test. In such a
case, extrapolation at very long times of the reservoir model defined from the short
build-up analysis may not be valid.

This point is further discussed in Section 10.2.3 with two examples. It is shown that,
when a long production history is used in a multiple rate sequence, the reservoir and
boundary model must be applicable to the longest extrapolated period, and include all
changes of reservoir properties and limits within the large investigated area of the first
extrapolated period. If not. the model extrapolated pressure (and the initial pressure p,)
estimated from the build-up analysis is not correct. The radius of investigation for build-
up periods is further discussed in Section 10.3.3, at end of this chapter.

Frequently. some rate data are missing. such as during a clean-up, or any flow period

where no separator measurements are made. When the missing rates have to be

introduced in the production history. they must be estimated. Usually, well head

pressure and choke size are used but, if pressure measurements are available during

these flow periods, it is possible to validate the estimated flow rate. As discussed in
a

Section 3.1.3, the comparison of different test periods on a normalized log-log plot
(Ap/g and Ap'/q versus Ar) is very efficient for checking the flow rates.

The test simulation on a linear scale is another good quality control plot. When the
interpretation model, defined on a single period, does not match the complete test
sequence, three hypotheses can be considered:

1. Either the model is not applicable for long periods (with for example a difference in
the initial pressure, see Chapter 5 or the next Section 10.2.3),

2. Or the well condition has changed during the production (well cleaning / being
damaged, or rate dependent skin as discussed in Chapter 7),

P

3. Or the rate history is not correct.

Error of start of the period

Once rate history is defined. the pressure data measured down hole is spit into
individual test periods, and the different quantities Ap, Ap" and Ar are estimated for log-
log analysis. If a well test interpretation software is used, all test periods are usually
extracted automatically from the rate changes defined in the rate history. During this
process, several errors can be introduced on the period response curves:

1. When the pressure and the rate data are not perfectly synchronized, the time of start
of the test period can be earlier or later than the true change of rate.

2. In some cases, the pressure is noisy or oscillating at the time of shut-in. The
program uses the pressure point at the time of the rate change for the start of the new
period p(Ar=0). This point can be higher or lower the true stabilized pressure at the end
of the previous period, and the resulting calculated pressure change is wrong.
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Figure 10.3. Example of Figure 10.1 at time of shut-in. Time and pressure errors.

Shut-in time error: curve a = 0.1 hr before and curve b = 0.1 hr after the actual shut-in time.
Shut-in pressure error: curve ¢ = 10 psi below and curve d = 10 psi above the last flowing
pressure. Error in time and pressure: curve e.

Figure 10.3 is a magnified plot of Figure 10.1 at the time of shut-in of the final build-up.
Five possible errors are considered. Cases a and b describe a 0.1 hr time error before
and after the shut-in time, cases ¢ and d a 10 psi pressure error below and above the last
flowing pressure and, with case e corresponding to a time and pressure error, a build-up
point is used for the start of the period.

In the case of a time error, the calculated elapsed time Az is either too large (case a), or
too small (case b). In the first case, the pressure curve is displaced towards the right
and, at early time, the pressure curve increases with a slope higher than unity (Figure
10.4). When the shut-in time used to extract the test period is too late, the pressure curve
is displaced towards the left, and at early time, it is distorted as shown in Figure 10.5. If
the quality of the pressure data is poor, this error can suggest the presence of a linear
flow regime at early time. Interestingly, the derivative curves are not distorted as
severely as the pressure responses, thus allowing the diagnosis of an error at the start of
the period.
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Figure 10.4. Case a: shut-in time too early.
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Figure 10.5. Case b: shut-in time too late.
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Figure 10.6. Case ¢: last flowing pressure too low.
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Figure 10.7. Case d: last flowing pressure t0o high.

With pressure errors, a similar distortion is observed on the pressure curves. When Ap is
over estimated (case ¢, Figure 10.6), the pressure curve is displaced upwards and, at
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early time, the distortion is very similar to the case b of Figure 10.5. With case d, Ap is
under estimated (Figure 10.7) and the response looks the same as case a of Figure 10.4.

When a build-up point is used for the start of the period, the error can be difficuit to
identify on a log-log scale. With case e, a point during the pure wellbore storage regime
has been selected for the calculation of Ap, Ap' and Ar. The resulting pressure and
derivative curves follow a unit slope straight line at early time, the response appears
correct. A good match can be obtained on such a test period but, as Ap is too small, the
resulting skin is under estimated. When the build-up point used for the start of the
period is taken after the pure wellbore storage, the distortion of the response is easier to
identify.
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Figure 10.8. Case e: shut-in time too late, last flowing pressure is taken in the build-up data,
during the wellbore storage regime.

When a log-log plot suggests a time or pressure error such as in Figures 10.4 to 10.7,
several correction methods are available. If the response is affected by a wellbore
storage effect, a linear scale plot of Ap versus Af such as in Figure 1.4 can be used. The
wellbore storage straight line of slope mygs must intercept at the origin. If not, a
pressure or time correction must be applied but the linear scale plot does not indicate
which parameter has to be changed. An examination of the test history plot on expanded
scale, such as Figure 10.3, more accurately defines the correction to apply. With time
and pressure error such as case e, a good log-log match can be obtained but, on the test
simulation match, the underestimated skin coefficient shows clearly with a reduced
amplitude on the simulated curve.

Pressure gauge drift

In order to minimize the risk of a gauge drift, several pressure sensors are usually run
down hole during testing. Before pressure transient analysis, the gauge responses are
compared by estimating the difference dp between the pressure signals. When 6p is not
constant, either one gauge is effected by a drift, or the weight of the fluid column
between the two sensors is not constant (see next Section 10.1.2).
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Figure 10.10. Log-log plot of the build-up example. Drift of + 0.05 psi/hr.

Drift can be positive, when the recorded pressure increases, or negative when it drops.
In Figure 10.9, a constant drift of = 0.05 psi‘hr is introduced on the build-up example of
Figure 10.1. On the resulting log-log plot of Figure 10.10, the derivative curves suggest
the presence of an apparent boundary effect. sealing in the case of positive drift, and
constant pressure when it is negative.

The effect of a constant drift is inverse during flow and shut-in periods. For example, an
increase of derivative on build-up responses is transformed into a pressure stabilization
during drawdown, therefore a falling derivative curve. This fact can help identify a
problem of constant drift.

When only one pressure gauge is available for analysis, pressure gauge drift can be
identified by comparing the flow and shut-in periods on a normalized log-log plot (Ap/g
and Ap'/q versus Ar). When the responses are not symmetrical, a gauge error can be
envisaged. Examination of the test simulation on linear scale also gives a clear
indication of a pressure drift. If for example a build-up response shows a pressure
stabilization corresponding to a declining derivative response, such as on the negative
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drift curve of Figure 10.10, two boundary conditions can be possibly envisaged: closed
system or constant pressure:

1. With a negative drift, the magnitude of drawdown responses is amplified, and the
flowing pressure does not stabilize as expected with the constant pressure hypothesis.

2. When a closed reservoir model is used to match the build-up, the model response
can possibly reproduce both the drawdown and build-up data but, in such a case, the
size of the reservoir is usually very small and not compatible with geological reservoir
data.

Pressure gauge noise

In most cases, pressure gauge noise can be reduced by using the smoothing algorithm
described in Section 2.3.5. This technique is efficient with a random noise but, when the
raw data has been processed manually before generating the derivative plots, a regular
noise may have been introduced. This may be the case for example when the pressure
points are grouped by pairs, with a very short time difference (a few seconds), each pair
being separated by a much longer time interval, such as a few minutes.

In the following case, a regular noise is introduced in the final build-up example of
Figure 10.1 by adding 1 psi every 2 pressure points (Figure 10.11).

On the resulting log-log plot Figure 10.12, the derivative response is very scattered, and
it starts to oscillate after one hour with an increasing amplitude. As a result, the
derivative curves seem to split into two smooth branches. In some cases, the time of
departure of the two apparent branches is much earlier than on the example of Figure
10.12 (generated with a low density of pressure points), and the lower branch is out of
scale. Then, only 50% of the data is displayed on the log-log derivative curve, but the
general aspect is smooth. This configuration can be misleading because, apparently no
smoothing is needed, and the increasing trend of the upper branch can be interpreted as
a reservoir response when it is only a truncated response. In such a case, the log-log
pressure response does not confirm the derivative signature, and no consistent match
can be obtained.
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Figure 10.11. Final build-up of Figure 10.1. Noise of +1 psi every 2 points. Linear scale.
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Figure 10.12. Log-log plot of the build-up example. Noise of +1 psi every 2 points.
Three points derivative algorithm. No smoothing.

In order to prevent a diagnosis on a truncated derivative curve, it is convenient to
indicate, on the log-log plot. the derivative points that are not plotted because they are
negative or simply out of scale. Frequently, this is achieved by showing the missing
derivative data points on the bottom x axis of the graph, with a different color.

10.1.2 Effect of the well and reservoir condition on pressure responses
Changing wellbore storage

Changing wellbore storage happens when the compressibility of the fluid in the
wellbore is not constant. It is observed for example when, in a damaged oil well, free
gas is liberated in the production string: the reservoir is flowing above bubble point but,
after Apgn, the fluid becomes two phases.
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Figure 10.13. Log-log plot of a drawdown example of changing wellbore storage.
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Figure 10.14. Log-log plot of a build-up example of changing wellbore storage

During drawdown, the pressure is high at early time and no free gas is liberated in the
wellbore. First the response describes the compressibility of the oil. Later, when the
wellbore pressure drops below bubble point, the gas compressibility dominates and the
wellbore storage coefficient of Equation 1.7 is increased by the change from ¢, to c,.
On a log-log scale, an increase of the wellbore storage coefficient C is shown by a
second unit slope straight line at later times, as shown in Figure 10.13. During the
transition between the oil compressibility wellbore storage C,, and that for the gas C,,
the pressure tends to stabilize and the derivative can show a short declining trend.

During build-up periods, the response corresponds to the gas wellbore storage
coefficient immediately after shut-in, and changes to the lower oil wellbore storage
later. This produces a steep increase of derivative and, in some cases, the derivative
follows a slope greater than unity at the end of the gas dominated early time response as
illustrated in Figure 10.14.

When a large drawdown is applied on gas wells, changing wellbore storage can also be
observed due to the variable gas compressibility. The compressibility variation being
smoother than for oil wells below bubble point, the distortion is less characteristic on
the pressure and derivative curves. With build-up data, the wellbore storage derivative
hump is shorter than on the theoretical models with constant wellbore storage. In such a
case, when the early time unit slope straight line is correctly matched, a constant
wellbore storage interpretation model suggests a long derivative transition hump, and it
reaches the derivative stabilization later than the data. It is then preferable to ignore the
early time unit slope straight line, and to adjust the wellbore storage coefficient on later
time data, in order to correctly describe the start of radial flow at the beginning of the
derivative stabilization. The match is not good at early time, but the reservoir response
is correctly described.

High temperature gas wells can also show changing wellbore storage effects because of
variable temperature in the wellbore during shut-in.
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Two phases liquid level

For wells producing different fluid phases (oil + water, or gas + condensate), a phase
redistribution happens in the wellbore during shut-in, producing a characteristic
"humping" effect. This is illustrated in the following with an example of well producing
oil and water.

(AR

diphasic flow changing liquid level end of phase
segregation effect

Figure 10.15. Changing liquid level afier phase segregation.

In the example Figure [0.15. the depth of the gauge is above formation. When, after
shut-in, the water droplets fall to the bottom of the well, the weight of the fluid column
between the pressure gauge and the formation is not constant, but increases as long as
the water level rises. Initially the hydrostatic weight corresponds to a low percentage of
water, to ultimately reach 100% of water if the interface reaches the gauge depth. In
some cases, the build-up pressure can show a temporary decreasing trend after some
shut-in time as illustrated Figure 10.16.
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Figure 10.16. Example of build-up response distorted by phase segregation. Humping effect.
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Figure 10.17. Log-log plot of the build-up example of phase segregation.

When the interface between the two phases stabilizes or reaches the depth of the
pressure gauge, the pressure difference between gauge and formation returns to a
constant, and the remaining build-up data can be properly analyzed. During the hump
when the build-up pressure is declining, the derivative becomes negative (Figure 10.17).

In some cases, the water cushion created during the first hours of shut-in is slowly re-
injected back into the reservoir at later times. Changing liquid level effects can then
dominate the entire build-up response, and only drawdown periods are suitable for
analysis (Gringarten, 2000).

