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PREFACE 

During the last two decades, well test analysis techniques have changed significantly. 
With the introduction of high accuracy pressure measurements and powerful computers, 
information that is more accurate and useful is extracted from well tests. The new 
interpretation methods, using the derivative of the pressure, magnify the characteristic 
features of the many different types of wells and reservoirs, including groundwater 
hydrogeology systems. Due to the improved diagnosis of well test data, the number of 
theoretical solutions available to the interpretation engineer is expanding all the time. 
Today well test interpretation computer programs offer a wide range of complex well 
and reservoir configurations for the analysis of pressure transient test responses. 

This book covers all aspects of well test analysis for the today's engineer who has 
access to powerful computers. The most recent advanced interpretation models are 
presented in detail and their application to field measurements is documented. Practical 
analyses of well test data is thoroughly discussed. Should the recorded test data deviate 
from the theory due to operational conditions, guidelines are established for proper 
analysis. The basic well test analysis technique and the associated theory have been 
abundantly discussed in the literature and they are simply summarized here. Focus is 
placed on computerized interpretation of complex systems. With this book, well test 
interpretation engineers will not only find answers to the different questions 
encountered in the course of analysis, but also gain a better understanding of the 
physical process involved, and the meaning and limitations of the results. 

The interpretation methodology is briefly presented in the two first Chapters. In Chapter 
1, the different types of tests are described, several typical well pressure responses are 
documented, and the usual well test analysis terminology is introduced. Chapter 2 
presents the various interpretation techniques, and defines the limitations of the 
different methods. 

In Chapters 3 to 5, the basic interpretation models are reviewed for well, reservoir and 
boundary conditions. The analysis of interference tests is described in Chapter 6. The 
interpretation methods and models are presented from Chapter 1 to 6 for a single-phase 
liquid flow (oil or water), tests in gas and multiphase reservoirs are discussed in 
Chapters 7 and 8. In Chapter 9, the analysis of different type of tests, such as drill stem 
tests, single well vertical interference tests, is explained. Several factors complicating 
well test analysis are discussed in the conclusion Chapter 10, together with a summary 
of the test interpretation methodology. 
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All figures and equations are presented in the usual oil field system of units, which is 
still currently used in the industry despite numerous attempts to have a metric system 
accepted. In the Appendix, the equations are presented with the practical metric system. 

Several field examples presented in this book have been published in technical articles. 
The test data and interpretation analysis results are available in the website 
http://www, else vier. c om/lo c ate/we 1 lte st. 

A lot of the material presented in this book is based on discussions with many well test 
interpretation specialists during the last 25 years. In particular, I want to thank Alain 
Gringarten for the many comments and his encouragement during the preparation of 
this work, and Piers Johnson for the complete revision of the book. 

Two interpretation software packages have been used for the preparation of the Figures: 
PIE of WTS and SAPHIR of KAPPA Engineering. 

Paris, December 2001 

Dominique Bourdet has worked over 25 years with Oil and Gas Industry. He is the 
author of several publications on different aspects of well test analysis. His main 
research interest is in the analysis of fissured reservoirs. He developed the pressure 
derivative analysis method that became a standard in the Industry. He has been involved 
in the research of new well test analysis techniques, in the technical support to field 
operations, and in the development of well test interpretation software packages. He is 
an Independent Consultant, specializing in the design, supervision, and interpretation of 
well tests in unconventional systems. During the last twenty years, he has continuously 
taught well test interpretation in the Industry and in Universities. 
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CHAPTER 1 

PRINCIPLES OF TRANSIENT TESTING 

In this first Chapter, the terminology used in well testing and interpretation is presented, 
and different testing procedures are explained. In the second part, characteristic well 
pressure behavior is illustrated, and the corresponding analysis methods are introduced. 
It is shown that well test responses follow chronological characteristic behavior at 
different times, depending upon the well and reservoir configuration. The interpretation 
techniques are presented in detail in the following Chapter 2. 

1.1 INTRODUCTION 

1.1.1 Description of a well test 

During a well test, a transient pressure response is created by a temporary change in 
production rate. The well response is usually monitored during a relatively short period 
of time compared to the life of the reservoir, depending upon the test objectives. For 
well evaluation, tests are frequently achieved in less than two days. In the case of 
reservoir limit testing, several months of pressure data may be needed. 

In most cases, the flow rate is measured at surface while the pressure is recorded down- 
hole. Before opening, the initial pressure Pi is constant and uniform in the reservoir. 
During the flowing period, the drawdown pressure response Ap is defined as follows: 

Ap = p/ - p ( t )  (1.1) 
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Figure 1.1. Drawdown and build-up test sequence. 
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When the well is shut-in, the build-up pressure change Ap is estimated from the last 
flowing pressure p(At=O): 

Ap : p ( t ) -  p(At  : o) (1.2) 

The pressure response is analyzed versus the elapsed time At since the start of the period 
(time of opening or shut-in). 

Well test objectives 

Well test analysis provides information on the reservoir and on the well. Geological, 
geophysical and petrophysical information is used where possible in conjunction with 
the well test information to build a reservoir model for prediction of the field behavior 
and fluid recovery for different operating scenarios. The quality of the communication 
between the well and the reservoir indicates the possibility to improve the well 
productivity. Usually, the test objectives can be summarized as follows: 

Exploration well: On initial wells, well testing is used to confirm the exploration 
hypothesis and to establish a first production forecast: nature and rate of produced 
fluids, initial pressure and well and reservoir properties. Tests may be limited to drill 
stem testing only. 

Appraisal well: The previous well and reservoir description can be refined by testing 
appraisal wells to confirm well productivity, reservoir heterogeneities and boundaries, 
drive mechanisms etc. Bottom hole fluid samples are taken for PVT laboratory analysis. 
Longer duration testing (production testing) is usually carried out. 

Development well: On producing wells, periodic tests are made to adjust the reservoir 
description and to evaluate the need for well treatment, such as work-over, perforation 
strategy or completion design, to maximize the well's production life. Communication 
between wells (interference testing), monitoring of the average reservoir pressure are 
some usual objectives of development well testing. 

Information obta#led from well testing 

Well test responses characterize the ability of the fluid to flow through the reservoir and 
to the well. Tests provide a description of the reservoir in dynamic conditions, as 
opposed to geological and log data. As the investigated reservoir volume is relatively 
large, the estimated parameters are average values. From pressure curve analysis, it is 
possible to determine the following properties: 

Reservoir description: 
�9 Permeability (horizontal k and vertical kf.), 
�9 Reservoir heterogeneities (natural fractures, layering, change of characteristics), 
�9 Boundaries (distance, size and shape), 

�9 Pressures (initial p; and average p ). 
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Well description: 
�9 Production potential (productivity index PI and skin factor S), 
�9 Well geometry. 

By comparing the result of routine tests, changes of productivity and rate of decrease of 
the average reservoir pressure can be established. 

Test procedure 

Drawdown test: the flowing bottom hole pressure is used for analysis. Ideally, the well 
should be producing at constant rate but in practice, this is difficult to achieve and 
drawdown pressure data is erratic. The analysis of flowing periods (drawdown) is 
frequently difficult and inaccurate. 

Build-up test: the increase of bottom hole pressure after shut-in is used for analysis. 
Before the build-up test, the well must have been flowing long enough to reach 
stabilized rate. During shut-in periods, the flow rate is accurately controlled (zero). It is 
for this reason build up tests should be performed. 

Injection test ~fall-off test: when fluid is injected into the reservoir, the bottom hole 
pressure increases and, after shut-in, it drops during the fall-off period. The properties 
of the injected fluid are in general different from that of the reservoir fluid, 
interpretation of injection and fall-off tests requires more attention to detail than for 
producers. 

Interference test and pulse testing: the bottom hole pressure is monitored in a shut-in 
observation well some distance away from the producer. Interference tests are designed 
to evaluate communication between wells. With pulse tests, the active well is produced 
with a series of short flow / shut-in periods and the resulting pressure oscillations in the 
observation well are analyzed. 

[ 
d 
oo 
oo 
s,_ 

13_ 
Initial 

shut-in 
Clean Variable 

G up rate 
Stabilized 

rate 

Build-up 

Time, t 

Figure 1.2. Typical test sequence. Oil well. 
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Gas well test: specific testing methods are used to evaluate the deliverability of gas 
wells (Absolute Open Flow Potential, AOFP) and the possibility of non-Darcy flow 
condition (rate dependent skin factor S~). The usual procedures are Back Pressure test 
(Flow after Flow), Isochronal and Modified Isochronal tests. 

In Figure 1.2, the typical test sequence of an exploration oil well is presented. Initially, 
the well is cleaned up by producing at different rates, until the fluid produced at surface 
corresponds to the reservoir fluid. The well is then shut-in to run the down hole pressure 
gauges, and reopened for the main flow. The flow rate is controlled by producing 
through a calibrated orifice on the choke manifold. Several choke diameters are 
frequently used, until stabilized flowing conditions are reached. After some flow time at 
a constant rate, the well is shut-in for the final build-up test. 

Well completion 

Production test: during such tests, the well is completed as a production well with a 
cased hole and a permanent completion. The well is monitored at surface, from the 
wellhead. 

Drill stem test (DST): the well is completed temporarily with a down-hole shut-in valve. 
Frequently the well is cased but DST can be made also in open hole. During a DST, the 
well is closed down-hole. The drill stem testing procedure is used only for relatively 
short tests. The drill string (drill-pipe) is not used any more, and production tubing is 
employed. 

1.1.2 Methodology 

The inverse problem 

The objective of well test analysis is to describe an unknown system S (well + 
reservoir) by indirect measurements (O the pressure response to I a change of rate). 
Solving S=O/I is a typical inverse problem (Gringarten et al., 1979). 

Is[<>o 
input system output 

As opposed to the direct problem (O=lxS), the solution of the inverse problem is 
usually not unique. It implies an identification process, and the interpretation provides 
the model(s) whose behavior is identical to the behavior of the actual reservoir. 
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Interpretation models 

The models used in well test interpretation can be described as a transfer function; they 
only define the behavior (homogeneous or heterogeneous, bounded or infinite). Well 
test interpretation models are often different from the geological or log models, due to 
the averaging of the reservoir properties. Layered reservoirs for example frequently 
show a homogeneous behavior during tests. 

Interpretation models are made of several components, which are relatively 
independent, and exhibit different characteristics at different time of the response. Once 
all components have been identified, the interpretation model is defined. Analytical 
solutions or numerical models are used to generate pressure responses to the specific 
production rate history I of the well, and the model parameters are adjusted until the 
model behavior O is identical to the behavior of $. 

In the case of complex reservoir behavior, several models are frequently applicable to 
describe the test pressure response. The non-uniqueness of the inverse problem solution 
can be reduced by using additional information, such as geological or geophysical data 
for example. In some cases, a new test may be specifically designed in order to 
complete or improve an ambiguous test pressure response. 

Input data required for well test analysis 

Test data: flow rate and bottom hole pressure as a function of time. The test sequence of 
events must be detailed, including any operational problems that may affect the well 
response. Results of analysis are dependent upon the accuracy of the well test data. 
When the production rate has not been measured during some flow periods, it must be 
accurately estimated. Errors in rate or pressure data are discussed in Chapter 10. 

Well data: wellbore radius r,,,, well geometry (such as inclined or horizontal well), 
depths (formation, gauges). 

Reservoir and fluid parameters: formation thickness h (net), porosity ~b, compressibility 
of oil co, water c,~ and formation cj; water saturation S,,,, oil viscosity/1 and formation 
volume factor B. The total system compressibility c~ is expressed as: 

(1.3) 

The above reservoir and fluid parameters are used for calculation of the results. After a 
first interpretation, they may always be changed or adjusted if needed to refine the 
results, for the same theoretical interpretation model. 

Additional data can be useful in some cases: production log, gradient surveys, reservoir 
temperature, bubble point pressure etc. General information obtained from geologist 
and geophysicists are required to validate the well test interpretation results. 
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1.2 TYPICAL FLOW REGIMES 

1.2.1 Types of flow behavior 

The different flow behaviors are usually classified in terms of rate of change of pressure 
with respect to time. 