As a general rule, the pressure gauge should always be positioned as close as practically
possible to the perforations or producing interval. When phase redistribution is expected
in a well producing several phases, the duration of the humping effect is shortened by
reducing the distance between the pressure gauge and the reservoir.

Interference effects from neighboring wells

When testing wells in producing fields, interference effects from neighboring producers
can affect the analyzed pressure data. Ideally, a multiple well simulation model should
be used for analysis. Using the proper rate history for each producer, and accurate
reservoir geometry, the combined effect of neighboring wells is added to the response
of the tested well. This procedure is cumbersome, and frequently many approximations
have to be made. For example, the different wells may not produce from exactly the
same layers, or the well spacing and the geometry of the reservoir boundaries are
difficult to describe with an analytical model. In many cases, tests are analyzed with a
single well model. It is then recommended to minimize as far as possible the pressure
disturbance generated by other wells.

As most well responses follow a logarithmic time relationship, the transient effect is
clearly reduced as the time increases. When a well test is planned in a multiple well
reservoir environment, it is preferable to maintain unchanged the flowing condition of
all other wells before the test. If a neighboring well is opened or closed just before or
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during the well test, its possible interference effect is larger than if no change is made in
its flow rate.

10.2 INTERPRETATION PROCEDURE

In this Section, a summary of the interpretation methodology, introduced in Section 3.1
and described through the other Chapters. is initially presented. Typical responses of the
usual interpretation models are then reviewed. and two examples of interpretation
consistency checks with the test history plot are discussed.

10.2.1 Methodology

Well test analysis is a three step process:

1. Identification of the interpretation model. The derivative plot is the primary
identification tool.

2. Calculation of the interpretation model. The log-log pressure and derivative plot is
used to make the first estimates.

3. Verification of the interpretation model. The simulation is adjusted on the three
usual plots: log-log, semi-log superposition and test history on linear scale.

Log-log and superposition scale plots focus on a single test period, as opposed to the
test history plot that applies the interpretation model to a larger time interval, the
complete test sequence.

o The main purpose of the semi-log superposition match is to refine the initial log-log
results. On log-log scales, the pressure Ap curve is not very sensitive to small variations
in the response (see discussion Section 2.1) and, on the derivative curve, the constant
skin factor is only present on early time data. Furthermore, the derivative response can
be affected by noise. With the linear y-axis of the semi-log superposition scale, the
definition of the pressure response is improved, without being affected by data
processing such as smoothing.

e The test history plot can indicate discrepancies in the data such as in the rate
history, or in the start of the analyzed period (see discussion Section 10.1.1).
Alternatively, it is also a good verification plot for the interpretation model, as
illustrated next in Section 10.2.4.

The consistency of the interpretation model is finally checked against non-testing
information.
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10.2.2 The diagnosis: typical pressure and derivative shapes

In the log-log diagnosis process, not only the different characteristic flow regimes are
identified in the derivative signature, but also changes of flow properties during a given
regime are evident. The flow regime identification, and the effect of a change of
mobility or storativity during a regime are discussed in the following.

Flow regime identification

In the description of the different interpretation models presented in previous Chapters,
it is shown that the number of typical flow regimes identifiable on pressure responses is
limited. Only six different flow geometries produce a characteristic response on the
derivative and, in some cases, also on log-log pressure curves. These regimes may
happen at different times in a test response, depending on the interpretation model. In
the Table 10.1 below, the characteristic shape (pressure = gray and derivative = black)
for the six flow regimes are summarized, together with the most usual well or reservoir
configurations, tentatively classified into early, intermediate or late time response.

Table 10.1. Flow regimes summary

Geometry Log-log scale Time range
Shape Slope Early Intermediate Late
Double
Radial : porosity Homogeneous  Semi-infinite
0 restricted behavior reservoir
|
Infinite Two parallel
. conductivity ~ Horizontal well sealing
Linear : / 1/2 fracture boundaries
Double
Finite Finite porosity

14 conductivity conductivity unrestricted

Bi-linear : L
/ fracture fault with linear

flow
Spherical : Well in partial
\ _1 ,2 penetration
Pseudo Layered no Closed
Steady Wellbore crossflow with reservoir
State : 1 storage boundaries (drawdown)
Constant

Steady Conductive pressure
State : \ -1 (-oo) fault boundary
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Changes of properties during radial flow

During a given flow regime, some reservoir properties may apparently change in the
course of the response. In the following, the effect of a change of mobility &z, and
storativity ¢ c,. during the radial flow regime is presented. The influence is described
both in terms of derivative, with a deviation from the radial flow stabilization, and on
semi-log scales. For each case. some examples of corresponding interpretation models
are given.

Mobility decreases: Sealing boundaries, composite reservoirs, horizontal well with a
long drain hole.
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Figure 10.18. The mobility decreases (k £ |). Log-log and semi-log scales.

Mobiliny increases: Composite reservoirs. constant pressure boundaries, layered
systems, wells in partial penetration.
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Figure 10.19. The mobility increases (A« 7). Log-log and semi-log scales.

During radial flow, the change of mobility is described by a vertical displacement of the
derivative stabilization. When the mobility is decreased, the second derivative plateau is
higher than the first and, conversely, when the mobility is increased it is lower. On
semi-log scales, the slope of the second straight line is respectively higher or lower than
the first slope.

Storativity increases: Double porosity reservoirs, layered and composite reservoirs.
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Figure 10.20. The storativity increases (¢ ¢, 1). Log-log and semi-log scales.

Storativity decreases: Composite systems.
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Figure 10.21. The storativity decreases (¢ ¢, |). Log-log and semi-log scales.

When only the storativity changes, the two derivative stabilizations are at the same level
but a valley shaped transition is observed when the storativity increases and a hump
above the radial flow stabilization in the case of a storativity decrease. On semi-log
scales, the derivative valley is transformed into a pressure stabilization at transition time
between the two semi-log straight lines, and the hump into a sharp pressure rise. Change
of storativity affects the time of occurrence of the characteristic regime: the second
semi-log straight line is displaced towards late time in Figure 10.20 and towards early
time in Figure 10.21.

The above discussion can be extended to any of the five other characteristic regimes.
For example, the changing wellbore storage examples of Figures 10.13 and 10.14 can
be described as a change of storativity during a pseudo steady state regime. An example
of a decrease of the apparent mobility has been presented for the spherical flow regime
in Figure 3.17, and during linear flow in Figure 5.20. It is easy to predict the effect of an
increase of storativity, due for example to a double porosity system with restricted
interporosity flow, during the same flow regimes (see discussion Sections 4.1.4 and
5.7).

Summary of usual log-log responses
In the Appendix 1, a summary of the basic interpretation models is presented. They are

classified in well models, reservoir models and boundary models. For the first and the
last group, only a homogeneous reservoir is considered and, for the second group, the
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well is affected by wellbore storage and skin, the reservoir is infinite acting. Combined
interpretation models are not considered in this summary.

For each model, the chronology of the characteristic flow regimes is given, together
with the controlling parameter(s) or group of parameter(s). Except for the first model,
the wellbore storage regime is not listed for reasons of conciseness.

10.2.3 Consistency check with the test history simulation

[n this Section, two examples of well test interpretation adjustment with the test history
plot are presented. For both examples, the initial pressure is 5000 psi. The first choice of
interpretation model, defined from log-log analysis of the short shut-in period, is
inconsistent when applied to the complete rate history. A second model has to be used
for a consistent description of the well behavior.

Increase of derivative response after the last build-up point (second sealing boundary)
The log-log derivative plot Figure 10.22 suggests the presence of a sealing fault but,
when this model is applied with the extended production history (Figure 10.23), the

initial pressure used to correctly describe the build-up test is lower than the original
initial pressure,
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Figure 10.22. Log-log plot of the final build-up. Homogeneous reservoir with a sealing fault.

The single sealing fault model does not generate enough pressure drop during the
extended flow period and. in a second estimation, a second fault, parallel to the first is
introduced (Figures 10.24 and 10.25). This second boundary is not seen during the short
build-up test, only the test simulation match suggests the first model is not appropriate.
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Figure 10.23. Test history simulation. Linear scale. Homogeneous reservoir with a sealing fault.
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Figure 10.24. Log-log plot of the final build-up.
Homogeneous reservoir with two parallel sealing faults.
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Figure 10.25. Test history simulation. Linear scale.
Homogeneous reservoir with two parallel sealing faults.

Decrease of derivative response after the last build-up point (Layered semi infinite

reservoir)

On this example, the opposite diagnosis is made: the
10.26 suggests the presence of two parallel sealing faults.

log-log derivative plot Figure
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Figure 10.26. Log-log plot of the final build-up.

Homogencous reservoir with two parallel sealing faults.
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Figure 10.27. Test history simulation. Linear scale.
Homogencous reservoir with two parallel sealing faults.

On the test history simulation of Figure 10.27 with the parallel sealing faults model, the
initial pressure before the production history is too high, showing this boundary model
is not applicable. The reservoir is layered and a two layer no crossflow model is used,
one layer is closed. At late time, the derivative stabilizes to describe the radial flow
regime in the infinite layer. The hump at intermediate time corresponds to the storage of
the limited zone, and not to the linear flow regime as originally believed.

The two examples illustrate the importance of an accurate initial pressure measurement.
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Figure 10.28. Log-log plot of the final build-up.
Two layers reservoir, one infinite and one closed layer.
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pressure derivative Ap' (psi)
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Figure 10.29. Test history simulation. Linear scale.
Two layers reservoir, one infinite and one closed layer.

10.3 WELL AND RESERVOIR CHARACTERISATION- INTERPRETATION
RESULTS

In this Section, the significance and the accuracy of the interpretation results are
addressed. As illustrated with the final discussion of the radius of investigation, well test
interpretation makes use of simple concepts, to describe a relatively complex system.
When well test analysis results are transformed into reservoir properties, an appropriate
understanding of the actual meaning and limitations of the interpretation concepts is
required.

10.3.1 Interpretation model

Well test analysis consists of defining the interpretation model(s) that best describe the
available pressure data, recorded during a given flow rate history. As discussed in
Section 1.1.2, the interpretation model is simply a transfer function, it describes the well
and reservoir behavior, not the real nature of the producing system. For example, the
homogeneous reservoir model is the most frequently used in well test interpretation,
when almost no reservoir can be considered strictly homogenous. Oil bearing
formations are in general made up of several strata with different characteristics, the
permeability is not uniform over the pay zone thickness and, sometimes, it is not
isotropic but it varies with the direction. Still, the well and reservoir behavior can be
described with the homogeneous reservoir model.

The relationship between the parameters estimated from well test interpretation (the
model parameters), and static measurements such as those obtained from core or log
data is not easy to establish. The various discussions of the vertical permeability
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measurements are an illustration of the difference between interpretation results, and
reservoir properties (see Sections 3.4.4 for partially penetrating wells, 3.6.11 for
horizontal wells, 4.2.6 for Jayered systems and 9.4.2 for vertical interference testing).

Well test analysis results provide an average of the reservoir properties. With the
permeability for example, the apparent vertical permeability & is a harmonic average
(Equation 3.56) whereas, for the horizontal permeability k;, well testing gives the
arithmetic average of each layer permeability (Equation 4.42 for example).
Furthermore, in the case of permeability anisotropy, each layer's horizontal permeability
is defined as the geomertric average of Equation 3.3.

The skin discussion of Section 3.7.1 illustrates another example of potentially unclear
interpretation results, as many components can be introduced into this basic well test
interpretation concept. In Section 10.3.3, it is shown that the radius of investigation is
only a practical concept without a clear theoretical justification, and it should be
considered as approximate, especially with build-up periods.

In Section 1.1.2. the interpretation of well test data is described as an inverse problem,
whose solution is in general not unique. and several models can be found applicable to
describe the pressure response. The lack of uniqueness in well test interpretation has
been frequently illustrated in previous Chapters, where different models are shown to
produce similar responses. The model verification and validation is made by integrating
data from other sources. such as geological, geophysical, petrophysical or fluid
descriptions.

10.3.2 Errors in static parameters

The input data required for analysis has been summarized in Section 1.1.2. Possible
errors in well test data are discussed in Section 10.1.1. In the following, the accuracy of
the well and reservoir parameters is envisaged.

Errors in the static parameters directly influence the calculated interpretation results, but
in most cases they do not affect the choice of the interpretation model. When static
parameters are not known precisely. it is always possible to make a first analysis with
approximate values. and to refine the results with adjusted values later, without
significantly changing the interpretation model.