Steady state 

During steady-state flow, the pressure does not change with time. This is observed for 
example when a constant pressure effect, such as resulting from a gas cap or some types 
of water drive, ensures a pressure maintenance in the producing formation. 

@ - 0  (1.4) 
c~t 

Pseudo steady state 

The pseudo steady state regime characterizes a closed system response. With a constant 
rate production, the drop of pressure becomes constant for each unit of time. 

@ 
0t 

- constant (1.5) 

Transient state 

Transient responses are observed before constant pressure or closed boundary effects 
are reached. The pressure variation with time is a function of the well geometry and the 
reservoir properties, such as permeability and heterogeneity. 

@ - / ( x , y , z , t )  (1.6) 
& 

Usually, well test interpretation focuses on the transient pressure response. Near 
wellbore conditions are seen first and later, when the drainage area expands, the 
pressure response is characteristic of the reservoir properties until boundary effects are 
seen at late time (then the flow regime changes to pseudo steady or steady state). In the 
following, several characteristic examples of well behavior are introduced, for 
illustration of typical well test responses. 



Typical flow regimes 7 

1.2.2 Wellbore storage 

When a well is opened, the production at surface is initially due to the expansion of the 
fluid stored in the wellbore, and the reservoir contribution is initially negligible. This 
characteristic flow regime, called the pure wellbore storage effect, can last from a few 
seconds to a few minutes. Then, the reservoir production starts and the sand face rate 
increases until it becomes the same as the surface rate. When this condition is reached, 
the wellbore storage has no effect any more on the bottom hole pressure response, the 
data describes the reservoir behavior and it can be used for transient analysis. 

During shut-in periods, the wellbore storage effect is also called afterflow: after the well 
has been shut-in, the reservoir continues to produce at the sand face and the fluid stored 
in the wellbore is recompressed. The same sequence with three different pressure 
behaviors can be observed: the pure wellbore storage effect, transition when the sand 
face rate declines, and the end of the wellbore storage effect when the sand face rate 
becomes negligible and eventually zero. 

After any change in the well flowing conditions, there is a time lag between the surface 
production and the sand face rate. The effect of wellbore storage affects well pressure 
responses during the first instants of each test period. In the present Chapter, only 
drawdown responses are illustrated. Multiple-rate sequences and shut-in periods are 
discussed in Chapter 2. 

Wellbore storage coefficient 

The wellbore storage coefficient defines the rate of pressure change during the pure 
wellbore storage regime. For a well full of a single-phase fluid, well bore storage is 
represented by a compressibility term (van Everdingen and Hurst, 1949): 

AV 
C = =coVw (1.7) 

Ap 

o _  
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Time, t 
Figure 1.3. Wellbore storage effect. Sand face and surface rates. 
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where:  
Co : liquid compressibility 
Vw : wellbore volume in Bbl 

When there is a liquid level (Earlougher, 1977), the level depth is related to the flow 
rate with AV = Vz, Ah, and the down hole pressure change is expressed 

Ap = p Ah(g /gc ) ,  where 

p :  liquid density (lb/cu ft) 
g/gc : gravitational acceleration (lbf/lbm) 
V,, : wellbore volume per unit length (Bbl/ft) 

C =144 V~ (1.8) 
P(g /gc )  

Specialized analysis 

During the pure wellbore regime, the well is acting as a closed volume and, with a 
constant surface rate condition, the pressure changes linearly with time. The wellbore 
storage coefficient can be estimated on a plot of the pressure change Ap versus the 
elapsed time At time on a linear scale (van Everdingen, and Hurst, 1949). At early time, 
the response follows a straight line of slope mwBs, intercepting the origin. 

Ap = qB At (1.9) 
24C 

The we/lbore storage coefficient C is estimated from the straight-line slope rnwBs: 

C = q B___B (1.10) 
24mwBs 
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Figure 1.4. Wellbore storage effect. Specialized analysis on a linear scale. 
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Figure 1.5. Radial flow regime. Pressure profile. Zero skin. 
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Figure 1.6. Radial flow regime. Pressure profile. Damaged well, positive skin factor. 
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Figure 1.7. Radial flow regime. Pressure profile. Stimulated well, negative skin factor. 

1.2.3 Radial flow regime, skin (homogeneous behavior) 

When the reservoir production is established, the flow-lines converge towards the well 
with a radial geometry. In the reservoir, the pressure is a function of the time and the 
distance to the well. As the production time increases, the well bottom-hole pressure p, f  
drops, and the circular drainage area of radius r~ expands in the reservoir. The radius of 
investigation r; is discussed later in this Section. 

Skin 

In the case of a damaged well, a flow restriction is present at the interface between the 
reservoir and the wellbore, producing an additional pressure drop APski n when the fluid 
enters into the well. For a stimulated well, the flowing condition is improved near the 
well, and the pressure decline is reduced in a cylindrical near wellbore reservoir region. 
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For comparison between wells, the magnitude of the pressure drop near the wellbore 
has to be normalized. The s a m e  @skin can describe a low or very high damage, 
depending on the flow rate and the reservoir permeability. The skin factor S is a 
dimensionless parameter (van Everdingen 1953), and it characterizes the well 
condition: for a damaged well S > 0 and, by extension, S < 0 for a stimulated well. 

kh 
S -- Ap Skin (1.11) 

141.2qBp 

Typical examples of a damaged well (S > 0) are poor contact between the well and the 
reservoir (mud-cake, insufficient perforation density, partial penetration) or invaded 
zone. 

Stimulated well (S < 0) behavior is observed when the surface of contact between the 
well and the reservoir has been increased compared to the basic cylindrical vertical 
wellbore geometry (fractured well, slanted and horizontal well) or acid stimulated zone. 

For a given pressure drop in the vicinity of the wellbore, it is shown from Equation 1.11 
that the corresponding skin damage is larger in high permeability reservoirs, or when 
the fluid viscosity is low. A large skin factor S indicates the possibility of a strong 
improvement of the well flowing pressure, or a potential significant increase of the flow 
rate. Dimensionless terms are currently used in well test analysis. They are further 
discussed in Chapter 2. 

In the case of an invaded or stimulated circular zone around the well, the resulting 
positive or negative skin can be expressed by the difference between the pressure profile 
corresponding to the original reservoir permeability k, and the actual pressure profile 
due to the modified reservoir pemneability ks.. In the circular zone near the well, the flow 
is in steady state regime: 

141.2qB/a In r v 141.2qBp In r~. 
Pw, ,v  - P,, . , ,s'=0 = ( 1 . 1 2 )  

ks h r~,, kh rw 

The skin is expressed : 

E w 

(1.13) 

. . . . . . . . . . . . . . . . . . . .  ,,,, r s 

..---- . . . . .  ks _ r w ~ . . . 2 2 2 ~ - - . .  ,'. .; 
. . . . . . . . . . . . . . . . . . . . . . . . . .  ,,,,,,,' 

Figure 1.8. Flow through a circular reservoir region. 
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Figure 1.9. Radial flow regime. Specialized analysis on semi-log scale. 

The equivalent wellbore radius is defined with no pressure loss ( k s = oo ) in the circular 

zone around the well (Brons and Miller, 1961 a)" 

rwe = rw e -S  (1.14) 

Specialized analysis 

During the radial flow regime in reservoirs with homogeneous behavior, the pressure 
changes with the logarithm of the elapsed time from when the well is opened (Miller et 
al., 1950). A plot of the bottom hole pressure versus the logarithm of time (called MDH 
plot) follows a straight line when all wellbore storage transitional effect are finished. 
The slope m of semi-log straight line is used to estimate the reservoir permeability 
thickness product kh, and the skin coefficient S is evaluated from the location of the 
straight line along the y-axis. 

F 
Ap - 162.6 ~Bq_r_ ]log At + log 

kh k 
~b/ac, r 2 - 3.23 + 0.87S (1.15) 

Traditionally, the semi-log straight-line location is characterized by the straight-line 
pressure at 1 hour (kp~ h,.). 

kh = 162.6 qB,u (1.16) 
m 

S = 1.151(Apll~r - l o g  k ) ~ +  3.23 (1.17) 
,,, # ,o , , .  2 

Radius of  investigation 

As illustrated on Figure 1.5, the pressure distribution in the reservoir is a function of the 
time and the distance to the producing well. It can be expressed with the Exponential 
Integral function (see Chapter 6)" 
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P Log r 
p ,  - 

Pwf 

Figure . 10. Pressure profile versus the logarithm of the distance to the well. 

zXP(kt'r):-O5141"2qBht Ei( 0.00r )1056kkt (1.18) 

For small x, E i ( - x ) - - l n 0 <  )' the Exponential Integral can be approximated by a log 

(with y= 1.78, Euler's constant). 

I 0.000264kAt Ap(kt, r ) -  162.6 qB/a log 2 
kh O/ac t r +0.8091 (1.19) 

(The skin calculation Equation 1.12 is based on Equation 1.19 and, for the semi-log 
straight line Equation 1.15 the radial distance is set at r = r,,). 

When plotted versus log(r), the flowing pressure profile at a given time is a straight line 
until the distance becomes too large for the logarithm approximation of the Exponential 
Integral. Beyond this limit, the profile flattens, and tends asymptotically towards the 
initial pressure as shown on Figure 1.I0 (where the pressure profile of Figure 1.5 is 
presented for different production times versus the logarithm of the distance r). 

The radius of investigation r, tentatively describes the distance that the pressure 
transient has moved into the formation. Several definitions have been proposed (see 
discussion in Section 10.3.3), in general r, is defined with one of the two relationships 
(Earlougher, 1977; Muskat, 1934 and Lee, 1982): 

0.000264kAt 1 1 
= ~  o r -  

") 2 4 c~ /a c , r,- y 
(1.20) 

In dimensionless terms, radius are expressed as 

r 

r D = ~  

rw 
(1.21) 
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With the dimensionless time defined in Equation 2.4, Equation 1.20 is simply: 

1 1 

This gives respectively, 

r i = O.029~/kAt/~b#cl (1.23) 

and 

r i - O.032~/kAt/f}/lct (1.24) 

Equations 1.23 or 1.24 are based on the assumption of homogeneous isotropic reservoir 
permeability. Permeability anisotropy is discussed in Section 3.1.5, and radial changes 
of permeability in Section 4.3.4. It should be noted that the radius of investigation is 
independent  o f  the f l o w  rate. 

1.2.4 Fractured well (infinite conductivity fracture): linear flow regime 

A common well stimulation method consists of creating a hydraulic vertical fracture 
from the wellbore to the formation (Russell and Truitt, 1964). The reservoir / well 
surface of contact is significantly increased, thus producing a negative skin factor. Two 
main types of fractured well behavior are observed: infinite or finite conductivity 
fracture. Both are discussed in the Well Model Chapter 3. In the following, fractured 
well responses are briefly introduced to illustrate two characteristic flow regimes. 

The fracture is symmetrical on both sides of the well and it intercepts the complete 
formation thickness, xf is the half fracture length. With the infinite conduct iv i ty  fracture 
model, it is assumed that the fluid flows along the fracture without any pressure drop. 

1 

Figure 1.11. Fractured well. Fracture geometry. 
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Figure 1.12. Infinite conductivity fracture. Geometry of the flow lines. 
Linear and pseudo radial flow regimes. 

At early time, the flow-lines are perpendicular to the fracture plane. This is called a 
linear flow regime. Later, the reservoir regions at the two ends of the fracture starts to 
contribute significantly to the flow, the linear flow regime ends, to change into an 
elliptical flow geometry. Ultimately, the well response shows the characteristic radial 
flow regime behavior. 

During linear flow, the pressure change is proportional to the square root of the elapsed 
time since the well was opened (Clark, 1968 and Gringarten et al., 1974 a). 

qB J &, Ap - 4.06 
hx/ ~ c ~ k  

(1.25) 

Specialized analysis 

The linear flow regime can be analyzed with a plot of the pressure change Ap versus the 

square root of elapsed time -fAt' the response follows a straight line of slope mLv, 
intercepting the origin. 

When the reservoir permeability is known from the analysis of the subsequent radial 
flow regime, the slope rely of the linear flow straight line is used to estimate the half 
fracture length X/ 

cy) 
c-  

f -  

o 

L . .  

O9 
(1) 

a .  