The net thickness / for example is frequently not accurately defined. From open-hole
log interpretation results, the range of uncertainty for / can be as high as 30%. Other
usual configurations, such as when a well is found to be behaving partially perforated
due to the guns not going off over the complete formation thickness, or when the
complete formation is not flowing into the wellbore can possibly lead to an error in the
thickness. Similarly, when the oil viscosity u used for analysis is estimated from
correlations, the reliability of the fluid property correlation can be relatively low. Since
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well test interpretation provides the k4/u group, any error on 4 or u directly influences
the permeability estimate £.

With other interpretation results, an error in 4 or 4 does not have the same influence.
For example, with a fixed m (and &4/ group) in Equation 1.17, the estimated skin
factor S is only slightly dependent upon 4 (with a logarithm relationship), but not upon
the viscosity g.. In the same way, the radius of investigation, and the distance to a
possible boundary, are dependent upon /4 (with the square root relationship of Equation
1.23 or 1.24), but independent of 4.

The influence, on the interpretation results, of an error in one static parameter can be
easily evaluated from the corresponding equations. Two parameters are frequently a
subject of discussion:

1. The wellbore radius r, is usually defined either as the drilled hole diameter, or as
the casing ID. Strictly speaking, the radial flow hypothesis is not valid near the
perforations (see for example the discussion of Equation 4.41), and the real wellbore
radius is not clearly defined. This parameter only influences the calculated skin factor
(in a logarithm, as described in equation 1.17). The influence of any error in r, is not
significant but, when the purpose of well testing is the variation of skin between tests,
the same reference diameter should be used for consistency: the skin of a well should be
defined relative to a choice of r,. With horizontal wells for example, several skin
definitions have been proposed for different reference wellbore radius (see discussion of
Equations 3.38 and 3.41).

2. The total compressibility ¢, is a function of the saturations for each phase (Equation
1.3). This parameter is difficult to estimate, in particular in a reservoir near the bubble
point pressure where the gas saturation changes (see Chapter 8). In infinite acting
homogeneous reservoirs, ¢, only influences the skin factor S (in the logarithm term of
Equation 1.17) and the distances (with a square root relationship of Equations 1.23,
1.24). An error in ¢, by a factor of 10 changes the radius of investigation r; by a factor of
3.16, and the skin by only 1.151.

Another example of a difficult parameter has been discussed in the Section 3.6 for
horizontal wells. It is shown that the horizontal drain length, which can be both an input
value or a derived value, directly influences the derived value of vertical permeability.

10.3.3 Discussion of Pressure Profile and Radius of Investigation

The radius of investigation r;, which is used as an input value for proven hydrocarbons,
is frequently viewed as a minimum radial distance to any event that would not be
observed during the test period. In practice, for an initial flow period, when a linear
boundary is introduced with an interpretation software to estimate the radius of
investigation, the resulting distance is similar to that estimated from Equation 1.23 or
1.24. This apparently contradicts the sequence of flow geometry near a sealing fault
described in Figure 1.22, where the pressure transient actually reaches the fault 4 times
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earlier than the boundary can be observed on the producing well pressure (i.e. when the
transient radius - different to the radius investigation shown in Figure 10.30 below - is
double that of the fault distance). As discussed in Section 1.2.3, the mathematical
concept of radius of investigation is approximate. By examining Figure 10.30 below,
clearly, the transient radius is larger than the radius of investigation estimated from well
testing with the above methods. Due to the averaging effects of the interpretation results
discussed previously, well pressure responses do not describe the complete reservoir
area affected by the well production but. practically, a smaller circular area around the
wellbore.

This is confirmed by Oliver's study of radial changes of permeability around the well
(1990): he established that the pressure response is primarily affected by the
permeability at a distance approximately half the radius of investigation estimated from
Equation 1.23 or 1.24 (see Equation 4.95, Section 4.3.4). It can be concluded that the
maximum influence is at a distance 1/4 of the sequence of pressure transient radii
illustrated in Figure 1.22. whereas the start of a fault influence is seen when its distance
is 1/2 of the transient radius.

The definition of the time to the start of a boundary effect is also subject to errors. With
a linear boundary, the change of reservoir characteristic is not radial but in one direction
only. On the pressure response. the effect of the change of property is more diluted than
in the case of a radial symmetrical configuration, and the influence of the boundary is
first seen by a long transition before the hemi-radial flow regime. In the discussion of
the sealing fault Equation 1.33 (Section 1.2.7 and 5.1.2), the time Az, used for
estimating the fault distance is defined at the midpoint of the transition from radial (0.5
on log-log plot) to hemi-radial flow (1.0 on log-log plot), and not at the start of this
transition. Comparing Equations 1.24 and 1.33 shows that the radius of investigation at
At, is more than twice the distance of the fault (Ar, corresponds approximately to time #,
in Figure 1.22, with a transient radius four time larger than the fault distance, or to the
elapsed time 22 hr on the interference responses of Figure 6.8, when the observation
well O, is already affected by the fault influence).

Transient radius

Radius of inve%tigation

SRR IA LR RN R R IRRRRRRNY

Figurc 10.30. Transient radius and radius of investigation at time the sealing fault starts to be
seen.
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When the criteria for detecting a possible reservoir limit is only a 10% deviation of the
derivative above the infinite acting radial flow stabilization, Daungkaew (2000) reports
that the resulting fault distance is still 20% smaller than the radius estimated from
Equation 1.24. A distance similar to the calculated radius of investigation is obtained
when the boundary distance is adjusted to show the start of the deviation on the /ast
point of the test period. (In his horizontal well study, Kuchuk (1991 a) uses a similar
criteria during vertical radial flow, see the discussion of Equation 3.44).

For shut-in periods, the discussion of Figure 2.20 shows that the concept of radius of
investigation is not clear. On this example with a sealing fault, the boundary is reached
first with the extrapolated drawdown period, and later during the injection period
starting at shut-in time. More generally, at a given shut-in time Ar after a multiple rate
sequence, a radius of investigation can be defined for each extrapolated flow period (see
definition of the rate history Section 10.1.1). At shut-in time A¢, the Equation 1.23 or
1.24 only describes the radius of investigation corresponding to the injection period; the
influence of a possible reservoir limit on the extrapolated flow periods is ignored.

In practice, the radius of investigation during shut-in periods is approximated, as for
drawdown, by the distance to a boundary effect introduced at the end of the build-up
period. If a constant pressure boundary is be used, the distortion of the derivative
response is sharper than with the sealing fault model, and the distance to the change of
reservoir property is easier to define.
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APPENDIX |

SUMMARY OF USUAL LOG-LOG RESPONSES

Table A. 1. Well models

Name and characteristic regimes

Log-log pressure and derivative curves

Wellbore storage and Skin (3.1)

1 Wellbore storage, C
2 Radial, khand S

Infinite conductivity fracture
(3.2)

I Linear, x;
2 Radial, k4 and Sykr

Finite conductivity fracture (3.3)

1 Bi-linear, kyw,
2 Linear, xy
3 Radial, kh and Sikr

Partial penetration (3.4)

1 Radial, A, and S,,
2 Spherical (mobility 1), kv
3 Radial, k4 and Sy

Ap' & Ap

Ap' & Ap

Ap' & Ap

Ap' & Ap

At




Horizontal well (3.6)

1 Radial vertical, k;-and S,
2 Linear (mobility |)
3 Radial, kh and Sy

Appendix 1

Table A. 2. Reservoir models

Name and characteristic regimes

Log-log pressure and derivative curves

Double porosity, restricted
interporosity flow (4.1.2)

1 Radial fissures, kh

2 Transition (storativity 1), @
and /4

Radial fissures + matrix, kh
and S

[9%]

Double porosity. unrestricted
interporosity flow (4.1.3)

1 Transition, A
2 Radial fissures + matrix, kA
and S

Double permeability, same skin
S1=S,(4.2.2)

I No crossflow

2 Transition (storativity 1), w,
xand A (k)

3 Radial, kh,+tkh; and S;

Ap' & Ap Ap' & Ap

Ap' & Ap

At

kh, S

At




Log-log responses

Double permeability, partial
penetration S;= o (4.2.3)

1 Radial, k2h2 and SQ_

2 Transition (mobility 1), A
(kv)

3 Radial, kh+kh, and Sy

Radial composite (4.3.1)

1 Radial inner, &1/ and S,
2 Transition (mobility 1, {). »
3 Radial outer, k4 and Sgc

379

At
Linear composite (4.3.3)
& (k,+k,)h/2,
1 Radial inner, k4 and S, 3 0 a S,
2 Transition (mobility 1, |), L & T — .
3 Radial total, (ki1 + koh)/2 k.h, S, L
and Sy MM o
At
Table A. 3. Boundary models
Name and characteristic regimes Log-log pressure and derivative curves
Sealing fault (5.1)
&
1 Radial, khand S &
2 Transition (mobility |), L o kh, S
. . < -n
3 Hemi-radial -

At



380

Channel (5.2)
Centered

1 Radial, khand S
2 Linear, L,+L,
Off-centered

1 Radial, k42 and S
2 Hemi-radial, L,
3 Linear, L,+L,

Channel closed at one end (5.4)
Centered

1 Radial, k2 and S

2 Linear, L,+L,

3 Transition (mobility |), L;
4 Hemi- linear

Intersecting faults (5.3)
Centered

1 Radial, khand S

2 Linear, L,+L,

3 Fraction of radial, &
Off-centered

I Radial, khand S

2 Hemi-radial, L,

3 Linear, L,+L,

4  Fraction of radial, &

Closed system centered (5.4)
Drawdown

1 Radial, khand S

2 Pseudo steady state, 4
Build-up

1 Radial, k4 and S

2 Average pressure, ; and A

Closed channel (5.4)
Drawdown

I Radial, khand S

2  Linear, L,+L,

3 Pseudo steady state, A
Build-up

1 Radial, khand S

2 Linear, L,+L,

3 Average pressure, ; and 4

Ap' & Ap

Ap' & Ap

Ap' & Ap

Ap' & Ap

Ap' & Ap

Appendix |

At

At

At




Log-log responses

Closed and intersecting faults
(5.4)

Drawdown

1 Radial, k4 and S

2 Linear, Li+L,

3 Fraction of radial, &
4 Pseudo steady state, 4
Build-up

1 Radial, khand S
Linear, L,+L,
Fraction of radial, 8

R

Average pressure, ; and A4

Constant pressure boundaries
(5.5)

I Radial, kb and S
2 Transition (mobility |), L

One boundary or multiple
boundaries

Ap' & Ap

381

Ap' & Ap

At
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PRACTICAL METRIC SYSTEM OF UNITS

CONVERSION FACTORS

Table A. 4. Conversion factors from oilfield to metric system, and inverse

Oilfield Practical
Quantity units metric units Multiply by Inverse
Gas rate Mscf/D m’/D 2.831685x10~ 3.531 466x10"
Length ft m 3.048 000x10™ 3.280 840
Liquid rate BOPD m’/D 1.589 873x10™" 6.289 811
Permeability md md 1.000 000 1.000 000
Pressure psi Bar 6.894 757x107 1.450 377x10"
Temperature °R °K 5.555 555x10"" 1.800 000
Time hr hr 1.000 000 1.000 000
Viscosity cp cp 1.000 000 1.000 000
Volume cuft m’ 2.831 685x10™ 3.531 466x10"
EQUATIONS
Chapter |
14
C=10197 —*%— (1.8)
p(g/g.)
kh

S=——-———Apq. 1.1

1866(]8/1 P Skin ( )

18.66gBu, re¢ 18.66gBu . rg

— Py s =———n - —— T p 2 1.12

Pus = Pws=0 = T T T (12)
B

Ap=21.5qk—h” log At +log ~~3.10+0.875 (1.15)

pucr,
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kh=215984 (1.16)
m
APy
S=115] 2P e K S+3.10 (1.17)
m uc,r,
2
Ap(at, ) =0 518 009K g duer (1.18)
kh 0.0001423kA¢
21.5gB 0.000356k A1
Ap(AL, r) = =292H jog +0.809 (1.19)
k puc,r
0.
000356kAr 1 _17 (120
¢,LIC,7‘,2 4 Y
¥, =0.034,/kAt/duc, (1.23)
¥, =0.037,/kAt/ duc, (1.24)
Ap=0.623-28 |4 xf (125)
x, N gc
x, =0.623 |- 98 (126)
' gek hmyy
Ap =628 B Uar (127)
hJk,w, Yduck
1 Bu Y
kpw, =39.46 ——{i—”—j (1.28)
o Puc k\ hmy g
B c
Ap=9.33-98H —279.3% (1.29)
kgrs ks/ «/E
F 2/3
C
kg = 279.3qu—”—’ (131)
Mgpy
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kAt

duc,

L=0.0141

I

B A
Ap = 0041795 At+21.5%{10g~7—10g(c4 )+0.351+0.87

¢ hA

u

gB

¢, m*

$h4 =0.0417

Pl kh

21.SBy(logAt+log K 5 f3.10+0.87SJ
\ ue,r;

PI = &
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Chapter 2
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D= At
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0.1592C
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P dc, hrwz
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0'1592Ce25
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t, At
Ip(ar)ly =215 72 log 2"+ log k31040878 2.13)
kh tp + At ¢,UC,V“2,
quu tp + At
= p, 2155 gL —— (2.14)
P = Pi kh & At
t +1
S=1151] AP _jog K —+log-—+3.10 (2.15)
m Puc,r, lp
Blun—l
Pus (A1) = p, 21553 (g, = 4,1 loglt, + At =1,)+{g, g Jlog(ar) 2.18)
i=1
—933 K (2.24)
kh
0311— J— (2.29)
gBu 4
Ap'=1571 At (2.30)
hyJk Wy Y uc, k
B c
Ap':139.6q_§‘7¢L (231)
kA
Ap'=0.0417 At (232)
CI
Chapter 3
C\4C+ﬂ'(r\ -, )gbc h 3.0
. k
oy :00003526 Al 8
¢,uc,xf
‘, 0.000264k 1 59
‘ guc, T™
0.1592C
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NOMENCLATURE

a = intercept of the stabilized
deliverability straight line. Fig. 7.4,
7.8, psia’D/cp/Msct, or constant in
Eq. 8.16
A =area, Eq. 5.13.sq ft
b = slope of the stabilized deliverability
straight line, Fig. 7.4, 7.8.
psia”D*cp/(Mscf)
B = formation volume factor. RB/STB
B, = gas formation volume factor. Eq. 8.1.

RB/scf

B, = oil formation volume factor. Eq. 8.1.
RB/STB

B, = water formation volume factor. Eq.
8.1, RB/STB

C = wellbore storage coefficient. Eq. 1. 7.
Bbl/psi, or constant in Eq. 7.28
C4 = shape factor
() = dimensionless wellbore storage
coefficient. Eq. 2.5.7.12. 7.13
= dimensionless wellbore storage
coefficient based on equivalent
wellbore radius. Eq. 3.13
Cpy = dimensionless wellbore storage
coeflicient based on half fracture
length, Eq. 3.10, or on fissure
parameters, Eq. 4.13
Cpys.» = dimensionless wellbore storage
cocfficient based on total system
parameters, Eq. 4.14
¢, = formation compressibility. psi”’
¢, = gas compressibility, Eq. 7.2, psi”'
¢, =oil compressibility, psi
Cg = apparent wellbore storage coefficient
for a stimulated well. Eq. 3.1. Bbl/psi
¢ = totall compressibility. Eq. 1.3 and 8.3,
psi

¢, = total compressibility at average test

CI e

pressure. section 7.2.2, psi’!

c¢; = total compressibility at initial
pressure, section 7.2.2, psi”'

¢na, = total compressibility in layered, Fig.

4.41, or composite reservoir, Fig.
4.51, psi’!

c, = water compressibility, psi’

D =turbulent, Eq. 7.24, D/Mscf, or
friction flow coefficient, Eq. 3.49,
D/Bbl

d/[ )

Ei

.

‘LVLI)

}7/
h

¥
hu -ohy

}711)/

h'
Ah

Ah

7
Al

k

k

= dimensionless distance of linear
composite interface i. Eq. 1.34

= exponential (2.7182 .. )

= exponential integral

- = storativity ratio (inner zone / outer

zone), Eq. 4.79

= dimensionless conductivity of finite
conductivity fault, Eq. 5.28

= storativity ratio in radial composite
layer /. Eq. 4.79

= gravitational acceleration, fi/sec?

= dimensionless pressure drop in a low
conductivity fracture, Eq. 3.15

= gravitational acceleration conversion
factor

= initial gas volume, Eq. 7.26, Mscft

= cumulative volume of gas produced,
Eq. 7.26, Mscft

= formation thickness. ft

= apparent formation thickness, Eq.
3.27. 1

= matrix skin thickness. Fig. 4.27, ft

= dimensionless reservoir thickness-
anisotropy group, for a well in partial
penetration Eq. 3.19, for a horizontal
well Eq. 3.30

= fissures thickness, Eq. 4.1, ft

= perforated interval length, Fig. 3.15,
ft

= observation interval length, Fig. 9.10,
ft

= layer thickness. Fig. 4.41, ft

= semi-permeable wall thickness, Fig.
441 f1

= change of liquid level depth, section
1.2.2. ft

= change of liquid level during interval
j, Table. 9.1, ft

= time rate of change of liquid level
during interval j, Table. 9.1, ft

= permeability, md

= average horizontal permeability in
anisotropic system, Eq. 3.3 and 6.5,
md

= altered permeability near a finite
conductivity fault, Eq.5.29, md

= matrix skin permeability, Fig. 4.27,
md



k; = permeability in fracture, Fig. 1.14, or
fissures, Eq. 4.1, or semi-permeable,
Fig. 5.32, or finite conductivity fault,

Fig. 5.37, md
kmpwy, = dimensionless fracture conductivity,
Eq.3.14
k, = effective permeability to gas, Eq. 8.2,
md

ky = horizontal permeability, md

= average horizontal permeability in
layered system, Eq. 3.55 , md
ky, = matrix permeability, Fig. 4.27, md
= maximum directional permeability,
Eq. 3.3, Fig. 6.9, md
kyin = minimum directional permeability,
Eq. 3.3, Fig. 6.9, md
k, = effective permeability to oil, Eq. 8.2,
md
= relative permeability to gas, oil and
water, Eq. 8.9, fraction
kg = permeability in the skin zone, Fig.
1.12, or spherical permeability, Eq.
1.30, md
ki = vertical permeability, Fig. 3.15 &
3.24, md
ki =average vertical permeability in
layered system, Eq. 3.56 , md

kmax

krg, ow

k.- = directional permeability, Fig. 3.40, or
components of permeability tensor,
Eq. 6.5, md

k, = effective permeability to water, Eq.

8.2, md

k.12, = layer vertical permeability, Fig. 4.41,
md

k>, = permeability in layered, Fig. 4.41, or

composite reservoir, Fig. 4.51, md

k. = semi-permeable wall vertical
permeability, Fig. 4.41, md

L =distance (Fig. 1.21, 4.51), or half

length of an horizontal well, Fig.
3.24, ft, or smoothing coefficient,
Fig. 2.21, or liquid mole fraction, Eq.
8.15

L, = apparent effective half length of an
horizontal well in anisotropic system,
Eq.3.54

L.p = dimensionless critical distance of a
sealing fault, Eq. 5.34
L., =apparent distance of constant pressure

boundary in a finite conductivity fault
response, Eq. 5.32
L;; = dimensionless distance, Eq. 1.34
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L,y = effective half length of an horizontal
well producing in several segments
L;p = dimensionless distance of boundary j,
Eq. 1.34
m = straight line slope during radial flow,
Eq. 1.15, psi/cycle, Eq. 7.19,
psia¥/cp/cycle, Eq. 7.20, psia’/ cycle,
Eq. 7.21, psi/ cycle
M = mobility ratio (inner zone / outer
zone), Eq. 4.78

mgr = straight line slope during bilinear
flow, Eq. 1.27 or 3.51, psi/(hr'’*), or
Eq. 9.14, D/(Msct.hr'’)
mgy, = straight line slope during linear flow
in a channel, Eq. 5.5, psi/(hr'”?)
mg, = derivative straight line slope in case
of a constant pressure boundary, Eq.
5.26, psi.hr
mye, = straight line slope during semi-linear
flow in a channel, Eq. 5.16, psi/(hr'’?)
myrp = straight line slope during horizontal

radial flow, Eq. 3.35, psi/cycle
M; = mobility ratio in radial composite
layer i, Eq. 4.78
= straight line slope during linear flow
to a fracture, Eq. 1.25, psi/(hr”z)
m, = /g straight linc slope during radial
flow, Eq. 9.8, 9.12, 1/(BOPD. cycle)

my g

myr = straight line slope during radial linear
flow, Eq. 3.50, psi/cycle
mgpy = straight line slope during spherical
flow, Eq. 1.29, psi.hr'?
myrp = Straight line slope during vertical
radial flow, Eq. 3.31, psi/cycle
mwps = straight line slope during wellbore
storage effect, Eq. 1.9, psi‘hr, Eq.
7.16, psia*/cp/hr, Eq. 7.17, psia*/hr,
Eq. 7.18, psi‘hr
Myedpe = Straight line slope during fraction of

radial flow in a wedge, Eq. 5.12,
psi/cycle
m* = straight line slope during pseudo
steady state, Eq. 1.35, psi‘hr
m(p) = pseudo-pressure (or real gas
potential), Eq. 7.3, psia’/cp, Eq. 8.10
and 8.14, psia/cp
n = number of fissure plane directions,
Fig. 4.27, or laminar - turbulent
coefficient in Eq. 7.28
p = pressure, psia
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p = average pressure. Eq. 5.21, in layered
system, Eq. 4.77, or average test
pressure. scction 7.2.2. psia

peupn = dimensionless build-up pressure. Eq.
2,12
pp = dimensionless pressure. Eq. 2.3. 7.7.
7.8.7.9
py, = dimensionless average pressure. Fig.
525.Eq. 522 & 5.24
poaey = M.B.H. dimensionless pressure. Eq.

5.22
ppr = dimensionless pressure ratio. E£q. 9.1
p; = pressure in the fissures. psia

p, = initial pressure. psia
p, = average initial pressure in layered
system. Eq. 4.76. psia
Pl = productivity index. Eq. 1.37.

(STB/D)/psi
p; = pressure at end of interval j. Table.
9.1. psia
p, = average pressure during interval /.

Table. 9.1. psia
P, = pressure in the matrix. psia
PM = pressure match. Eq. 2.22. psi”!

Parp = dimensionless multirate pressure. L2q.
2.17
Py T average rescrvoir pressure of Fq.
7.27. psia
Prey = reference pressure for Lg. 8.16. psia
Py = standard pressure condition (14.7
psia)

py = bottom-hole pressure. psia
puy = flowing bottom-hole pressure. psia
Pwy = tlowing bottom-holc pressure at end
of period . section 7.3. psia
Pus = shut-in bottom-hole pressure. psia
Pwy = shut-in bottom-hole pressure at end of
period j. Fig. 7.9, psia
Pugsar = stabilized flowing bottom-hole
pressure. scction 7.3, psia
po = reference pressure used for pseudo-
pressure. Eq. 7.3, or pressure above a
DST valve, Fig. 9.1, psia
p'n = dimensionless pressure derivative
p* = extrapolated Horner pressure. Fig.
2.8. psia
pp* = dimensionless extrapolated Horner
pressure, Fig. 5.25 & 5.26
dp = vertical distance between two semi-
log straight lines, Eq. 4.29, psi

Ap
Appu
Apskin

Ap’
AII) *lﬂl

A.D Uhr
q

qp
dm

Y
i
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q)se
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O,
dn

I

R

"
Ry

D, R

= pressure change, Eq. 1.1 & 1.2, psi

= build-up pressure change, Eq. 1.2, psi

= pressure change due to skin, Eq. 1.11,
psi

= pressure derivative, Eq. 2.23, psi

= time zero intercept of the pseudo-
steady state straight line m*, Eq. 5.17
& 3.18. psi

= pressure change at 1 hour on the
semi-log straight line. Fig. 1.9. psi

= flow rate. STB/D or Msct/D (=
10°sef/D)

= dimensionless flow rate. Eq. 9.7

= dimensionless flux per unit of
fracture length. Eq. 3.16

= sand face gas rate at standard
conditions. [q. 8.1, Msct/D

= fractional rate of layer i. Eq. 4.70,
4.71.4.72

= rate during the period/ in a multiple
rate sequence, Fig. 2.9 or Table. 9.1,
STB/D