~ . . ~ 1 7 6 1 7 6 1 7 6  

~/At 
Figure 1.13. Infinite conductivity fracture. 
Specialized analysis with the pressure versus the square root of time. 
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/ 

= 4 .06[  /a qB xf  
r k hmLv 

(1.26) 

1.2.5 Fractured well (finite conductivity fracture): bi-linear flow regime 

When the pressure drop in the fracture plane is not negligible, a second linear flow 
regime is established along the fracture extension. Before the two ends of the fracture 
are reached, this well configuration produces the so-called bi-linearflow regime. 

lllllll llllll ,lllllllll 
w,r I kf ---*---~___,___. ~ ~____*--.__ 

tttttttttttttttttttttttt 
Figure 1.14. Finite conductivity fracture. 
Geometry of the flow lines during the bi-linear flow regime. 

During bilinear flow, the pressure change is proportional to the fourth root of the 
elapsed time since the well was opened (Cinco-Ley et al., 1978 a). With wfthe width of 
the finite conductivity fracture and kithe permeability in the fracture: 

Ap = 44.11 q B / t  ~At (1.27) 

Specialized analysis 

On a plot of the pressure change Ap versus the fourth root of elapsed time 4 ~ - ,  
pressure response follows a straight line of slope mBLF, intercepting the origin, during 
the bilinear flow regime 

c'~ < 
d 
O~ 
C 

.C 

s._ 

L. 
O_ 

,o 

~~ 

4w/At 
Figure 1.15. Finite conductivity fracture. 
Specialized analysis with the pressure versus the fourth root of time. 
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As for the linear flow analysis, provided the reservoir permeability can be estimated 
from semi-log analysis of the late time response, the slope mBLV of the bilinear flow 
straight line is used to estimate the controlling parameter, namely the fracture 
conductivity kf wj: 

/ 12 8( i qB/  
k f w f - 1 9 4 4 .  6/Jo;k hmBL F 

(1.28) 

1.2.6 Well in partial penetration: spherical flow regime 

With a well in partial penetration, the well is connected to the producing interval on one 
fraction only of the zone thickness. The reservoir / well surface of contact being 
reduced, partially penetrating wells are characterized by a positive skin factor as 
discussed in the Well Model Chapter 3. In the following, this well configuration is 
introduced to illustrate another example of characteristic flow regime. 

The ratio h~,/h of the length of the perforated interval to the formation thickness is called 
the penetration ratio, kH and k~-are the horizontal and vertical permeability (Figure 
1.16). 

In a well in partial penetration, after an initial radial flow regime in front of the 
perforated interval, the flow lines are established in both the horizontal and vertical 
directions, until the top and bottom boundaries are reached. A sphericalflow regime can 
thus be observed before the flow becomes radial in the complete formation thickness. 

During the spherical flow regime, the pressure changes with 1/~/At 
Matting, 1961 b, Moran and Finklea, 1962). 

(Brons and 

At? - 70.6 qB/a _ 2452.9 (1.29) 
qB/a ~7/~ c; 

3 2xfAt k x 

k H v kH 
| 

Figure 1.16. Well in partial penetration. 

:~ h w 

Geometry of the flow lines. Radial, spherical and radial flow regimes. 
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Figure 1.17. Well in partial penetration. 
Specialized analysis with the pressure versus 1/the square root of time. 

where ks is the spherical permeability defined as 

ks - ~kxkykz - ~k2kv (1.30) 

Specialized analysis 

On a plot of the pressure versus the reciprocal of the square root of time 1 / , f ~ ,  a 

straight line of slope mSPH develops during the spherical flow regime. The spherical 
permeability ks can be estimated with: 

ks - (2452"9qB'u ~b/2ct12/3msPH (1.31) 

Knowing the horizontal permeability from the late time radial flow regime, the vertical 
to horizontal permeability anisotropy is defined as" 

kv _ ( k s  /3 
(1.32) 

1.2.7 Limited reservoir (one sealing fault) 

In the following example, the reservoir is limited in one direction by a vertical plane- 
sealing boundary at a distance L from the well. During the production, the radius of 
investigation expands until the sealing boundary is reached. Since no flow-lines support 
the production on the opposite side of the boundary, the pressure profile for an infinite 
reservoir described on Figure 1.5 is distorted as shown on Figures 1.19 to 1.21. The 
sequence of pressure regimes is the following: 
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Figure 1 18 One sealing fault Pressure profile at time t~ 
The fault is not reached, infinite reservoir behavior 

At early time, the radius of investigation is smaller than the fault distance L and the 
pressure profile in the reservoir corresponds to that of an infinite system (Figure 118 
and time tl on Figure 1.22) 

Later, the radius of investigation reaches the fault and the pressure profile deviates from 
the infinite reservoir behavior as shown Figure 1.19. On this diagram, the thin dotted 
curve corresponds to the theoretical pressure profile in an infinite reservoir. Because of  
the reservoir limit, the curve beyond the distance L, on the right side of the boundary, is 
reflected back into the producing area like a mirror effect. In the reservoir region 
between the well and the sealing boundary, the two pressure drops are combined to 
produce the actual reservoir pressure profile (the actual pressure drop is the sum of  the 
two responses, namely the infinite reservoir curve and the reflected image curve). 

P 
,i 

Pi 

Pwf 

r w L r i r 
..... ............ . ................... --IY 

.................................. _ . . . .  ".",',V,V.V.V.'.'.'J " ............................................ 
,,,it- 

f 
Figure . 19. One sealing fault. Pressure profile at time t 2. 

The fault is reached, but it is not seen at the well. Infinite reservoir behavior. 
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Pwf , 
Figure 1.20. One sealing fault. Pressure profile at time t3. 

The fault is reached, and it is seen at the well. Start of boundary effect. 
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Figure 1.21. One sealing fault. Pressure profile at time t4. 
The fault is reached, and it is seen at the well. Hemi-radial flow. 

P~! rw L r 
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,,,, ..... . . . .  . . . . . . . . .  

I 
I ,~176  

t~ �9 the fault is not reached, radial flow 
t2 ' the fault is reached 

t3 " the fault is seen at the well, transition 

t4' hemi-radial flow 

Figure 1.22. One sealing fault. Drainage radius. 

This pressure regime corresponds to time t2 on Figure 1.22: the boundary has been 
reached and the pressure profile is distorted in the reservoir, but the image curve has 
not changed the well flowing pressure. As the flow time increases, the radius of 
investigation of the theoretical infinite reservoir curve continues to expand, and the 
image curve reaches the well (time t3 on Figure 1.22 and Figure 1.20). The well bottom 
hole pressure starts to deviate from the infinite reservoir response, and drops faster. 

Ultimately, when the well has been flowing long enough, the two profiles tends to 
merge (after time t4 on Figure 1.22) and the hemi-radial flow regime is reached: the 
flow lines converge to the well with a half circle geometry. 

Specialized analysis 

During the hemi-radial flow regime, the pressure changes with the logarithm of the 
elapsed time but the slope of the semi-log straight line is double (2m) that of the infinite 
acting radial flow (van Everdingen and Hurst, 1949, Homer, 1951). 
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Figure 1.23. One sealing fault. Specialized analysis on semi-log scale. 

It should be noted that with a consistent system of units (such as cgs Units), the slope of 
the semi-log straight line on a Ap versus In(At) plot is expressed qB/t/2er kh during the 

infinite acting radial flow regime. For hemi-radial flow, the angle is changed to er. 

On the semi-log plot, two straight lines are present, with a slope respectively rn and 2m. 
The time intersect At,. between the two lines is used to estimate the fault distance L 
(Gray, 1965). 

L - 0.01217/kAtx (1.33) 

Interestingly, the radius of investigation at At, is approximately double the fault distance 
(Equation 1.24): the pressure transient reaches the fault 4 times earlier than the 
boundary can be observed on the producing well pressure (see discussion Section 
10.3.3). 

In the next chapters, distances are expressed in dimensionless terms as: 

L 
L D = ~  (1.34) 

r w 

1.2.8 Closed reservoir: pseudo steady state regime 

In closed reservoirs, when all boundaries have been reached, the flow regime changes to 
pseudo steady state: i.e at any point in the reservoir the rate of pressure decline is 
proportional to time. 

As long as the reservoir is infinite acting (time tl on the example Figure 1.24 for a 
circular closed reservoir), the pressure profile expands around the well during the 
production (in case of radial flow, the well bottom hole pressure drops with the 
logarithm of time). 
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.24. Circular closed reservoir. Pressure profiles. 
the boundaries are not reached, infinite reservoir behavior: the pressure profile expands. 
boundaries reached, end of infinite reservoir behavior. 

Times t3 and t4: pseudo steady state regime, the pressure profile drops. 
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Figure 1.25. Drawdown and build-up pressure responses. Closed system. Linear scale. 

When all boundaries have been reached (after time t2), the shape of the pressure profile 
becomes constant with time, and it simply drops as the reservoir is being depleted 
(times t3 and t4). During the pseudo steady state regime, the bottom hole flowing 
pressure is a linear function of the elapsed time. 

During shut-in, the pressure stabilizes in the reservoir and reaches the average reservoir 

pressure p (< Pi)  �9 

Specialized analysis 

During drawdown, the Pseudo Steady State regime is analyzed with a plot of the 
pressure versus elapsed time At on a linear scale (Jones, 1956). At late time, the straight 
line of slope m* is used to estimate the reservoir pore volume r hA. 
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Ap - 0.234 qB At + 162.6 qB/a [ l o g A  
O c t hA kh L r] 

--log(CA )+0.351 + 0.87x I (1.35) 

~hA - 0.234 qB (1.36) 
C t t7l * 

1.2.9 Constant pressure boundary" stead)' state regime 

The stead), state regime is observed in wells near a gas cap or an active water drive: the 
high mobility of the fluid is seen as a constant pressure support. Once the constant 
pressure boundary is reached, the reservoir pressure profile and the well bottom hole 
pressure become constant. 

1.3 WELL AND RESERVOIR CHARACTERIZATION 

1.3.1 Well responses 

A linqited number of flow line geometries produce a characteristic pressure behavior 
radial, linear, bi-linear, spherical etc. For each flow regime, the pressure follows a well- 

defined time function: log~Xt. ~ 7 .  4x/~. 1/~/~-7 etc. A straight line can be drawn on a 

specialized pressure versus time plot, to access the corresponding well or reservoir 
parameter. 

A complete well response is defined as a sequence of flow regimes. By identification of 
the characteristic pressure behaviors present on the response, the chronology and time 
limits of the different flow regimes are established, defining the interpretation model. 
Two basic well test interpretation models examples are presented in the following for 
illustration. 

For a fractured well for example, the sequence of regimes is (Gringarten et al., 1974 a): 

Figure 1.26. Fractured well example. 

1. Linear flow 
2. Radial flow 
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Figure 1.27. Example of a well in a channel reservoir. 

1. Radial flow 
2. Linear flow 

In the case of a well in a channel reservoir, the same regimes are present but the 
chronology is inverse (Larsen, 1987). 

1.3.2 Productivity Index 

The Productivity Index is the ratio of the flow rate by the drawdown pressure drop, 

expressed from the average reservoir pressure p . 

PI=(p q 
- Pwf ) (1.37) 

The Ideal Productivity Index defines the productivity if the skin of the well is zero 
(Matthews and Russell, 1967). 

q (~.38) PI(s=~ =(p- Pwf )- Aps~i~ 

During the infinite acting period p ~Pi, the Transient Productivity Index is decreasing 

with time. 

PI = kh (1.39) 

162.6Blz(log At + log ~ - k  1 r r2w 3.23+0.87S 

The Pseudo Steady State Productivity Index is a constant: 

PI = kh (1.40) 

( A log(C~)+ 0.351 + 0.87S / 162.6Bcz log _.-5- - 
rw 
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CHAPTER 2 

THE ANALYSIS M E T H O D S  

A complete production test is made up of several characteristic flow regimes, initially 
wellbore storage and near wellbore conditions, to late time boundary effects. Most of 
the recorded pressure data describes transitional behavior from one regime to the next, 
and straight lines are difficult to identify on the specialized scale plots described in 
Chapter 1. The log-log scale is preferred for well test interpretation: all flow regimes 
can be characterized on a single plot, providing a diagnosis of the complete well 
behavior and thus defining the appropriate interpretation model(s). 

In this Chapter, the curve matching analysis methods are presented. Straight line 
methods, briefly described in Chapter 1, have been well documented (Earlougher, 1977; 
Bourdarot, 1998) and are not discussed in detail here. The use of pressure type curves 
on log-log scales is reviewed and application to multiple-rate and shut-in periods are 
discussed. Next, the derivative approach is introduced, the characteristic signatures of 
the different flow regimes are illustrated and the application of the method to practical 
testing conditions is detailed. 

2.1 LOG-LOG SCALE 

For a given period of the test, the change in pressure, Ap, is plotted on log-log scales 
versus the elapsed time At, as illustrated on Figure 2.1 (Theis, 1935 and Ramey, 1970). 
A test period is defined as a period of constant flowing conditions (constant flow rate 
for a drawdown and shut-in period for a build-up test, see Figure 1.1). The complete set 
of pressure data between two rate changes is used, from very early time to the latest 
recorded pressure point. The log-log analysis is a global approach as opposed to 
straight-line methods that make use of only one fraction of the data, corresponding to a 
specific flow regime. 

By comparing the log-log data plot to a set of theoretical curves, the model that best 
describes the pressure response is defined. 

Usually, theoretical curves are expressed in dimensionless terms because the pressure 
responses become independent of the physical parameters magnitude (such as flow rate, 
fluid or rock properties). An example of dimensionless term has been discussed in 
Section 1.2.3 with skin factor S which is much more meaningful than the actual pressure 
drop near the wellbore APski.. As shown in Equation 2.1, the dimensionless pressure pD 
and time tD are linear functions of Ap and At, the coefficients A and B being dependent 
upon different parameters such as the permeability k. 
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v >  = A A V ,  A - f (kh , . . . )  

t D - BAt ,  B - g (k ,  C, S,.. .) 
(2.1) 

On log-log scales, the shape of the response curve is characteristic: the product of one 
of the variables by a constant term is changed into a displacement on the logarithmic 
axes. If the flow rate is doubled, for example, the amplitude of the response Ap is 
doubled also, but the graph of log (Ap) is only shifted by log (2) along the pressure axis. 

log pD =log A + log Ap 

log tD =log B + log At 
(2.2) 

The shape of the global log-log data plot is used for the diagnosis of the interpretation 
model(s). It should be noted that the scale expands the response at early time, and 
compresses the late time data. 

2.2 PRESSURE CURVES ANALYSIS 

2.2.1 Example of pressure type-curve: "Well with wellbore starage and skin in a 
homogeneous reservoir" 

Log-log analysis technique is illustrated with the basic interpretation model "Well with 
wellbore storage and skin in a homogeneous reservoir". The corresponding set of 
dimensionless theoretical curves (called .type curves), presented by Gringarten et al. in 
1979, is illustrated in Figure 2.2. 
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Figure 2.1. Example of log-log data plot. 
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Figure 2.2. Pressure type-curve: Well with wellbore storage and skin, homogeneous reservoir. 
Log-log scales, PD versus tD/CD. CD e 2s= 1060 tO 0.3. 

Dimensionless  terms 

The dimensionless pressure and time are defined as: 

kh 
PD = Ap (2.3) 

141.2qB/~ 

0.000264k 
t D = At (2.4) 

The dimensionless wellbore storage coefficient is 

0.8936C 
C D  = ~ ( 2 . 5 )  

r 

Several type curve presentations have been proposed for this interpretation model. For 
practical reasons, Gringarten et al. (1979) proposed using a dimensionless time group 
defined as" 

t D = 0.000295kh____At (2.6) 
CD /~ C 

The different curves are labeled with the dimensionless group: 
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CDe 2S =--e0'8936C 2S (2.7) 
~cth,-,, 2 

The curve label Cj)e 2s defines the well condition. It ranges from Cz)e 2s =0.3 for 
stimulated wells, up to 1060 for very damaged wells. 

Two characteristic flow regimes can be present in the response of a well with wellbore 
storage and skin in a homogeneous reservoir: 

1. At early time, during the pure we/lbore regime, the relationship Equation 1.9 can be 
expressed as: 

qB 
- + logAt (2.8) logAp log24 C 

On log-log scales, the data curve follows a unit slope straight line as described by the 
early time 45 ~ asymptote on the type curve Figure 2.2. 

2. When the infinite acting radial flow regime is reached, the pressure response 
follows the semi-log relationship of Equation 1.15 that does not produce a characteristic 
shape on log-log coordinates. The limit "Approximate start of the semi-log straight line" 
has been introduced on the type curve Figure 2.2 for the identification of the radial flow 
regime. 

Between the two flow regimes, shown by the initial wellbore storage unit slope straight 
line and the start of the radial flow regime in Figure 2.2, the response describes a 
transitional behavior when the sand face rate changes, as describes in Section 1.2.2. 

Log-log matching procedure 

The log-log data plot Ap, At of Figure 2.1 is superimposed on the set of dimensionless 
type-curves pz), t/)/Cj) of Figure 2.2. The early time unit slope straight line is matched 
on the "wellbore storage" asymptote but the final choice of the Cj~)e 2s curve is frequently 
not unique. In the example presented in Figure 2.3, all curves above Cz)e 2x =10 s provide 
an acceptable match (the test data, for this illustrative example used through Chapter 2, 
has been published by Bourdet et al. in 1983 a). 

Results of log-log analysis 

The pressure match defines the displacement between the y-axis of the two log-log 
plots, as the ratio PM = pD/Ap. The permeability thickness product can be estimated 

from Equation 2.3: 
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Figure 2.3. Build-up example. Log-log match, PD versus tD/CD. 

kh : 141.2qB/J(PM) (2.9) 

The time match TM = (t D/C D )/At gives the wellbore storage coefficient with Equation 

2.6" 

(2.10) 

The skin factor is evaluated from the Co e 2s label of the selected curve (the curve 
match). From Equation 2.5, 

S - 0.51n CDe2SMatch (2.11) 
CD 

2.2.2 Shut-in periods 

Drawdown periods are in general not suitable for analysis because it is difficult to 
ascertain a constant flow rate. The response is distorted, especially with the log-log 
scales that expand the response at early time. Preferably, build-up periods are used 
where the flow rate is zero, therefore the well is controlled. 

Example of  a shut-in after a single rate drawdown 

Build-up responses do not show the same behavior as the first drawdown in a virgin 
reservoir at initial pressure. After a flow period of duration tp, the well shows a pressure 
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drop of Ap(tp). In the case of an infinite reservoir, after shut-in it takes an infinite time to 
reach the initial pressure during build-up, and to produce a pressure change ADBu(t=oo) 
of magnitude Ap(t/j). As described on Figure 2.4, the shape of pressure build-up curves 
depends upon the previous rate history. 

The diffusivity equation used to generate the well test analysis solutions is linear. It is 
possible to add several pressure responses, and therefore to describe the well behavior 
after any rate change. 

This is the superposition principle (van Everdingen and Hurst, 1949). For a build-up 
after a single drawdown period at rate q during t/,, the rate history is changed by 
superposing an injection period at rate -q from time fp, to the flow period from time t=0 
extended into the shut-in times tp + At (see Figure 2.5). 
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Figure 2.4. Test history dra\vdown - shut-in. 
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Figure 2.6. Drawdown and build-up type curves. Log-log scales, PD versus tD/CD. 

Log-log analysis: build-up type curve 

Using the superposition principle, build-up type curves can be generated for any 
production history. In the case of Figure 2.5 with a single constant rate drawdown of tp 
before shut-in, the build-up type curve PBU > (At)> is simply obtained by subtracting 

the quantity [pD(tp +At)>-pD(At)>  J from the pressure change at the time of shut-in 

Po(tp)D �9 

PBuD(At)D -- pD(At)D --pD(tp +At) D +PD(tp)D (2.12) 

Equation 2.12 shows that the build-up type curves differ from the original drawdown 
curve by p D(tr) > -pD(tp  +At)>. On a log-log scales, build-up type curves are 

below the original drawdown type curve and, when At is large compared to the 
production time tp, they tend to flatten at p> (tp) >. As shown in Figure 2.6, the data is 

compressed on the y-axis, especially when At >> tp, thus reducing the definition of the 
diagnostic plot. 

Semi-log analysis: superposition time 

When the pressure response is in radial flow at times tp, At and tp + At (at time of shut- 
in, during the build-up period and during the extrapolated drawdown), the three p> 
terms of Equation 2.12 can be changed into the semi-log approximation. Using the real 
pressure Equation 1.15 and grouping the three logarithm functions, the resulting build- 
up Equation 2.13 shows that a semi-log plot of shut-in pressure also display a straight 
line of slope m when the time is changed into the superposition time (also called 
effective Agarwal time, 1980). 
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I t At 
AFB u (At)-  162.6 qB/d . . . . .  log P + log 

kh t ~ + At 
k 3.23 +0.87S 1 

~/tc, r,7, 
(2.13) 

With the superposition time, the build-up correction method compresses the time scale. 

Horner method 

With the Homer method (1951), a simplified superposition time is used: the constant t I, 
is ignored, and the shut-in pressure is plotted as a function of log[(t v + zXt)/AtJ. On the 

Homer scale, the shape of the build-up response is symmetrical to that of the 
superposition plot Figure 2.7, early time data is on the right side of the plot (large 
Homer time) and, at infinite shut-in time, (t v + At) /At  - 1. 
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Figure 2.8. Horner plot of build-up example of Figure 2. l. 
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t + At 
Pw.~. = P,-162.6 qB/~ log p (2.14) 

kh At 

On a Homer plot of build-up data, the straight line slope m, the pressure at 1 hour on the 
straight line Ap(At = l hr), and the extrapolated straight line pressure p* at infinite shut- 
in time (At = oo) are estimated. The results of analysis are: 

k h -  162.6 qB/u (1.16) 
m 

S -  1.151( Apll~r - l o g  k tp +1 ) - - - - - -T  + log- + 3.23 
m ~bpc t r w t v 

(2.15) 

In an infinite system, the straight line extrapolates to the initial pressure and p*=p~. 

When the production time is large compared to the shut-in time tp>>At, the Homer time 
can be simplified with: 

tp +At 
l o g ~  ~ log t - log At (2.16) 

At P 

The compression of the time scale becomes negligible, the Homer straight-line slope m 
is independent of the production time and the build-up data can be analyzed on a MDH. 
semi-log scale such as in Figure 1.9. 

Multiple-rate superposition 

In the case of a multiple-rate test sequence such as on Figure 2.9, a new flow period is 
created for all rate changes (defined with the time at start t; and the rate q,), and the 
complete rate history prior to the analyzed period is used. Each previous period is 
superposed with the same principle as on the basic example of Figure 2.5. 

At time At of flow period # n, the multi-rate type curve is: 

n-1 

i=1 q n - I  -- qn  

(2.17) 

For semi-log analysis, the multiple-rate superposition time is expressed: 

n-1 

Pws (At) = Pi -162.6 Bkt.kh .i~l (qi -qi-1)l~ + k t - t i  )+(qn -qn-1)l~ (2.18) 
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Figure 2.9. Multiple- rate history,. Example with 10 periods before shut-in. 

Limitations of  the time superposition: the sealing fault  example 

In the example of Figure 2.10, the well is produced 60 hours and shut-in for a pressure 
build-up. A sealing fault is present near the well and, at 80 hours (20 hours after shut- 
in), the infinite acting radial flow regime ends to change slowly to the hemi-radial flow 
geometry. 

During the 20 initial hours of the shut-in period (cumulative time 60 to 80 hours), both 
the extended drawdown and the injection periods are in radial flow regime. The 
superposition time of Equations 2.13 or 2.14 is applicable, and the Homer method is 
accurate. 

At intermediate shut-in times, from 20 to 80 hours (cumulative time 80 to 140 hours), 
the extended drawdown follows a semi-log straight line of slope 2m while the injection 
is still in radial flow (slope m). It is not possible to group the different logarithm 
functions and, theoretically, the semi-log approximation of Equation 2.12 with Equation 
2.13 is not correct. 

Ultimately, the fault influence is also felt during the injection and the two periods 
follow the same semi-log straight line of slope 2m (shut-in time >> 80 hours, 
cumulative time >> 140 hours). The semi-log superposition time is again applicable. 