= late time stabilized fractional rate of
layer /. Eq. 4.66

= gas rate at standard conditions during
period j. Eq. 7.25, Mscf/D

= oil rate, Eq. 8.1. STB/D

= gas rate at standard conditions,
Msct/D

= surface gas rate at standard
conditions. Eq. 8.1, Msct/D

= cumulative volume produced, Eq.
9.6.5TB

= water rate. Eq. 8.1. STB/D

= radial distance to the well, ft

= distance of radial composite interface,
Fig. 4.51, {t, producing gas - oil ratio,
Eq. 8.11

= dimensionless radius. Eq. 1.21

= dimensionless distance of radial
composite interface. Eq. 1.21

= dimensionless apparent distance of
observation well, Eq. 6.6

= reservoir radius in Eq. 7.30, ft

= fracture radius, Eq. 3.52, ft

= radius of investigation, Fig. 1.5, Eq.
1.23 & 1.24 1t

= dimensionless radius of investigation,
Eq. 1.22, or of influence of the
fissures, Eq. 6.12



R, = dimensionless interface distance in
multiple radial composite, or in radial
composite layer j

r, = matrix blocks size, Fig. 4.27, Eq. 4.7,
ft

ry = radius of the skin zone, Fig. 1.8, or
equivalent spherical radius, Eq. 1.29,
ft

R, =dissolved GOR, Eq. 8.1, scf/STB

Ry, =dissolved gas - water ratio, Eq. 8.3,
scf/STB

r. = wellbore radius, Fig. 1.5, ft

rv. = equivalent wellbore radius, Eq. 1.14

or 3.6, ft
S =skin coefficient, Eq. 1.11

S =average skin in layered system, Eq.
4.75
S = anisotropy skin, Eq. 3.7
Sen = geometrical skin during linear flow in
a channel, Eq. 5.3
S; = false skin calculated from total
system parameters, Eq. 4.30 or skin
factor across a finite conductivity
fault, Eq. 5.29
S, = gas saturation, Eq. 8.3, fraction
Si; = geometrical skin Table 3.7, for
horizontal well, Eq.3.39 and Fig.
3.31,3.32
; = skin of layer i, Fig. 4.41
Sukr = geometrical skin of an infinite
conductivity fracture, Eq. 3.12
S; = pseudo-skin in layered system, Eq.
4.74
Stk = geometrical skin of a low
conductivity fracture, Eq. 3.15
S, = matrix skin, Eq. 4.36
S, = oil saturation, Eq. 8.3, fraction
So; = oil residual saturation, fraction
Spp = geometrical skin of a well in partial
penetration, Eq. 3.18
Sre = radial composite skin, Eq. 4.91
Sy =total skin of a well in partial
penetration, Eq. 3.17, or slanted Eq.

%

3.26

Sty = total skin during horizontal radial
flow, Eq. 3.38

Sty = total skin during vertical radial flow,
Eq.3.32

Sure = geometrical skin of a uniform flux
fracture, Eq. 3.11
S, = water saturation, fraction, or skin
factor in front of the perforated
interval

Sy = initial water saturation, fraction
S, = partial penetration skin during linear
flow to a horizontal well, Eq. 3.34
S,y = partial penetration skin during
horizontal radial flow to a horizontal
well, Eq. 3.36
S, = double porosity skin, Eq. 4.41
Se = geometrical skin of a slanted well,
Eq.3.23
§' =rate dependent skin coefficient, Eq.
722,723,724
S’ = rate dependent skin coefficient during
period j, Eq. 7.25
S, = apparent skin during vertical radial
flow based on vertical well model,
Eq.3.41
= time, hr
= absolute temperature, °R
tp = dimensionless time, Eq. 2.4, 7.10,
7.11
s = dimensionless time based on drainage
arca, Eq. 5.15
tpy = dimensionless time based on half
fracture length, Eq. 3.8, or on fissure
parameters, Eq. 4.11
tpr.m = dimensionless time based on total
system parameters, Eq. 4.12
tp; = dimensionless time based on half well
length, Eq. 3.29, or on channel width,
Eq.5.2
;= time at start of the period /in a
multiple rate sequence, Eq. 2.17, hr
T™M = time match, hr'
» = production time, Fig. 2.4, hr
t,» = dimensionless production time
w4 = dimensionless production time based
on drainage area
t,s = pseudo-time, Eq. 7.4, hr
lyss = time of start of pseudo-steady state
regime, hr
T,. = standard temperature condition,
(520°R=60 °F)
At = elapsed time or build-up time, Fig.
2.4, hr
. = intersection time of two semi-log
straight lines or midpoint of
derivative transition, Eq. 1.33, hr
V' = volume, bbl, or vapor mole fraction,
Eq. 8.15
V, = fissures volume per unit reservoir
volume, Eq. 4.2, fraction
V; = pore volume of closed layer i/, Eq.
477, cuft

~ -

~

S

A

[



=W

<w-0hy

= matrix volume per unit reservoir
volume. Eq. 4.2, fraction

= wellbore volume per unit fength. Eq.
1.8, bbl/ft

= wellbore volume, Eq. 1.7, bbl

” = change in volume. bbl

= coordinate. Fig. 6.9. ft

half length of a rectangular reservoir.

Fig. 3.4, ft

= half fracture length. Fig. 1.11. f1

= coordinate. Fig. 6.9. ft

= halt width of a rectangular reservoir.
Fig. 3.4. ft

= thickness of the altered permeability

Il

region near a finite conductivity fault,

Eq.5.29

= fracture. or semi-permeable. or {inite
conductivity fault width. Fig. 1.14 or
532 0r 537 ft

= real gas deviation factor. Eq. 7.1

= real gas deviation factor at average
test pressure. section 7.2.2

= real gas deviation factor at initial
pressure. Eq. 7.5 and section 7.2.2

= distance from the center of the
perforated interval. Fig. 3.15. or from
a horizontal well. Fig. 3.24. 1o the
lower reservoir boundary. ft

= apparent distance from a horizontal
well to the lower reservoir boundary.
Eq. 3.28. ft

= distance from the center of the
observation interval 1o the lower
reservoir boundary. Fig. 9.10. ft

= geometric coefficient in A. Eq. 4.6. or

transmissibility ratio ol a semi-
permeable fault. Eq. 5.27
parameter in transition curve for an

observation well with double porosity
transient interporosity flow. Fig. 6.20.

Eq. 6.13 and 6.14

= transition curve for a well with
wellbore storage and skin. double
porosity transient interporosity flow.
Fig. 4.16. Eq. 4.31

y = Euler's constant (1.78 . . . )

A

= difference

6, = storage of one group of matrix blocks
per unit of matrix storage. Eq. 4.40,
fraction

6" =constant of in /. Eq. 4.32 & 4.33

6 = angle between a slanted well and the
vertical. or between two intersecting
faults. Fig. 5.14

g, =well location in a wedge. Fig. 5.14
6," = transformed angle for a slanted well
in anisotropic system. Eq. 3.24
x = mobility ratio, Eq. 4.44
x, = mobility ratio of layer j. Eq. 4.67
A = interporosity flow coetticient, Eq.
4.5. or layer. Eq. 4.46

Zer = ctfective interporosity flow
coefficient. Eq. 4.38 & 4.39
A, = interlayer flow coefficient of layer /.,

Eq. 4.69. or in radial composite
layered system. LEq. 4.46. or
interporosity tflow cocflicient in
fissured layer, or in fissured
composite system. Eq. 4.5

A, =total mobility. Eq. 4.96

= viscosily, cp

4, = gas viscosity, Eq. 8.2. md

41, = viscosity in composite reservoir, Fig.
4.51. or at initial pressure, Eq. 7.5
and section 7.2.2, ¢p

4, = oil viscosity, q. 8.2. md

M, = water viscosity. Eq. 8.2, md

4 = viscosity at average lest pressure,
section 7.2.2. ¢p

p = density. Eq. 1.8, Ib/cu ft

Poy = molar density of oil or gas, Eq. 8.14
¢ = porosity. fraction
¢ = fissures porosity. Eq. 4.2, fraction
@, = matrix porosity, Eq. 4.2, fraction

$ -, = porosity in layered. Fig. 441, or
composite reservoir, Fig. 4.51
Hip) = mp)

@ = storativity ratio in fissured, Eq. 4.4,
or layered system. Eq. 4.45

w, = storativity ratio of layer 7, Eq. 4.68, or
in radial composite layered system,
2q. 4.45. or fissured layered or
fissured radial composite system, Eq.
44
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SUBJECT INDEX

A

Absolute open flow potential. 4. 303. 313,
315,318

Acidized well: See Well. stimulated

Afterflow: See Wellbore. storage

Agarwal time: See Time. effective

Angle:

- of intersecting faults: See Boundary.
intersecting

—of slanted well: See Slanted well

Anisotropy of permeability: See Permeability

AOFP: See Absolute open flow potential

Apparent wellbore radius: See Wellbore,
radius. equivalent

Apparent well length: See Horizontal well.
effective length

Average pressure: See Pressure

B

Back pressure test. 4. 313-316

Bi-tinear flow. 35, 40-11. 148. 254, 363

- to finite conductivity fracture: See Fractured
well. tinite conductivity

—to a conductive fault: See Fault. conductive

Bottom hole rate: See Rate. sand face

Boundary, 2, 148, 265, 267-268, 354, 368-
371

— closed, 20-22. 42, 36. 184. 189. 203. 210.
217.225-238. 243, 255. 259-262. 264-265.
267.269-270. 281.289-290. 312, 314, 342,
344, 358, 365. 367

— — analysis. 229-238

—— — log-log responses: See Log-log.
derivative hump or straight line, derivative
stabilization in bounded systems or pressure
stabilization or unit slope

—— — See Radial flow

—— build-up in. 21. 225-226. 233-238. 260

——, drawdown in, 20-21, 42, 225-232. 260

— — — Pseudo steady state, 6. 20-22. 39, 42.
225-233.260-261. 281. 290. 309. 312, 314.
326, 342, 344, 365, 367

— — —— reservoir area or size or pore volume
or storage, 21-22, 180, 227-229, 231-232,
237, 260, 342, 370

— — — reservoir shape and well location,
231-232,237

— —. depletion in, 21,225, 233. 237, 243,
260.305,312.314

—. constant pressure. 6. 22. 69-70, 77. 107,
109. 184,190, 217. 234, 238-243. 247, 250-
251.255-256. 264, 268-269. 314, 358-359.
365. 366

— — analysis, 242-243

— — — log-log responses: See Log-log,
derivative hump or straight line, derivative
stabilization or derivative negative unit
slope or pressure stabilization

— — — See Radial flow

— — distance, 240-242, 373-375

intersecting sealing, 159, 218-224, 226,

229.256,267.270

— — analysis. 222-223

— — — log-log responscs: See Log-log,
straight line, derivative stabilization in
bounded systems or half unit slope

— — — See Radial flow, or fraction of

- —. angle between. 220-223

— —. distance and well location between,
220-222

—. parallel scaling. 23. 96. 148. 210-218, 222-
223.229. 254, 259, 262-267, 270, 281, 368-
370

— — analysis, 213-218

— — — log-log responses: See Log-log,
derivative build-up distortion or valley or
straight line, derivative stabilization in
bounded systems or half unit slope

— — — See Radial flow

—— — linear flow, 210-215, 218, 229-230,
259.262-264, 266-267. 363, 367

- — — — hemi, 230-231

— —. width and well location between, 210,
212-216, 218, 231. 259. 262-264, 267

—. single linear:

— —. conductive: See Fault

——, scaling, 17-20, 34-35, 43-44, 90, 116,
155-156. 190-191. 205-210, 220, 229, 241,
244,246, 250, 253-254, 257-258, 267, 270,
281-282, 368-369

—— — analysis, 207-210

— — — — log-log responses: See Log-log,
derivative build-up distortion or straight

|



line, derivative stabilization in bounded
systems

—— — — See Radial flow, or hemi

—— —, distance to, 19-20, 95, 156, 205-209,
258-259,373-375

——, semi permeable (or communicating):
See Fault

—, upper or lower, 70, 72, 77-78, 90, 103-104,
107, 268-269

Build-up:

— derivative distortion: See Log-log

— in heterogeneous reservoir: See Composite
or Fissured or Layered

— in homogeneous bounded reservoir, 21,
209-210, 216-218, 224, 233-238, 242, 246-
247, 251-252, 358-360, 368-371