In practice, when the flow regime deviates from radial flow in the course of the 
r e s p o n s e ,  the error introduced by the Homer or multiple-rate time superposition method 
is negligible on pressure curve analysis results. It is more sensitive when the derivative 
of the pressure is considered (see Section 2.3.5). 
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Figure 2.10. History drawdown- build-up. Well near a sealing fault. 

Time superposition with other flow regimes 

The time superposition is sometimes used with other flow regimes for straight-line 
analysis. When all test periods follow the same flow behavior, the Homer time can be 
expressed with the corresponding time function. For fractured wells, Homer time 
corresponding to linear (Equation 1.25) and bi-linear flow (Equation 1.27) is expressed 
respectively: 

(tp + At~/2 -(At) 1/2 (2.19) 

(t v + kty/4 -(At) 1/4 (2.20) 

The Homer time corresponding to spherical flow (Equation 1.29) is sometimes used for 
the analysis of wireline formation testers pressure data. 

2.2.3 Pressure analysis method 

Pressure analysis is made on log-log and specialized plots (Gringarten et al., 1979). The 
purpose of the specialized analysis is to concentrate on a portion of the data that 
corresponds to a particular flow behavior. The analysis is carried out by the 
identification of a straight line on a plot whose scale is specific to the flow regime 
considered. The time limits of the specialized straight lines must have been previously 
defined by the log-log diagnosis. 
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For the radial flow analysis of a build-up period, the semi-log superposition time is 
used. The slope rn of the Homer / superposition straight line defines the final pressure 
match of the log-log analysis: 

P M -  p~-----L~ = __1151 (2.22) 
Ap III 

Once the pressure match is defined, the C~ e 2s c u r v e  is known accurately. Results from 
log-log and specialized analyses must be consistent. 

2.3 PRESSURE D E R I V A T I V E  

2.3.1 Definition 

With the derivative approach, the time rate of change of pressure during a test period is 
considered for analysis. In order to emphasize the radial flow regime, the derivative is 
taken with respect to the logarithm of time (Bourdet et al., 1983 a). By using the natural 
logarithm, the derivative can be expressed as the time derivative, multiplied by the 
elapsed time At since the beginning of the period. 

Ap'= dp =At dp (2.23) 
d In At dt 

As pressure analysis, the derivative is plotted on log-log coordinates versus At. 

2.3.2 Derivative type-curve: 
homogeneous  reservoir" 

"Well with wellbore storage and skin in a 

Radialflow 

When the infinite acting radial flow regime is established, the derivative becomes 
constant. This regime does not produce a characteristic log-log shape on the pressure 
curve, but it can be identified when the derivative of the pressure is considered. 

@ = 162.6 qBhlkh I lOg At + log ~-~/acfr]k 3.23 + 0.87S 1 (1.15) 
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Ap' -  7 0 . 6 ~  
qB~ 

kh 

In dimensionless terms, the derivative stabilizes at 0.5. 

dPD 
P'D : d ln(tD/CD ) : 0.5 

(2.24) 

(2.25) 

Wellbore storage 

A p -  qB At (1.9) 
24C 

B a  
Ap'= -~___2_ At (2.26) 

24C 

During the pure wellbore storage regime, the pressure change Ap and the pressure 
derivative Ap' are identical. On log-log scales, the pressure and the derivative curves 
follow a single straight line of slope equal to unity (Equation 2.8). 
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Figure 2.12. Pressure and derivative responses on log-log scales. Wellbore storage 
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Figure 2.13. Derivative of build-up example Figure 2.1. Log-log scales. 

Derivative o f  Section 2.2 example 

In Figure 2.13, the derivative response of Figure 2.1 example shows at early time a unit 
slope log-log straight line during the pure wellbore storage effect, and later a 
stabilization when the radial flow regime is reached. At intermediate time between two 
characteristic flow regimes, the sand face rate is changing as long as the wellbore 
storage effect is acting (see Section 1.2.2), and the derivative response describes a 
hump. 

Derivative type-curve 
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Figure 2.14. "Well with wellbore storage and skin, homogeneous reservoir" Derivative of type- 
curve Figure 2.2. Log-log scales, pD versus tD/CD. CD e 2s= 1 0 60 to 0.3. 
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In the derivative type-curve of Figure 2.14 for a well with wellbore storage and skin in a 
homogeneous reservoir (Bourdet et al., 1983 a), the two basic flow regimes are 
characterized by a unique behavior: 
1. At early time, all curves merge on a unit slope log-log straight line, 
2. During radial flow, the derivative responses stabilize at 0.5. 

During the transition between the pure wellbore storage effect and the infinite acting 
radial flow regime, the derivative hump can be used to identify the CD e 2s group. 

Derivative match 

The match point is defined with the unit slope pressure and derivative straight line, and 
the 0.5 derivative stabilization. 

2.3.3 Other characteristic flow regimes 

Except for the radial flow regime, during different flow geometries presented in Section 
1.2, the pressure changes with the elapsed time power 1/n" 

Ap - A (At) 1/n + B (2.27) 

With: 
�9 1 /n =1 

�9 1/n =1/2 

during the pure wellbore storage and the pseudo steady state regimes, 
in the case of linear flow, 
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�9 1/n =1/4 
�9 1/n =-1/2 

for bi-linear flow, 
when spherical flow is established. 

Taking the logarithm derivative (Equation 2.23) of the general Equation 2.27 yields 

Ap'= dp = A (At)l/n (2.28) 
din At n 

On a log-log coordinate system, the relationship Equation 2.28 corresponds to a 
straight-line slope of 1/n. 

Infinite conductivity fracture (linear flow) 

During linear flow, pressure change and the derivative are both proportional to A t  1/2 . 

On log-log scales, the pressure and derivative follow two straight lines of slope 1/2 
(Alagoa et al., 1985). The level of the derivative half-unit slope line is half that of the 
pressure. 

Ap - 4 06 qB ( / ,  &, 
�9 hr /+  r 

(1.25) 

Ap'= 2.03 vB I v &' (2.29) 
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Figure 2.16. Pressure and derivative responses on log-log scales. Infinite conductivity fracture. 

Finite conductivity fracture (bi-linear flow) 

With the bi-linear flow geometry, pressure and derivative responses are proportional to 

At 1/4 . A log-log straight line of slope 1/4 can be observed on pressure and derivative 
curves, but the derivative line is four times lower (Wong et al., 1985). 
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Figure 2. ] 7. Pressure and derivative responses on log-log scales. Finite conductivity fracture. 

Ap = 44.11 q B / a  4~At (1.27) 

Ap'= 11.03 q B lx 4 ~  (2.30) 

Well in partial penetration (spherical flow) 

During the spherical flow regime, the shape of the log-log pressure curve is not 
characteristic. The derivative follows a straight line with a negative half-unit slope. 

Ap = 70.6 qB/a - 2 4 5 2 . 9  qB/a /qk/ac, (1.29) 

Log Ap' 
* % ' % , . % , .  

"-**********, 
Slope -1/2 

Log At 
Figure 2.18. Pressure and derivative responses on log-log scales. Well in partial penetration. 



42 The analysis methods 

q B /a ~/ r c t 
Ap'= 1226.4 (2.31) 

k3/2 .fAt 
s 

Closed system (pseudo steady state) 

The late part of the log-log pressure and derivative drawdown curves tend to a unit- 
slope straight line (Clark and Van Golf-Racht, 1985). The derivative exhibits the 
characteristic straight line before it is seen on the pressure response. 
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Figure 2.19. Pressure and derivative responses on log-log scales. Closed system (drawdown). 

A p - 0 . 2 3 4  (bcfhAqB At+162.6qB/aIlog I k h  r,, 1~ t (1.35) 

qB 
Ap'= 0.234 At (2.32) 

r 

2.3.4 Build-up analysis 

For a shut-in after a single drawdown period (the Homer method is applicable), the 
derivative is generated with respect to the effective Agarwal time given in the 
superposition Equation 2.13: 

@' @ tp +At @ 
= = ~ A t  (2.33) 

dln tpAt tp dt 
t +At p 

For a complex rate history, the multiple-rate superposition time is used. 



Pressure derivative 43 

In all cases, the derivative is plotted versus the usual elapsed time At and matched 
against a drawdown derivative type-curve, such as in Figure 2.14 for example. It should 
be noted that a log-log build-up derivative curve is dependent upon the rate history 
introduced in the time superposition calculations, both the elapsed time and the 
superposition time are used in this plot. The derivative response is not a raw data plot. 
Errors may be introduced in the case of poor data preparation (see discussion next of the 
data differentiation, and the rate history definition in Section 10.1.1). 

Limitations i f  the time superposition" the sealing fault  example 

When the response deviates from the infinite acting radial flow regime, taking the 
derivative with respect to the time superposition does not correct perfectly the build-up 
effect, and a distortion can be introduced on the response. On Figure 2.20, the log-log 
derivative of the build-up example of Figure 2.10 for a well near a sealing fault is 
compared to the drawdown curve. During shut-in, the effect of the sealing fault appears 
delayed compared to the theoretical drawdown derivative response. 

With well test analysis software, the same treatment is applied on theoretical curves and 
on data. The test derivative response is matched on a derivative type curve generated by 
differentiating the theoretical build-up type curve with respect to the same time 
superposition function as the data, and the data responds in a similar way to the 
theoretical type curve (the same distortion is introduced on the data and on the model 
curves). 
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Figure 2.20. Log-log plot of the build-up example of Figure 2.10. Well near a sealing fault. 
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In some cases, the distortion can produce a temporary decline in the build-up derivative 
response, and produce a valley shape before the late time response (with heterogeneous 
reservoirs or boundary effects for example, see Chapters 4 and 5). When recorded test 
data stops at the time corresponding to the downturn in the derivative, and the upturn of 
the valley is not seen, interpretation of the late time trend can be difficult. Extrapolation 
of a small late time downward trend of the derivative response can be hazardous, it can 
simply correspond to the temporary distortion produced by the build-up derivative 
calculation or, as discussed next, to the effect produced by smoothing. 

2.3.5 Data differentiation 

As depicted in Figure 2.21, the data differentiation algorithm uses three points: one 
point before (left = 1) and one after (right = 2) the point i of interest. It estimates the left 
and right slopes, and attributes their weighted mean to the point i (Bourdet et al., 1983 
a). On a p vs. x semi-log plot, 

dp _ _ ] - 2 (2.34) 
dr kx 1 + A,c 2 

It is recommended to start by using consecutive points. If the resulting derivative curve 
is too noisy, smoothing is applied by increasing the distance Ax between the point i and 
points 1 and 2. The smoothing is defined as a distance L, expressed on the time axis 

scales. The points 1 and 2 are the first at distance AXl.2>L. 

The smoothing coefficient L is increased until the derivative response is smooth enough 
but no more, over smoothing the data introduces distortions. Usual values for the 
smoothing coefficient L depends upon the software used to generate the derivative. 
Generally, L is less than 0.2 or 0.3. 

When a large smoothing is required in order to produce a reasonably well defined 
derivative curve, it is recommended to examine the data on semi-log superposition 
scales with an expanded pressure definition on the ),-axis, such as on the zoomed data 
plot inserted in Figure 2.21. Any unusual pressure behavior can be identified and 
analyzed, for determination of the best smoothing coefficient L. For example, when the 
pressure data is disturbed only during a small subset of the test period, it is best to 
ignore this data, and to adapt the derivative smoothing over the remaining good quality 
pressure data. 

At the end of the test period, point i becomes closer to last recorded point than the 
distance L. Smoothing is not possible any more to the right side, the end effect is 
reached. This effect can introduce distortions at the end of the derivative response. 
Additional problems linked to the derivative calculation are further discussed in Section 
10.1.1. 
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2.3.6 Derivative responses 

As discussed in Section 1.2.1, well responses are made up of several flow regimes, 
whose chronology defines, from early times to late times, the near wellbore conditions 
to the reservoir limits in the case of a long test. The derivative response exhibits a 
characteristic shape during all basic flow geometries. By reading the shape of the 
derivative response, the sequence of regimes can be established. Frequently only 
transitional behaviors between pure regimes are available on the log-log derivative 
curve, the diagnosis is not unique and several interpretation models have to be 
considered. 

2.4 THE ANALYSIS SCALES 

The log-log analysis is made with a simultaneous plot of the pressure and derivative 
responses of the interpretation period. Time and pressure matches are defined with the 
derivative, using respectively the unit slope straight line and the derivative stabilization. 
The curve match on pressure and derivative data give access to additional well and 
reservoir parameters. In the example for a well with wellbore storage and skin in a 
homogeneous reservoir Figure 2.22 (Bourdet et al., 1983 a), the CDe 2s group is 
identified by the shape of the derivative hump, and by the pressure curve match. 

The double log-log match is confirmed with a match of the pressure type-curve on semi- 
log scales to accurately adjust the skin factor and the initial pressure. A simulation of 
the complete test history is presented on linear scale in order to check the rates any 
changes in the well behavior or the average pressure. 
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Figure 2.22. Pressure and derivative type-curve for a well with wellbore storage and skin, 
homogeneous reservoir. Log-log scales,  pj) versus  t:)/Cj). 

The analysis procedure with the type curve shown in Figure 2.22 is discussed further in 
Section 3.1.3. The complete interpretation methodology is presented in detail in Section 
10.2 from the diagnosis to the consistency check. Two examples are used to illustrate 
that the test history plot is an efficient check of the interpretation model applicability, 
over a large time range. 



CHAPTER 3 

W E L L B O R E  C O N D I T I O N S  

In this chapter, the effect of the wellbore conditions on pressure responses is described. 
For simplification, the reservoir is assumed to be infinite and homogeneous. 

Different wellbore models have been extensively used in the oil industry following the 
introduction of type curve analysis. A large catalogue of type curves has been 
published, using different groups of dimensionless parameters but, for a given wellbore 
condition, they are in most cases derived from the same mathematical solution. Type 
curves were designed for manual well test analysis. Today, pressure responses are 
analyzed with computer programs, and printed type curves are less used. 

For each wellbore model, some representative published type curves are briefly 
described when they exist, and the independent groups of variables are defined. 
Practical manual analysis is discussed only briefly; type curves are introduced only as a 
training tool so that model behavior can be understood fully. Examples of the models 
responses are presented on log-log and specialized scale plots, and the influence of the 
different parameters is highlighted. Extensions of the models to complex wellbore 
conditions are discussed, and guide lines are explained for computerized well test 
analysis. 

The interpretation methodology using computer programmes is introduced with the 
interpretation of a well with wellbore storage and skin in a homogeneous reservoir. A 
full discussion of computerized well test interpretation is presented at the end of this 
book, in Section 10.2. 

3.1 WELL WITH WELLBORE STORAGE AND SKIN 

The interpretation model for a well with wellbore storage and skin in an infinite 
reservoir with homogeneous behavior is probably the most widely used for transient 
pressure analysis. A typical example has been presented in previous Chapter (Figures 
2.3 and 2.15). 
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3.1.1 Model description 

The well is assumed to be vertical and to penetrate the complete reservoir thickness. 
Wellbore storage effect and possibly an infinitesimal skin are present. 

Characteristic flow regimes 

As discussed in former chapter, two characteristic regimes can be observed with this 
model: 
1. Wellbore storage effect, with Ap proportional to At (Figure 1.4), and a unit slope 
log-log straight line on pressure and derivative curves (Figure 2.12). The wellbore 
storage coefficient C can be estimated from the corresponding pressure data. 
2. Radial J Tow with AF proportional to log(At) (Figure 1.9), and a constant derivative 
response (Figure 2.11). Radial flow analysis yields the permeability-thickness product 
kh and skin factor S. 

Analytical solutions 

The analytical solution is obtained by introducing the wellbore storage effect and an 
infinitesimal positive skin on the basic solution to the diffusivity equation for a constant 
rate drawdown in a finite radius well (van Everdingen and Hurst, 1949). The solutions 
are generated in the Laplace space and inverted with a numerical algorithm (Stehfest, 
1970). Negative skins are introduced on the solution at S=0 with the equivalent effective 
wellbore radius of Equation 1.14. 

3.1.2 Review of pressure and derivative type curves for a well with wellbore 
storage and skin in a homogeneous reservoir 

The first set of wellbore storage and skin pressure type curves were introduced by 
Agarwal et al. in 1970. The dimensionless pressure p> of Equation 2.3 is plotted versus 
the dimensionless time tj) of Equation 2.4. Several families of curves are presented as a 
function of two dimensionless parameters: the dimensionless wellbore storage 
coefficient Cj> of Equation 2.5, and the skin S of Equation 1.11. 

Matching with this type curve is difficult since several combinations of (TD and S can 
produce a similar shape. Different presentations have been proposed (McKinley, 1971; 
Earlougher and Ketch, 1974) but the most widely used is the Gringarten et al. type 
curve of Figure 2.2 (1979) with the dimensionless pressure PD is presented versus the 
dimensionless time group t:~ /C:~ of Equation 2.6. The shape of the dimensionless 
pressure curves being a function of the CL)e 2"s group of Equation 2.7, this independent 
variable is used to define the model responses. 
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It is interesting to note that, assuming a strictly radial geometry around a vertical well, 
0.5 is the theoretical lower limit for the dimensionless CDe 2s group (Gringarten et al., 
1979). Considering that an acid stimulation treatment can be described as an infinite 
permeability circular zone of radius rs around the well (see Figure 1.8 with k s~ oo), the 
stimulated zone participates to the storage effect, and the apparent wellbore storage 
coefficient is changed from C to Ca (in bbl/psi): 

(r~ 2 ) r  (3.1) C s - C  + ~  - r w 
5.6146 

Combining Equations 1.14 and 2.7 yields 

((7 2s)s 2s 1-e2X 
D e = C D e + ~ (3.2) 

2 

whose minimum is 0.5. Strictly speaking, the acid penetrates the formation by opening 
channels, and the circular stimulated model with infinite permeability is only a rough 
description of the near wellbore condition for an acid stimulated well (see discussion of 
the natural negative skin in fissured reservoir, Chapter 4). The 0.5 limit is approximate. 

On the Gringarten et al type curve of Figure 3.1, the different CDe 2s curves are 
classified in terms of well conditions. The curves above CDe 2s =1000 defines a 
d a m a g e d  well, between 1000 and 5 the curves correspond to approximately a zero skin 

condition, from 5 to 0.5 to an acidized well and, below 0.5 to a f r a c t u r e d  well (on this 
set of type curves, the wellbore storage and skin solution has been replaced by the 
solution for an infinite conductivity fracture with wellbore storage presented next, in 
Section 3.2). The different limits are approximate but they indicate that the shape of the 
log-log pressure response describe qualitatively the type of wellbore condition. 
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Figure 3.1. Wellbore storage and skin pressure type curve. Log-log scales, PD versus tJCn. Graph 
courtesy A.C. Gringarten. 
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Subsequently, the derivative of the pressure was introduced with the type curves shown 
in Figure 2.22 of Bourdet et al. (1983 a). The dimensionless parameters are the same as 
on Figure 3.1, and both the pressure and the derivative responses are superimposed on 
the same log-log scales. Only the radial flow model to a vertical well is presented on 
this set of type curves, fractured wells are not accounted for. 

As discussed in Section 2.3.2, the derivative curves merge at early and late times (first 
on the unit slope straight line during wellbore storage effect and on the 0.5 horizontal 
line during radial flow). At intermediate times, the shape of the derivative hump defines 
the Cr~ e 2x parameter. 

Several variations of the wellbore storage and skin pressure and derivative type curves 
have been proposed. In addition to the usual pressure and derivative, the pressure 
derivative of the second order, and the pressure integral have also been considered. The 
type curves are presented with various ratios of the pressure function, its derivatives and 
integral (Duong, 1987; Onur and Reynolds, 1988; Blasingame et al., 1989; Blasingame 
et al., 1990). Bourgeois and Home (1991) proposed dimensionless wellbore storage and 
skin type curves in the Laplace space, and not in the usual time space, for the 
identification of the interpretation model and the estimation of well and reservoir 
parameters. 

3.1.3 Matching procedure on pressure and derivative responses 

The matching procedure with the wellbore storage and skin model has been described in 
Chapter 2. In the following, two characteristic model responses are used for illustration 
of the model behavior. 

Figure 3.2 presents on log-log scales the pressure and derivative responses generated 
with respectively CDe zv =1030 and 0.5. On Figure 3.3, the same pressure curves are 
plotted on semi-log scales. Cz~e 2s =1030 corresponds to a severely damaged well 
whereas 0.5 can describe the response of a well with negative skin. 

On the log-log plot Figure 3.2, the pressure and derivative curves for the high CD e2s 

value follow the unit slope wellbore storage straight line at early times. Whereas, when 
CD e 2s= 0.5, the pure wellbore storage regime finishes earlier and the curves starts its 
transition between pure wellbore storage and a radial flow regime. When the well is 
damaged (CDe 2x =103~ this intermediate time flow regime is described by a very 
characteristic hump on the derivative response but not when S < 0 (there is no 

maximum if the well is not damaged or stimulated). 

During the radial flow regime, the vertical distance between the derivative and the 
pressure curves gives an indication of the wellbore damage. With no skin, the pressure 
curve is one log cycle or less above the derivative stabilization. For a highly damaged 
well, the distance between the two curves can be more than two log cycles as illustrated 
by the example CD e 2S = 103~ 
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Figure 3.2. Responses for a well with wellbore storage and skin in an infinite homogeneous 
reservoir. Log-log scales, PD versus tD/CD. CD e 2s= 1 0 30 and 0.5. 

Comparing the two responses of Figure 3.2 shows that the start time of the radial flow 
regime, defined by the derivative stabilization at 0.5, is a function of both the wellbore 
storage coefficient C and the skin factor S. With damaged wells, the effect of wellbore 
storage lasts longer and the start of the semi-log straight line is delayed. The lower the 
skin factor, the faster the reservoir response is reached. 

When matching test data on a computer software package, real variables are used in 
place of dimensionless parameters. Both the test data and the theoretical model are 
presented with the pressure and derivative responses Ap, Ap' versus the elapsed time At. 
The model parameters are adjusted until a good fit is obtained. 

1. As discussed in Section 2.2, the permeability thickness product kh defines the 
pressure match PM = pD/kp. From Equation 2.3, increasing the kh product in the 

model parameters displaces the theoretical curves downwards on the log-log plot, but 
the shape of the curve is not changed. 
2. Once the derivative stabilization is correctly matched, the skin factor S can be 
evaluated. The pressure curve is preferably used for skin adjustment rather than the 
derivative transition between the pure wellbore storage and the radial flow regime (the 
derivative response is frequently noisy during this intermediate time period. 
Furthermore, it can be distorted by changing wellbore storage effect, see Section 
10.1.2). 
3. The last parameter to be determined is the wellbore storage coefficient C from the 
early time response. Increasing C displaces the unit s|ope line (and the derivative hump) 
towards later times on the computer generated curves. 

When several periods are available for analysis, by normalizing the pressure axis by the 
flow rate (with Ap/q and Ap'/q), the different periods can be compared on the same log- 
log plot. This is a very efficient diagnosis tool, especially with noisy data. As the 
derivative becomes independent of the skin parameter after the end of wellbore storage 
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effect, the derivative curves must overlay after the early time response and, during the 
radial flow regime, all responses merge on the same derivative stabilization. If not, the 
flow rate data must be checked (see Section 10.1.1). Once the derivative responses are 
consistent, the difference between the pressure curves reveals any change in the well 
condition such as wellbore storage, skin damage or rate dependent skin (discussed in 
Chapter 7, Figure 7.11 for example). 

If the test stops before radial flow has been reached and the derivative stabilization is 
not available, an approximate analysis can be attempted on the pressure and derivative 
transition responses. In general the solution is not uniquely defined but, when the 
derivative is not severely distorted by noise or changing wellbore storage effects, upper 
and lower limits can be estimated for the permeability thickness product kh and the skin 
factor S. 

3.1.4 Associated specialized plot straight line and interpretation procedure 

Wellbore storage and radial flow analyses have been presented in Chapters 1 and 2 for 
drawdown and multiple rate test sequences. Today, straight-line methods are not 
considered to provide accurate results as curve fitting on pressure and derivative 
responses. Straight-line analysis can be attempted for a quick estimate of the 
parameters, or for consistency check of the interpretation results. Before specialized 
analyses, the time limits of the various regimes must have been identified by matching 
the pressure and derivative responses on the type curves of Figure 2.22. 