— in infinite homogeneous reservoir, 29-36,
42-44, 60, 75, 95-97, 311-312, 325-326,
328, 335-337, 339-340, 345-346, 353-354,
361-363, 375

— pressure, 2, 30, 226

—test, 3, 4, 225-226, 316, 319, 332, 335-337,
340, 345-346, 352-354, 368-371

-~ — example: See Example

— type-curve: See Type-curve, build-up and
derivative

C

Channel reservoir: See Boundary, parallel

Closed reservoir: See Boundary

Clean-up, 4, 354

Commingled: See Layered reservoir

Composite reservoir, 180-204, 217, 366-367

—— analysis, 191-192

— — — log-log responses: See Log-log,
derivative build-up distortion or hump or
valley or straight line, derivative
stabilization in composite reservoir
response or unit slope

— — — See Radial tlow

—, boundaries in, 262-266

—. build-up in, 189-190, 264-265

—, fissured: See Fissured reservoir

—, interface in, 182, 193, 195-196

—, interference test in: See Interference

—, layered, 202-204, 261

—, linear, 181-183, 190-193, 195, 205, 238,
245, 262-266, 290

—, mobility ratio in, 182, 184-185, 187-188,
190-193, 195-198, 202, 249, 286-287, 289-

417

—, radial, 53, 112, 151, 181-190, 192-198,
200-204, 246, 265, 279, 286-290, 327

——, estimating interface distance in, 186,
188, 195, 197-198, 202-204

—, storativity ratio in, 182, 185-186, 192, 195,
288-290, 367

— transition behavior in, 184, 186, 189, 192,
195, 197-198, 201

Compressibility:

-, gas, 304-305, 322, 361

-, oil, 5, 8, 322, 361

—, total, 5, 156,373

—— effective, 322-323

-, water, 5, 322

Computer package: See Software

Conductive fault: See Fault

Constant pressure boundary: See Boundary

Constant pressure test, 331, 340-346

Crossflow: See Interlayer flow

D

Damage: See Well

Darcy: See Non Darcy flow

Decline curve: See Type-curve, rate

Deliverability test: See Gas, well test

Depletion: See Boundary, closed

Derivative, 34, 36-46, 51, 195-196, 334, 340,
353,360

— analysis: See Log-log

—, build-up, 42, 353

—, estimating, 44-45

—— smoothing, 44, 359, 364

— of second order, 50, 340

—, normalized: See Log-log

— straight line: See Log-log

— with respect to time, 57, 211, 274, 334

Design: See Test design

Diagnosis, 4, 22, 25-26, 35, 45, 51-52, 269-
270, 300, 353, 358-360, 365-367

Differentiation: See Derivative

Dimensionless:

— derivative, 37, 334, 338

— distances, 12, 20

— pressure, 26-27, 120, 163, 172, 182, 307,
323, 323, 328,333

~ quantities, 10, 13, 25-26, 51, 84-85, 309

—rate, 341, 343, 345

— time, 26-27, 56, 85, 120-121, 123, 163, 172,
182-183, 212, 227, 274, 284, 291, 308, 323,
325
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Double permeability reservoir: See Layered
reservoir

Double porosity reservoir: See Fissured
reservoir

Drainage arca. 6. 9. 12. 19, 373-375

Drawdown,

—. extrapolated. 30-32. 34

— derivative. 36-44

— pressure. 1. 226

—test. 3. 7.29.99. 225, 325. 328. 358. 361.
363

—— See Test history plot

Drillstem test, 4, 331-337, 340

—. build-up period of. 335-337

—. slug period of. 332-335, 337

DST: See Drillstem test

E

Effective time: See Time

Eftective wellbore radius: See Wellbore.
radius. equivalent

Effective well length: See Horizontal well

Elliptical flow: See Radial flow. pseudo

Equivalent production time: See Horner

Equivalent wellbore radius: See Wellbore

Example. 26. 28-29.32-33. 39. 68. 78-79. 98-
99, 157-159. 174-175.224. 256-257. 261-
262.319-320

Exponential integral. 11-12.206.273-274.
291

Extrapolated pressure: See Pressure

F

Falloff: See Injection

Fault:

—, conductive (or communicating). 193, 238,
241, 243, 245, 247-252

—— analysis, 251-252

—— —_ bi-linear tlow. 247. 249. 252

—— — log-log responses: See Log-log.
derivative hump or valley or straight linc.
derivative negative unit slope or
stabilization in bounded systems or quarter
unit slope

—— — See Radial flow

——, conductivity of. 248-249. 251-252

——, skin factor in, 249-252

—, sealing: See Boundary, linear

-, semi permeable (or partially
communicating), 181, 234, 243-247, 249,
264

— — analysis. 246-247

— — — log-log responses: See Log-log,
derivative hump or straight line, derivative
stabilization in bounded systems

— — — See Radial flow

— — transmissibility ratio of, 245-246, 249

Fissure:

— flow: See Fissured reservoir, behavior

—network. 110, 116-118, 243, 267

— — geometry. 117-119. 138, 142, 149, 151-
154, 198-202

— — —: See Matrix blocks

— — permeability. 118, 122,137

— — porosity. 118

— — storativity. 119-120. 122

- — volume. 118-119, 162

—, radius of influence of : See Radius

Fissured reservoir. 49, 33, 104, 110, 112,
116-139. 181. 199-202, 243, 248, 252-257,
290-296. 301, 342, 366-367

- analysis. 125-126,128-129, 131-137, 140,
142-143.145-147

— — log-log responses: See Log-log,
derivative build-up distortion or hump or
valley or straight line. derivative
stabilization in fissured reservoir response

— — See Radial flow

- behavior:

— — fissure flow, 122-132, 134. 137, 140,
143-144. 146. 150. 152-154, 199-201. 257,
267.290-296

— — total system flow, 122-132. 134, 137-
139-141. 143-144, 146-147, 152-154, 201,
257.291-292.296

— — —. time of start of, 128. 130. 142, 145,
150, 133

— — transition regime, 122-124, 127-131,

134, 136. 137-145. 147-148, 150, 152-153,
158. 199-201. 255-257, 291-296

. boundaries in. 148. 235, 252-257

—. build-up in. 133-137. 146-147

. composite. 200-202

—, horizontal well in. 110, 116.148

—. interference test in: See Interference

— interporosity flow (parameter). 119-120,
148, 156

— —, estimating, 126, 128, 133, 140, 292,
294, 296

——, effective, 120, 122, 148-151, 163, 178



——, influence of, 130-131, 144-145, 152-
153, 199-201

——, restricted, 116-117, 120, 121-137, 141,
143, 150-158, 165, 171, 186, 199-202, 253,
255-257,291-294, 367

——, unrestricted, 104, 116-117, 137-151,
154-156, 159, 177-178, 202, 207, 254, 295-
296, 342

—, layered, 199-200

— matrix skin: See Matrix blocks, skin

— pseudo skin: See Skin, in fissured reservoir

—, storativity in, 123

——, fissure, 120, 122, 133, 152, 257, 291,
293

——ratio, 118-119, 121, 144, 155-156, 291

—— —, estimating, 123-126, 128, 132, 140,
292-294

—— —, influence of, 129-130, 143-144, 199,
291, 295

——, total system, 120, 122, 133-134, 152,
292

Flow after flow test: See Backpressure test

Flow regime, 6-22, 35, 39-40, 148, 309, 363,
367-368

— chronology of, 22-23, 25, 45, 365-367

—— See Model, behavior

IFlux distribution to:

— fractured well: See Fracture

- horizontal well: See Horizontal well

Formation volume factor, 5, 322, 328

Fractured reservoir: See Fissured reservoir

Fractured well, 49-50, 55-68, 104-106, 181,
279

— analysis:

— — log-log responses: See Log-log,
derivative hump or straight line, derivative
stabilization in homogeneous reservoir
response or half unit slope or quarter unit
slope or unit slope

— — See Radial flow, pseudo

— fracture (half) length, 13-14, 56, 61, 64, 85,
89

——, estimating, 14, 55-56, 61, 67, 105

— flux distribution to, 56, 67-68, 99

— horizontal: See Horizontal well

— with infinite conductivity, 13-14, 22, 49,
55-61, 64, 65, 67-68, 86, 89, 92-93, 95-96,
99,116

—— analysis, 57-59, 60-61

— — — linear flow, 14, 39-40, 55, 60, 62, 63,

67, 105-106, 343, 356
— with finite conductivity, 15-16, 62-68, 99,
104-105, 116, 248, 280, 342-343, 345

419

——, analysis, 64-68, 104-106

— — — bilinear flow, 15, 40-41, 62, 65, 67,
103-106, 343, 345

— —, conductivity of, 16, 55, 62-65, 68, 105,
252,343, 345

, estimating, 15-16, 63, 65, 67, 105,
343, 345

— with uniform flux, 55-61, 67-68,

— with skin, 59-60, 63

G

Gas

—cap, 6,22, 69,77, 81, 107, 109-110, 238,
268-269, 346

~ drive: See Solution gas drive

- oil ratio, 322, 325, 328

— properties, 304

—, retrograde: See Retrograde gas condensate

— well test, 4, 265, 303-320, 343-345

———, deliverability, 4, 303, 313-320

— — — straight line, 313, 315, 317-318

— —, transient, 303, 305-312, 361

— — — rate decline, 343-345

Geometrical skin: See Skin

GOR: See Gas, oil ratio

H

Half unit slope: See Log-log, straight line

Hemi-radial flow: See Radial flow

Horizontal well, 5, 56, 80-81, 81-113, 116,
148, 269, 280, 346, 366

— analysis, 93-97, 104-105

—— log-log responses: See Log-log, straight
line, derivative stabilization in
homogeneous reservoir response or half
unit slope or unit slope

—— See Radial flow, pseudo or vertical

— effective length, 84, 86-89, 92-93, 95-96,
100-103, 106-107, 109, 111

— (half) length, 82, 85, 99-103, 111

—, finite conductivity, 83, 99-100

—, fractured, 84, 104-106, 110

—, flux distribution to, 99-100

— in fissured reservoir: See Fissured reservoir

— in layered reservoir, 106-110, 347

— linear flow, 82, 86-89, 93-97, 100, 102-104,
108, 148, 269

—, multilateral, 84, 110-111

—, partially open, 83,99, 101-103, 110

—~ — penetration ratio, 101, 103
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-, (non) rectilinear, 83, 99, 103-104

—, (non) uniform skin in, 83, 99-101
Horner, 32-33, 35, 42, 60, 237-238, 340
—. analysis: See Superposition. time

— equivalent time, 238, 346. 352-353
Humping: See Liquid level, changing
Hydraulic fracture: See Fractured well

I

Image well, 206, 211. 220. 227. 239. 257

Impulse test. 331. 337-340

Inclined well: See Slanted well

Inertial effect: See Non Darcy flow

Infinite acting radial {low: See Radial flow

Initial pressure: See Pressure

Initial shut-in. 3. 332. 338

Injection well. 180-181. 196-198. 200. 202.
240, 273. 285, 363

— falloff. 3. 197-198

— injection period. 3. 30. 34, 197

Instantanecous source: See Pressure. change.
step

Interface: See Composite reservoir

Interference:

—effect. 102, 106. 111, 363-364

—test. 2-3.273-302

— — analysis:

- — — log-log responses: See Log-log.
derivative hump or valley or straight-line.
dertvative stabilization. or Type curve.
interference

— — — See Radial flow

— — estimating storativity in. 273. 280, 284.

292-293, 299. 301

—— in homogenous reservoir. 274-280

— — — with boundaries. 281-282. 301

— — — with permeability anisotropy. 282-
284

—— in composite reservoir. 283-290

— — in fissured reservoir, 290-296. 301

——1in layered reservoir. 297-299. 301

— — type curve: See Type-curve or Line
source

~—, vertical, 72, 331, 346-349

Interlayer flow parameter: See Layered
reservoir

Interporosity flow parameter: See Fissured
reservoir

Intersecting boundaries: See Boundary

Inverse problem, 4-5, 268, 372

Isochronal test, 4, 316-318

L

Layered reservoir, 5, 69, 73, 75, 84, 116, 119,
151, 160-180. 197, 199-200. 202-204, 254,
257-262, 346. 348-349

— analysis, 167-168, 171-174

— — log-log responses: See Log-log.
derivative hump or valley or straight line,
derivative stabilization in layered reservoir
response or unit slope

— — See Radial flow

— behavior:

— — when all layers are perforated, 164-168.
199-200. 202-204. 257-262. 297-298, 366-
367.370-371

— — when only one layer is perforated. 169-
173.297. 348-349. 366

—. boundaries in. 254. 257-262, 267, 370-371

—. build-up in, 180, 260, 370-371

—. commingled. 160. 162. 164-165, 173, 175-
176. 178-180. 199, 202-204, 257-262, 297.
299.370-371

—. composite: See Composite reservoir

—. tissured: See Fissured reservoir

—. horizontal well in, 106-110, 347

— interference test in: See Interference

— interlayer flow (parameter). 108, 162-163,
167-168. 171, 175. 177. 199-200, 203, 297

— —. pseudo steady state. 160-163, 178

— —. transient, 160. 163. 177-178

— mobility ratio. 162. 164-168. 170-173, 175-
179. 199, 202-203. 258-260, 297

—. multiple layer, 175-177, 202, 258

— pscudo skin: See Skin, in layered reservorr,
. commingled

— pseudo steady state cross flow: See
Interlayer flow

— storativity ratio, 162. 165-168. 173. 175,
177. 179.199-200. 202. 257-261, 297-299

~ total system flow. 164-165. 169-175, 179,
202-203.258-261. 298

— —. time of start of. 167. 171

— transient cross flow: See Interlayer flow

— transition regime. 164-167, 169-170, 177-
178. 199-200. 203

Leaky fault: See IFault, semi permeable

Limited entry: See Partial penetration

Line source. 84, 206, 274, 277-279, 284, 291,
300

— See Exponential integral or Type-curve,
interference

Linear boundary: See Boundary, single linear

Linear flow, 35, 40, 309, 365



— between parallel boundaries: See Boundary,
parallel

— to infinite conductivity fracture: See
Fractured well

— to horizontal well: See Horizontal well

Liquid level:

—. changing, 8, 357, 362-363

—— See Drillstem test, slug period of, or
Wellbore, storage

Log-log:

— derivative curve:

— — analysis, 36-46, 51-52, 112-113, 353,
355-367

—— build-up distortion, 43-44, 97, 135-137,
146-147, 189-190, 209, 216, 224, 234, 265,
270, 353, 374

—— hump, 38-39, 45, 50-51, 60, 78, 98, 127,
186, 198, 203-204, 234, 241, 243-245, 247,
253, 256, 260-261, 264, 279, 287, 361, 367

—— valley, 44, 126-127, 129-130, 141, 150,
152-155, 164-165. 167, 171, 174, 177, 186,
189, 199, 201, 203, 243, 248-249, 252-253,
255-257,265-267, 294, 353, 361, 367

—plot, 25-26, 50

——, normalized, 51, 354, 358

— pressure curve;

—— analysis, 26-29, 31, 36, 364

—— hump, 362-363

— straight line:

—— derivative negative half unit slope, 41,
70-72, 74, 78-79, 171, 177, 348, 365

——, derivative negative unit slope, 239, 241-
242,247, 249-250, 365

— —, derivative stabilization:

—— — in bounded system response, 206~
210, 213, 216, 219, 222, 224, 226, 228,
241, 243, 246, 250, 256-258, 260-261, 270,
281, 365-366

—— — in composite reservoir response, 184-
186, 189, 191, 197-198, 201, 203, 286-290,
366-367

—— — in fissured reservoir response, 126,
128, 141, 150, 152, 253, 256-257, 293, 296,
365

—-— —in homogeneous reservoir response,
37-39, 45, 48, 50-52, 538, 62, 65, 70-71, 74,
78-79, 82, 88-90, 93, 95-96, 98, 100, 102,
104-105. 109, 113, 244, 246, 248, 250, 270,
275,319, 334, 337-338, 365-367

—— — in layered reservoir response, 164,
169-171, 178, 199, 202, 258, 260-261, 298-
299

421

—— —, time of start of, 36, 50, 57-58, 66,
71-72, 80, 89, 110-111, 126,130, 145,150,
152-154, 167, 171, 195, 203-204, 275, 277,
279-280, 293, 334-335, 348-349. 361, 363

——, half unit slope, 40, 55, 57-60, 62-63, 65,
68, 82, 88-89, 93, 96, 102-105, 109, 111,
210, 213, 216, 220, 222, 228, 259, 262-264,
266-267, 270, 281, 343, 365

— —, pressure stabilization, 31, 77, 109, 226,
234, 239-240, 242, 260, 269, 365

—-—, quarter unit slope, 40-41, 62-63, 65-68,
105, 248-250, 254, 343, 345, 365

——, unit slope, 28, 37-39, 42, 45, 48, 50, 60,
78,93, 98, 128, 203, 225, 228, 255, 260-
261, 264-265, 270, 281, 289-290, 305, 338,
355-357, 361, 365

M

Matrix blocks:

— geometry, 117, 119

——, cube or sphere, 117, 119, 138, 142, 150-
155, 157, 295-296

——, slab, 104, 117, 120, 138, 142-143, 145,
149, 154-155, 159, 178, 295

— permeability, 117, 119, 151

— porosity, 118

— See Pressure

—size, 117-120, 151-154

——, multiple, 116, 118, 151-154, 199, 257

—skin, 116-117, 120-121, 137, 148-151, 156,
202

— to fissure flow: See Fissured reservoir,
interporosity flow

— volume, 118-119, 162

Matthews - Brons - Hazebroek: See MBH

MBH, 210, 237-238

MDH, 11, 33,235

Miller - Dyes - Hutchinson: See MDH

Mobility:

—, apparent change of, 19-20, 70-71, 82-83,
113, 169-170, 184, 190, 193-198, 202-203,
206, 217,219, 262-265, 285-290, 321, 327,
353, 358-360, 366

— ratio in composite reservoirs: See
Composite reservoir

— ratio in layered reservoirs: See Layered
reservoir

— in multiphase reservoirs, 322-324

Model, 5, 22, 45, 48, 55, 62, 70, 84, 117-118,
161, 182, 206, 211, 220, 227, 245, 248-249,
300, 303, 364-365, 371-372
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— behavior, 48, 55, 62, 69-70, 82, 122. 137.

164, 169. 184. 190, 206, 210. 219-220, 225.

244, 247-248, 256, 270
Modily isochronal test. 4. 318-320
Multilateral well: See Horizontal well
Multi-layer reservoir: See Layvered reservoir
Multiple phase:
—. reservoir, 110, 156, 180. 321-329
— —. effective phase permeability in. 321,
324.328-329
— wellbore. 360-363
Multiple rate
— superposition: See Superposition
—test. 33-34. 311, 315-316. 318. 352-354
—— See Log-log. plot. normalized
— type curve, 33
Multiple well:
— production, 343, 363-364
—test: See Interference

N

Naturally fractured reservoir: See Fissured
reservoir

Negative half unit slope: See Log-log

No cross flow: See Layered reservoir.
commingled

No flow boundary: See Boundary

Non-Darcy tlow. 4, 99-100, 112. 303, 310-
312.314.321.344-345

o

Observation well: See Interference. test

P

PVT, 2,304, 373

Parallel boundaries: See Boundary

Partially open horizontal well: See Horizontal
well

Partial penetration

— effect in horizontal well. 86, 90. 92, 96.
110-103

—well in. 16-17.41. 53, 69-79.90. 92. 112-
113, 169-171.177.269. 347-348. 367

——analysis, 16-17. 41-42. 74-77

— — — log-log responses: See Log-log,
straight line, derivative negative half unit
slope or derivative stabilization in
homogencous reservoir response or unit
slope

— — — See Spherical flow

—— penetration ratio of, 16, 69-70, 72-75,
79, 347

Permeability. 2

— anisotropy:

— — horizontal. 53-54. 84. 106-107, 111,
117.282-284.301. 372

— — —, cstimating. 282-284, 294

— —, vertical to horizontal, 17, 70-76, 80-82,
84-85.89-92. 95. 347-348

— — —. ¢cstimating. 17. 70. 75-77. 93, 95. 348

—. double: See Layered reservoir

— during vertical radial flow, 82. 86, 88, 94-
95.97.99-100. 103.106-109

—. effective phase: See Multiple phase flow,
reservoir

—. fissure (double porosity): See Fissure,
network. permeability

—. horizontal, 2. 11, 16, 70, 82. 106, 347

— —. average. 53. 75, 106. 108-109. 162, 175.
195-196. 283. 372

— —, estimating;

—— — in heterogeneous reservoir, 122, 125,
128, 132. 134-135, 139. 143. 146-147, 156,
167. 172-174. 177. 187-189. 193, 197, 299

— — — in homogeneous reservoir, 11, 29, 33,
37.51.93.96. 100. 102, 108. 301, 324,
328.333-334. 337, 341-342, 347

— — — in reservoir with boundaries, 207-
209.213.217.222-223. 229-230. 236, 242,
246. 251. 280.

— matrix (double porosity): See Matrix blocks

—. multiple: See Layered reservoir

— relative. 198, 321. 324-327

—. spherical, 17.72, 79

~ thickness contrast (in layered reservoir): See
Layered reservoir, mobility, ratio

- vertical. 2. 17. 69, 75, 79. 82, 84. 88-90,
92-93. 98, 100, 106, 161-162, 175, 199,
268. 346-348, 372

— —. average. 75, 84, 107-109, 372

— —. estimating, 75-77, 93. 95, 102, 106,
108-109, 168, 172. 177, 347-348

—— See anisotropy. vertical to horizontal

Perrine method. 321-324

Phase segregation: See Liquid level, changing

Pore volume (reservoir): See Boundary,
closed

Porosity. 3

—, double: See Fissured reservoir

——, average porosity in, 118, 120

—, multiple: See Matrix blocks, size

Pressure:



—, absolute, 304

-, average, 2-3, 21, 45, 180, 210, 225, 233-
234, 236-240, 242, 260, 271, 312, 314, 328

—, bubble point, 180, 321, 360-361, 373

—change, 1-2, 8, 11, 14, 15, 16, 19, 23, 26,
30-31, 51, 354, 356-358, 363

——, step, 331, 333-334, 337, 340

—, constant: See average, or Constant pressure
test

— derivative: See Derivative

—, dew point, 180, 321, 326-327

— error at start of the period, 354-357, 364

—, extrapolated, 33, 75, 95-97, 134-135, 147,
179, 189, 209, 217-218, 224, 236-237, 242,
247,252,271, 353-354

—, fissure, 117-118, 122

- gauge drift, 273, 277, 300, 357-359

— gauge noise, 242, 268, 277, 299, 302, 359-
360, 364

— gauge resolution, 292, 314

—, initial, 1, 2, 29, 33, 45, 161, 178-180, 209,
217-218, 224-225, 243, 270-271, 314, 316,
318, 328, 331-332, 335, 340-341, 343, 352,
368-371

— —, average, 179-180

— integral, 50, 335

— match, 28-29, 36, 39, 45, 51, 56-58, 65, 74,
93,123, 125, 140, 143, 158, 167, 172, 187,
208,271, 284, 293, 328, 333-334, 338

—, matrix, 117-118, 122

—. pscudo:

——, gas, 303-310, 312, 314-315, 343, 345

~—, multiple phase, 321, 324-327

— squared, 306-310, 313-314, 321, 327-329

—trend in the reservoir, 273, 277, 300, 302

—, stabilized, 314

——: See average

Principle of superposition: See Superposition

Production

-, cumulative, 225, 312, 338, 346, 352-353

— history: See Rate history

—test, 4, 275-276, 332

— time, 29-34, 42, 97, 134-137, 146, 189,
233-236, 276, 315-316, 318, 338, 340, 352

Productivity, 2, 3, 55, 74, 81, 90, 100, 109,
111

—index, 3, 23

Pseudo pressure: See Pressure

Pseudo radial flow: See Radial flow

Pseudo steady state:

— interlayer flow: See Layered reservoir,
interlayer flow
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— interposity flow: See Fissured reservoir,
interposity flow, restricted

— See Boundary, closed

Pulse test, 3,273, 299-301

Q

Quarter unit slope: See Log-log

R

Radial composite: See Composite reservoir

Radial flow, 9, 11, 28, 36-37, 365

—, hemi:

— — in heterogeneous reservoir, 253, 258

— — in homogeneous reservoir: See in
bounded systems

— in bounded system response, 18-20, 34, 43,
203-206, 208, 211, 213-219, 221-223, 225-
226, 230-231, 236, 240-241, 244, 246-251,
253,255, 257, 260-261, 265, 267, 269, 270,
282

— — analysis, 208-210, 213-214, 217-218,
222-224,229-230, 235-237, 242-243, 246-
247, 251-252

— —, fraction of, 219, 222-234

—— hemi, 19-20, 34, 43, 206, 209, 216, 230,
232,270,374

— — — analysis, 19-20, 208-210

— in composite reservoir response, 185

— — analysis, 187-188

— in circular fracture, 104

— in fissured reservoir response, 104, 116,
122, 126, 128, 131, 135, 140-141, 146-148,
152, 157-159, 292-294, 296

— — analysis, 131-133, 134-135, 145-147,
157

— in homogeneous reservoir response, 9-11,
14, 16-17, 20, 28, 31, 34, 36, 38-39, 48, 50-
52,55, 65, 70-72, 74-75, 77-81, 87, 91,
113, 275, 280, 309, 319, 335, 337, 339-340,
343, 345, 347, 349, 352-353, 361, 366-367,
373-374

— — analysis, 11, 28-29, 32-33, 36, 52, 60-61,
67, 70, 75, 93-94, 96-97, 280, 310, 323-
324, 328, 340-342

——, pseudo, 14, 55-56, 58, 60-62, 65-68,
82, 85-89, 93-100, 102-103, 105-107, 109,
111, 148,267, 269

— in layered reservoir response, 164, 167,
170-175, 297, 370

— — analysis, 173-174
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—. vertical, 82, 85-86, 88-90, 93-100, 102-
104, 106, 108-109, 113, 148. 269

—— analysis. 93, 95. 97

— —. hemi. 90. 94-96. 109

—. time of start of. 27-28. 49. 51. 38. 66. 93.