More importantly, specialized scales are used with computerized interpretation to refine 
the log-log analysis results. Once the log-log match is accurately defined, the model 
parameters are further adjusted on a semi-log plot such as Figure 3.3. This scale is not 
appropriate for C and kh fine-tuning, but it is more sensitive to small skin errors than the 
log-log system of coordinates. 
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The next step is to generate a test simulation plot on linear scales. The interpretation 
model is applied to the complete sequence of flow and shut-in periods, to produce the 
theoretical response during the well rate history. With the test simulation, the theoretical 
model is compared to the measured pressure data on a longer time interval than during 
the analysis of a single period. The test simulation is used to determine the initial 
pressure at start of the test, and will illustrate clearly any change of well condition or 
flow rate errors. By extrapolating the model beyond the initial diagnosis period, 
possible inconsistencies in the model can be identified (see Section 10.2.3). 

3.1.5 Skin discussion 

Tests are sometimes interpreted with the model for a well with wellbore storage and 
skin in a homogeneous reservoir when the well or reservoir configuration is known to 
be different. Wells in partial penetration or slanted wells for example frequently show a 
typical wellbore storage and skin response, and the well geometry only affects the skin 
calculated from the match. In the first case, the skin can reach values higher than 30 (see 
discussion Section 3.4.3), whereas deviated wells can show a slightly negative skin 
(Section 3.5.2). 

When the properties of the near wellbore reservoir region have been changed after 
drilling or stimulation, an apparent positive or negative skin can be observed as a result 
of the radial composite reservoir condition (Section 4.3.2). In his discussion of the two 
usual approximations for the skin effect, namely the infinitesimal skin thickness and the 
equivalent wellbore radius concept, Daviau (1986) concludes that the homogeneous 
reservoir model is applicable to most skin configurations, unless the wellbore storage 
coefficient is extremely low. 

As discussed in Section 4.1.5, wells in naturally fractured reservoirs also can show a 
homogeneous behavior, associated possibly to a natural negative skin and to a very 
large wellbore storage coefficient. Reservoirs with horizontal permeability anisotropy as 
well, generate a small natural negative skin on test responses. The different possible 
skin components are summarized at the end of this Chapter, in Table 3.7. 

Permeability anisotropy 

In the case of a reservoir with horizontal permeability anisotropy, the pressure response 
of a producing well can be described by an equivalent isotropic reservoir model of 
average radial permeability (Earlougher, 1977). With the maximum kmax and the 
minimum kmin permeability oriented 90 ~ apart, the average permeability is: 

=~Jkma x kmi n (3.3) 

An equivalent transformed isotropic system can be used to describe the pressure 
behavior of the reservoir by changing the dimensions in the two main directions of 
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permeability. The transformation of variables is, respectively for the maximum and the 
minimum permeability directions: 

i / k kmi n 
X' = X  = X 4  

kmax ~ kmax 
(3.4) 

yi k' aXkmin (3.5) 

In the equivalent isotropic system, the wellbore is changed into an ellipse whose major 

4 In the high permeability axis, in the low permeability direction, is r w ~ k m a x / k m i  n . 

4 max " direction, the minor axis is r,, ~kmi n/k 

The area of the well is the same in the original and transformed systems, but the 
perimeter is increased. The elliptical well behaves like a cylindrical hole whose 
equivalent radius is the average of the major and minor axes (Brigham, 1990): 

1 
(3.6) 

Since the analysis results are calculated with reference to the actual wellbore radius r,,, 
the reservoir anisotropy produces an apparent negative skin component: 

Nan ' - - In 

= - In  

/ 4 rain 

2 

x/klnin +~/kmax 

2,2 

(3.7) 

With typical permeability anisotropy values in the horizontal plane, the negative 
geometrical skin effect is low. For horizontal wells (see Section 3.6), the effect of 
permeability anisotropy between the vertical and horizontal directions can be much 
larger, and apparent negative skins of S~n~ =-1 may be observed. 

Table 3.1. Anisotropy skin San i 

kma x / kmi n 10 100 1000 

S~ni -0.157 -0.55 -1.06 
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3.2 INFINITE CONDUCTIVITY OR UNIFORM FLUX VERTICAL 
FRACTURE 

The hydraulic fracturing technique has been used from the 1950's to improve the 
productivity of damaged wells, or wells producing from low-permeability reservoirs. By 
injecting fluid into the formation, a vertical plane fracture is created and filled with 
propping agents to prevent closure. 

Fractured well models for high and low conductivity, and the corresponding specialized 
analysis, have been presented in Sections 1.2.4 and 1.2.5. Log-log pressure and 
derivative responses are illustrated in Figures 2.16 and 2.17 (Section 2.3.3). The high 
conductivity fracture model is discussed in this Section, fractures with a low 
conductivity are considered in Section 3.3. 

3.2.1 Model description 

The well intercepts a symmetrical vertical plane fracture of half-length xf (Figure 1.11). 
The well and the fracture penetrate totally the reservoir thickness and there is no 
pressure loss along the fracture plane. Wellbore storage effects can be present in the 
well, and the fracture can be affected by a skin damage. 

Characteristic f low regimes 

Two characteristic regimes can be observed after the wellbore storage early time effect, 
as illustrated on Figure 1.12: 
1. Linear flow, with Ap proportional to At 1/2 and a half unit slope straight line on 
pressure and derivative log-log curves (Figure 2.16). The linear flow regime defines the 
k(xj) 2 product, and therefore the fracture half-length x/. 
2. Pseudo-radial flow regime when the flow lines converge from all reservoir 
directions. During the pseudo-radial flow regime, the pressure follows a semi-log 
straight-line behavior, as during the usual radial flow regime towards a cylindrical 
vertical well. The fracture influence is then described by a geometrical negative skin 
and the pseudo-radial flow analysis provides the permeability thickness product kh and 
&. 

Analytical solutions 

The analytical solutions for fractured wells have been developed by Gringarten et al. 
(1974 a, 1975 a) for the uniform flux and the infinite conductivity fractures. With the 
uniform flux solution, the flow per unit of fracture surface is assumed constant along the 
fracture length, while the infinite conductivity model is based on the assumption that the 
pressure is uniform in the fracture. The solutions are obtained by dividing the fracture 
length into M segments, and using the Green's function and product solution method 
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(Gringarten and Ramey, 1974 b). When uniform flux is established along the fracture 
extension, each segment produces at the same rate. The uniform flux solution was 
designed as a first approximation of the behavior of a fractured well, and is the exact 
solution only at early times (when the flux in an infinite conductivity fracture is 
uniform). 

Gringarten et al. (1974 a) obtained the infinite conductivity model by measuring the 
pressure drop at the point xD = x/xj = 0.732 in the uniform flux fracture. The authors 
showed by numerical simulation that, in infinite conductivity fractures, the flux 
distribution changes after the early time response, and reaches a stabilized profile along 
the fracture length. During the pseudo-radial flow regime, the two ends of the fracture 
are the most productive segments, as it will be shown also for horizontal wells (see 
Section 3.6). The shape flux distribution for the different fractured well models is 
discussed further in Section 3.3.6. 

3.2.2 Review of pressure and derivative type curves for a well with infinite- 
conductivity fracture 

In the mid 1970's, the catalog of available pressure type curves was extended to the 
fractured well condition. The curves offer the possibility of identifying the nature of the 
wellbore stimulation, and to quantitatively analyze the effect of fracturing on well 
responses. In addition to the permeability, the analysis provides information concerning 
the fracture characteristics, and possibly the distance to boundaries. Different type curve 
presentations have been proposed, they are briefly summarized as follows. 

Gringarten (1978) presented a pressure type curve for a well with an infinite- 
conductivity fracture at the center of a closed rectangle, shown in Figure 3.4. The 
dimensionless pressure pj) of Equation 2.3 is expressed as a function of the 
dimensionless time tJ?l, defined with respect to the half fracture length xj: 

0.000264k 
- ~ A t  ( 3 . 8 )  

t r Y -  r c, x-  l 

No skin damage and no wellbore storage effects are assumed. The permeability 
thickness product is obtained from the pressure match (Equation 2.9), the fracture half- 
length xf from the time match: 

I 0.000264k 1 

x./ - q~/a cf TM 
(3.9) 

The type curves of Figure 3.4 can be used for the analysis of fractured well limit testing 
(",4" is the area of the rectangular reservoir, Xe the half-length of the reservoir in the 
direction parallel to the fracture, and Ye the half-width of the reservoir). In addition, 
several build-up type curves are presented for the infinite reservoir case. 
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Figure 3.4. Pressure type curve for an infinite conductivity vertical fracture at the center of a 
closed rectangle. Log-log scales, PD versus tDj. Graph courtesy A.C. Gringarten. 

When wellbore storage dominates the early times response, the type curve of Figure 3.1 
with Po versus the dimensionless time group to/C>, can be used. On this type curve, 
values of CDe 2s smaller than 0.5 are generated with the infinite conductivity fracture 
model and wellbore storage effect. 

A match on a low CDe 2x curve yields the permeability thickness product kh from the 
pressure match, the wellbore storage coefficient C from the time match and the 
geometrical skin SnKV from the curve match. From equation 3.12, the geometrical skin 
can be used to estimate the fracture half-length xf. 

The pressure derivative behavior for uniform flux and infinite conductivity fractures has 
been investigated in 1988 by Tiab and Puthigai by differentiating the pressure with 
respect to time. In the following text, the logarithmic derivative presented in Chapter 2 
is considered, with the Alagoa et al. type curves (1985). 

These type curves combine the pressure and derivative presentations. The effect of 
wellbore storage is considered, the various curves are expressed with PD versus tnj, and 
they are labeled in terms of Cq/. 

0.8936C 

The matching procedure is similar to p> versus tDf the Gringarten's type curves, and the 
wellbore storage coefficient C can be estimated from CDfand xj. 



58 Wellbore conditions 

10 
E3 

Q_ 

d c~ 
~-cz 
03 0 3 d  1 
ID > 

03 > 

10-1 1.- 
O 

r -  
ID 
E 
c5 

0.5 line 

5\0@ 
Uniform flux 

Infinite condutivity 
10 .2 

10 .4 10 .3 10 .2 10 -1 1 10 10 2 10 3 

Dimensionless time, tDf 
Figure 3.5. Responses for a well intercepting a high conductivity fracture. Log-log scales, Pz) 
versus tD/. No wellbore storage effect. Ce)= 0. Infinite conductivity and uniform flux models. 

The type curves for the infinite conductivity model and for the uniform flux fracture 
solution exhibits the same characteristic shapes during the three typical behaviors and, 
in fact, present very similar log-log pressure response curves. Only the derivative curves 
show some difference during the transition from linear to radial flow as discussed next. 

3.2.3 Matching procedure on pressure and derivative responses 

Infinite conductivity and uniform f lux models 

In practice, wellbore storage is short lived in fractured wells, and frequently is not 
observed on the recorded data: the response starts to follows the half unit slope pressure 
and derivative straight lines from early time as illustrated on the examples Figure 3.5 
where the curves are generated with Cz) = 0. The two high conductivity fracture models 
are slightly different at intermediate times, between linear flow and radial flow. With 
the uniform flux model, the transition from the half unit slope straight line to the 0.5 
line is shorter, and the angle between the two regimes is more pronounced. The pressure 
curve is slightly higher. 

When matching test data against a high conductivity fracture model such as on Figure 
3.5, the derivative stabilization during the pseudo radial flow regime is used to 
determine the pressure match (giving the permeability thickness product kh). The 
location of the half unit slope pressure and derivative straight lines provides the half 
fracture length xf with Equation 3.9 (the longer the fracture, the later the start of the 
pseudo radial flow regime). 