124, 131-132. 145-146. 152. 168. 172. 275,

277.280. 335, 337. 340. 342, 345. 361

Radius:

—of investigation. 9. 11-13. 18-20. 61. 194-
196. 267. 281. 354. 372-375

- of influence of the fissures. 254. 292

— wellbore: See Wellbore

Rate:

—. critical. 332

—decline analysis: See Constant pressure test

— dependant skin: See Skin. or Non Darcy
flow

—. cquivalent multiphase. 321-322

—. estimation. 335-337

—— See Log-log. normalized. or Rate.
history. simplification

- history. 3. 30-31. 33. 42-43. 52-33. 1 36.
303.325. 352-354. 363-364

— — simplification. 353-354

— laver. 174,176

—. sand face. 7. 28. 38. 60. 67-68. 174. 176.
196. 277-278. 325

Real gas deviation factor, 304

Real gas potential: See Pressure. pseudo

Relative permeability: See Permeability

Reservoir:

—area: See Boundary. closed. size

— cross flow: See Interlayer flow

— limit test. 20-21. 56. 305. 312. 354

- shape: See Boundary, closed

— storage, 203, 260

Restricted interporosity flow: See Fissured
reservoir. interporosity flow

Retrograde gas condensate. 321. 326-327

S

Sand face rate: See Rate

Saturation, 5. 321-322.327. 373

— gas, 156, 180. 324. 326. 373

—. oil, 180. 325-326

-, water, 5, 196-198

Sealing fault: See Boundary, singlc lincar

Semi-log:

— approximation, 11-12, 28, 31, 34, 86-87,
124, 139, 277, 280, 314

—plot, 11, 44-45,52, 75,94, 113, 122, 124,
129-132, 139-140, 144-146, 153-154, 165-

167, 170-171, 173, 185-186, 191, 341, 345,
364, 366-367

— —. build-up, 31-34. 75. 95-97, 134-135,
147. 180. 189. 209-210, 217. 224, 235-238

— —. drawdown. 11. 20, 229-230

— — in the case of reservoir boundaries, 208-
211,214, 219.222-224. 226, 230. 241, 246,
250-251

— — straight line. 11, 20. 36, 75. 86-87. 95,
96. 132, 139, 146. 173-174. 179, 187-188.
208-209. 219, 222-223. 246. 250-251, 280.
310. 323, 328. 341-343, 345

Semi permeable:

— fault: See Fault

— layer (wall), 83, 108-109, 162, 168-169.
171.175. 178, 346, 348-349

Shape factor. 214, 227-229, 232-233, 236,
314

Shut-in: See Build-up

Simulation plot: See Test history plot

Skin. 3. 9-10. 25. 48-49, 51-33, 61, 64, 71,
91.112-113. 164. 179, 183. 188. 346, 373

— anisotropy. 54. 80-81. 84, 86. 95, 112

—. estimating:

— — in homogeneous reservoir:

— — — with a horizontal well, 86-88, 91-93.
95.97. 100

— — —with a vertical well, 11. 29, 33, 45,
52.61. 64, 71-74, 80-81. 310, 324, 326-
328.334.337.339.341-342.364. 373

— — — with boundaries. 208, 214, 217, 223,
230. 236, 242

— — in heterogencous reservoir, 125, 132-
133. 140. 146-147. 157. 168. 172, 174. 179,
187-188, 193

—. geometrical. 112-113

— — due to horizontal or vertical reservoir
boundarics. 72-73. 87-88. 91-92. 212-215,
224

— — — See Shape factor

— — due to horizontal permeability
anisotropy. 54-55

——in fractured well. 57. 61, 63-64, 67

— — in heterogencous reservoirs, 10, 156-
157.171.174. 179, 188, 194

— — in horizontal well. 85-94. 96-98, 100-
104, 109. 111

— — of partial penetration. 69, 71-74, 77

—— of slant, 80-81,

—, global; See Skin, total

— in conductive fault, 249

—, infinitesimal (or mechanical or wellbore),
9-10, 48, 53, 70-71, 74-75, 79-80, 84, 112,



163, 187, 193, 197, 214, 223, 227, 230,
232, 240, 242

— — in horizontal well, 86-87, 91-93, 95-97,
99-101, 103

— — —, uniform, 83, 86, 99-101

—— in layered reservoir, 160, 164, 168-174,
176, 178-179, 297, 299

— in fissured reservoir: See geometrical

— in fractured well: See geometrical

— in multiphase reservoir, 321, 324, 326-329

— in observation well, 277-280, 299, 301

— in radial composite reservoir, 10, 183, 187-
188, 194, 197

—, matrix: See Matrix blocks

—, pseudo: See rate dependant

—, rate dependant, 4, 52, 100, 112, 303, 310-
312,321, 343-344, 346, 354

—— See Non Darcy flow

—, total, 64, 71, 74-75, 81, 112, 174, 197, 215

—— in horizontal well:

— — — during horizontal radial flow, 85, 87,
92-93, 96, 100-104, 109, 111

— — — during vertical radial flow, 84, 86, 93,
95

—, wellbore: See Skin, infinitesimal

Slab matrix blocks: See Matrix blocks

Slanted well, 5, 53, 79-81

Slug test: See Drillstem test

Smoothing: See Derivative

Software, 43, 47, 51-52, 58, 70, 88, 93, 97,
99, 129, 142, 164, 183, 187, 190, 193, 208,
213, 224, 235, 238, 271, 299, 301, 337,
343, 354

Solution gas drive, 324-326

Spherical flow, 16-17, 35, 41, 70-71, 76-79,
100, 103, 169, 171, 177, 269, 309, 347,
349,367

— analysis, 17, 40, 41-42, 70-71, 74, 76-77

—, hemi, 71, 74, 76

Stabilized derivative: See Log-log, straight
line

Stabilized tflow, 3-4

Standard conditions, 307

Steady state, 6, 22, 77, 109, 326, 365

Storativity:

—, change of, 122, 185, 248, 367

— in composite reservoirs: See Composite
reservoir

—in fissured reservoirs: See Fissured reservoir

— in interference and pulse tests: See
I[nterference, test

— in layered reservoirs: See Layered reservoir

Stratified reservoir: See Layered reservoir

425

Superposition,

—, space, 206, 239-240, 343

—, time, 30-36, 43, 94, 97, 134-136, 209, 235-
238, 326, 375

——, limitation of, 34, 43-44, 197, 326

——— See Log-log, build-up distortion

——, multiple rate, 33-34, 42, 238, 336, 343,
345, 352-354

— — with other flow regimes. 35, 60,218

T

Temperature, 5, 307-310, 361

Test:

— design, 136-137

— history plot, 45-46, 53, 217, 224, 243, 265,
270, 301, 337, 354, 357-358, 364, 368-371

—period, 7, 25, 51-52, 225, 354, 364

Theis: See Exponential integral

Thickness, 5, 16, 55, 69, 83, 92, 109, 160,
266, 372-373

—, apparent, 73, 84-88, 91, 96

—, perforated: See Partial penetration,
penetration ratio

Tidal effect, 300

Time,

—, Agarwal: See effective

—, effective, 31-32, 42

-, elapsed, 2, 8, 11, 14-15, 17, 21, 25, 36, 43,
97,277,353, 356-357

—, equivalent Horner production: See Horner

— error at start of the period, 354-357, 364

— match, 26, 29, 45, 56, 93, 125, 280, 284,
333, 337-338, 361

—, pseudo, 305

Total compressibility: See Compressibility

Total system flow: See Fissured reservoir

Transient:

— gas well test: See Gas

— interlayer flow: See Layered reservoir,
interlayer flow

— interposity flow: See Fissured reservoir,
interposity flow, unrestricted

— rate: See Constant pressure test

— state, 6

Turbulent flow: See Non Darcy flow, or Skin,
rate dependant

Type-curve, 47

—, build-up, 31, 43, 56, 133-134, 146, 226,
271

—, pressure, 26-28, 49, 51, 57, 63, 70, 121-
125, 137-140, 274, 333, 335, 338-339
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—, derivative, 36-39, 45, 50-51, 57, 64. 112-

113, 121, 126-129, 140-142, 183,228,274,

334-335. 338
— — build-up distortion: See Log-log.
derivative
—. interference. 274-275. 291. 295
—— See Line source
—. rate, 341

U

Unit stope: See Log-log

Unrestricted interposity flow: See Fissured
reservoir. interposity flow

\%

Variable rate test: See Multiple rate test
Vertical interference test: See Interference
Vertical permeability: See Permeability
Vertically fractured well: See Fractured well
Viscosity.

—. 0il. 5,372-373

—. gas, 304-303, 328

Volume factor: See Formation volume factor

W

Warren and Root: See Fissured reservoir.
interporosity flow. restricted

Water

— compressibility: See Compressibility

—drive, 6. 22.69.77.81.107. 109. 181. 238.
265.268-269

—oil ratio, 328

—zone, 77, 107, 109. 285, 346

Wedge: See Boundary. intersecting

Well:

—, acidized: See Well. stimulated

- conductivity. 70. 82-84, 99

—, damaged, 9-10. 49-50, 59-60. 74. 90. 92.

100-101, 122, 131, 133, 137. 157. 179-180.

188, 277, 279-280, 305, 327. 342. 354, 360
—, fractured: See Fractured well

— location:

—— in bounded systems: See Boundary,
closed or intersecting or parallel

- — In interference tests: See Interference, in
homogenous reservoir, with boundaries or
with permeability anisotropy

— —. vertical. 69. 71-74, 76, 82-83. 85, 90-92.
94.96. 103-104. 347-349. 363

~ stimulated. 9-10. 49. 74, 101. 122, 137.
155-157.180. 188. 200, 202, 279

Wellbore

- geometry. 3. 5. 69-70. 77, 79, 82, 101-104

~radius. 5. 85, 87.91.99. 112, 373

— —. equivalent. 11, 48-49. 53-54. 61, 64, 84.
86. 341

— storage. 7-8. 28, 37-39, 48-49, 51, 59-60.
63.66. 78-79. 82, 93, 122, 125-127, 140,
156. 207, 261. 270. 289. 357, 365

— — afterflow. 7

— — and skin. 26-29. 36-39,47-53, 84, 121-
128. 137-142. 164. 169. 333-334, 338-339

— — —. on interference responses, 277-280,
301

- —, changing, 52, 337, 360-361, 367

— —, changing liquid level, 8, 332-335, 337,
362-363

~ — duration, 28. 50-51, 58, 60. 71, 93, 126~
128.131. 136, 155. 173, 207, 277, 301,
335.337, 361

~ —. estimating. 8. 28-29. 52, 57, 93-94, 125,
131, 140. 143, 145. 167. 172-173, 187. 193,
208. 242.309. 337. 339

—volume. 8. 49.93. 334,336

WOR: See Water oil ratio

Z

Z factor: See Real gas deviation factor
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