When the log-log match is adjusted with a well test interpretation software package, the 
pressure and derivative data curves are presented versus the elapsed time At, and the 
theoretical model is graphed on the same scale. Increasing the fracture half length xf of 
the model displaces its half unit slope straight lines toward later times, to the right of the 
plot (Equations 1.25 and 2.29). 
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Effect of  wellbore storage 

On Figure 3.6, wellbore storage effect is introduced on infinite conductivity fracture 
responses (CD of Equation 2.5 is used). For CD values of 10 3 or above, the wellbore 
storage effect is indicated by a deviation below the half unit slope lines, before linear 
flow becomes evident. In case of high CI~, the wellbore storage effect masks the half 
unit slope pressure and derivative straight lines, the choice between a high or a low 
conductivity model (Section 3.3) is difficult, and xf is not uniquely defined from early 
time data analysis. 
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Two types of damaged fracture have been considered (Cinco-Ley and Samaniego-V, 
1981). Either an infinitesimal skin is located around the fracture (when a zone of 
reduced permeability has been created around the fracture by fracturing fluid loss), or 
the damaged region is located will, in the fracture near the wellbore (this configuration is 
called choked fracture). 

With damaged fractures, the duration of the wellbore storage effect is extended and the 
response follows a unit slope straight line at early time, as illustrated in Figure 3.7. 
Later, the derivative describes a hump until the sand face rate is fully established. Then, 
the reservoir response shows the linear, followed by the pseudo radial flow, 
characteristic derivative behaviors. 

3.2.4 Associated specialized plot straight lines 

The limits of the various regimes are identified from the straight-line portions of 
pressure and derivative curves of Figures 3.5 to 3.7. The first straight line, with unit 
slope, is usually not seen on non-damaged flactured well data: wellbore storage analysis 
is in most cases not justified. 

Linear flow analysis 

Linear flow specialized analysis (Section 1.2.4) is carried out on the data points 
matching the pressure and derivative type curves on the two half unit slope straight 
lines: a plot of the same points with Ap versus the square root of At exhibits a straight 
line passing through the origin (Figure 1.13). The slope mLv is used to provide an 
estimate of the fracture half-length x:. If k is known from radial flow analysis, 

f 

- 4 . 0 6 /  /z qB xf ~bcfk hmLF 
(1.26) 

When the first points of the well response are affected by the wellbore storage, the data 
plot does not follow linear flow behavior at very early time: it reaches the straight line 
only when all well bore storage has become negligible. On the specialized square root 
of time scale, both the data plot and the straight line of slope mLF pass through the 
origin, but the data plot curves below the straight line until wellbore storage has died 
out. 

In the case of a shut-in period when the previous drawdown was stopped during the 
linear flow regime, the Homer time for linear flow of Equation 2.19 can be used. 

Pseudo-radial flow analysis 

After linear flow, the response exhibits a pseudo radial flow behavior that displays the 
usual semi-log straight line behavior. Strictly speaking, flow lines to the fracture are not 
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radial, and this regime is affected by the near wellbore condition as illustrated on Figure 
3.8. Cinco (1982) reports the drainage becomes approximately circular when the radius 
is more than 3 times the fracture length. 

In a vertical cylindrical well, the flow lines converge with a radial geometry until the 
fluid enters into the wellbore. With fractured well, the flow is distributed along the 
fracture length, and the density of flow lines is therefore reduced in the near wellbore 
region. By breaking the formation, the communication between the reservoir and the 
well is improved and less pressure loss occurs in this reservoir region: fractured wells 
exhibit a negative geometrical skin Sc during radial flow. 

This geometrical skin Sc is related to the fracture half-length xf (Gringarten et al., 1975 
a). For the uniform flux solution, the geometrical skin Surf is: 

x f - 2.718r w e -SurF (3.11) 

For the infinite conductivity solution, SHKv is expressed: 

x.f - 2rw e-SHY'~ (3.12) 

Values of skin for fractured wells can be as low as-6  or-7.  

In can be noted that, for an infinite conductivity fracture, the effective well radius r,,e of 
Equation 1.14 is exactly one-fourth the total fracture length, the Co e 2s parameter is 
related to Col of Equation 3.10 with: 

CD e2s - Coe - 4C/)j (3.13) 

In Equation 3.13, CDe is the dimensionless wellbore storage calculated by using the 
effective wellbore radius instead of r,v in Equation 2.5. 

Figure 3.8. Flow line geometry near a fractured well. 
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3.3 FINITE CONDUCTIVITY VERTICAL FRACTURE 

When the pressure gradient along the fracture length is not negligible, the low 
conductivity fracture model has to be used for the analysis of hydraulically fractured 
wells. This may happen for example when the permeability of the fracture is not very 
high compared to the permeability of the formation, especially when the fracture is 
long. 

3.3.1 Model description 

With the finite conductivity fracture model (Cinco-Ley et al., 1978 a), linear flow is 
produced within the fracture, in addition to the linear flow regime from the pay zone 
into the fracture plane. The fracture geometry is defined on Figure 1.14: the well 
intercepts a symmetrical vertical plane fracture of half length xj, wf is the width, kj is the 
fracture permeability and kl~,,, ~ is the fracture conductivity. 

Characteristic flow regimes 

Three characteristic regimes (Cinco-Ley. and Samaniego-V., 1978 b) can be observed 
after the wellbore storage effect: 
1. At early times, as long as the fracture tips have not been reached, the combination 
of fracture linear flow and reservoir linear flow produce the so-called bi-linear flow 
regime. The pressure change is then proportional to the fourth root of the elapsed time 

4x/At and, on the log-log plot, both the pressure and derivative responses follow a 
quarter unit slope straight line (Figure 2.17). When present, the bi-linear flow regime 
gives access to the fracture conductivity kiwi (the wellbore pressure is independent of 
the fracture half-length xj during bi-linear flow). 
2. Later, the pressure behavior becomes equivalent to that of an infinite conductivity 
fractured well. A linear flow regime can be observed, characterized by the usual 
pressure and derivative half unit slope log-log straight lines. The fracture half-length xj 
can be estimated. 
3. Pseudo-radial flow regime, with the derivative stabilization is observed next, to 
give the permeability thickness product kh and the geometrical skin &_;. 

Analytical solutions 

Cinco-Ley et al. (1978 a) used a semi-analytical approach to derive low conductivity 
fractured well responses. They broke up the fracture into several uniform flux segments, 
solve a set of equations to generate the flux profile along the complete fracture, and 
finally estimate the wenbore pressure. 
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Several extensions of the basic finite conductivity fractured well model have been 
considered: wellbore storage effect, skin damage on the fracture walls or choked 
fracture (Cinco-Ley and Samaniego-V, 1981), variable conductivity and length (Bennet 
et al., 1983), etc. 

3.3.2 Review of pressure and derivative type curves for a well with finite- 
conductivity fracture 

Cinco-Ley et al. (1978 a) presented a set of type curves with the dimensionless pressure 
p> expressed as a function of the dimensionless time tDf of equation 3.8 for different 
values of the dimensionless fracture conductivity kjDwj>, expressed as: 

k./. w./. 
k/Dw/l:)= kx.f (3.14) 

Equation 3.14 shows that kjDw/> is directly proportional to the fracture conductivity and 
inversely proportional to the reservoir permeability and fracture half-length. It can be 
concluded that the effect of low conductivity in the fracture is magnified when the 
reservoir permeability is high, or the fracture long (large k xf product). The authors 
indicate that the infinite conductivity assumption is valid when the dimensionless 
fracture conductivity kjDwj> is greater than 300. For lower values, the wellbore pressure 
is affected by the fracture conductivity and, as a result, the geometrical skin SLav is less 
negative than for an infinite conductivity fracture. 
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Figure 3.9. Pressure type curve for an finite conductivity vertical fracture (Cinco-Ley et al., 1978 
a). Log-log scales, PD versus tDj. Graph courtesy A.C. Gringarten. 
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Figure 3.10. Effective \vellbore radius for a well \vith a finite conductivity fracture. Log-log 
scales. 

Other type curves presentation have been proposed, including wellbore storage and 
fracture skin effects. The derivative of finite conductivity fractured wells with wellbore 
storage has been considered by Wong et al. (1985). 

3.3.3 Skin discussion 

For a finite conductivity fracture, the skin is defined by two terms (Cinco-Ley and 
Samaniego-V, 1981): the geomen'ica/ skin SHKF assuming an infinite conductivity 
fracture (Equation 3.12), and a correction parameter G to account for the pressure 
losses resulting from the low fracture conductivity. 

( kt''~j 1 S L ~ - G  ' +In r,~ 
kx / .  x/  

(3.15) 

On Figure 3.10, the ratio of the effective well radius of Equation 1.14 (rwc - r~,,e -GLK~ ) 
to the fracture half-length x/, is presented on log-log scales as a function of the 

dimensionless fracture conductivity ki w l / k x /  . When k /w  I / k x /  is greater than 

300, the fracture behaves as an infinite fracture, &KF = SHKr and r,,,c/x/ - 0 . 5 .  For 

lower conductivities, the skin is less negative and rw~,/x/ is smaller. 

3.3.4 Matching procedure on pressure and derivative responses 

On Figure 3.11, an example of a low conductivity fracture response is presented with PD 
versus tD/CD. The wellbore storage effect is not visible on this example, and three 
subsequent flow regimes can be identified: 
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Figure 3.11. Response for a well intercepting a finite conductivity fracture. Log-log scales, Pz) 
versus tD/CD. No fracture skin, k/Dw/z)= 25. 

1. At early times, during bilinear flow, pressure and derivative curves follow two 
parallel straight lines of slope 1/4. 
2. During the linear flow regime, two other parallel straight lines of slope 1/2 are 
evident. 
3. When radial flow is reached, the derivative stabilizes on 0.5 (in dimensionless 
scales). 

The distance between the two quarter-unit slope straight lines is log (4), and the distance 
between two half-unit slope lines is log (2). 

For large fracture conductivity k/DW/>, the bilinear flow regime is short lived and the 1/4 
slope pressure and derivative straight lines are moved downwards. The behavior tends 
to a high conductivity fracture response. 

Conversely, when the dimensionless fracture conductivity is low (curve k/Dw/> =1 on 
Figure 3.12), the linear flow regime is not present and the response changes directly 
from bi-linear flow to the pseudo radial flow regime, through a transition that never 
describes the half unit slope line. In such configuration, the pressure loss in the fracture 
is large, and two segments of the fracture near the tips are not participating to the flow. 

With real test data (Ap, Ap' vs. At), when all flow regimes are clearly defined, the match 
against a low conductivity fracture model such as on Figure 3-11 provides the kh 
product from the pressure match, the fracture half-length x/and the fracture conductivity 
k/wf from the location of the half unit and quarter unit slope derivative straight lines 
respectively. 

The example response of Figure 3.11 is displayed over 6 time log-cycles (tD/CD from 
10 -~ to 105). Frequently, log-log plots of actual build-up data describe the response 
during a smaller time range, and the match is performed only on a fraction of the 
complete model response. Matching is then difficult and the solution non-unique: 
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Figure 3.12. Response for a well intercepting a finite conductivity fracture. Log-log scales, p> 
versus t:o/C::. No fracture skin. k/>wj> = 1.10 and 100. 

�9 With some fractured well responses, it may take several months to reach the start of 
the pseudo radial flow regime but in practice the data do not go beyond the bilinear or 
linear flow period. 
�9 Depending upon the wellbore storage and fracture parameters, the different regimes 
can overlap, and some of them are not shown clearly. When the response is similar to 
the infinite fracture example with wellbore storage of Figures 3.6 or 3.7, the choice of 
the type of fracture response, and the resulting fracture parameters, are not uniquely 
defined. 

When a long fracture is planned, it is recommended to test the well before fracturing, in 
order to obtain an estimate of the permeability thickness product. After fracturing, this 
parameter may not be defined by transient pressure analysis. 

3.3.5 Associated specialized plot straight lines 

The three regimes described on the example response of Figure 3.1 1 can be analyzed by 
straight-line methods. The time limits of the specialized analysis straight lines are 
defined by the type curve match, using in particular the improved definition of the 
derivative presentation. At early time, a fourth regime, corresponding to wellbore 
storage, can possibly be present. 

The three or four typical regimes cannot be expected to be present in a single response, 
only one or two are in general developed enough for specialized analysis. In some 
cases, long responses only present transitional behaviors from one regime to the next, 
and no straight-line analysis can be performed. 
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Bilinear flow analysis 

The quarter unit slope log-log straight line corresponds to a plot of Ap versus the fourth 
root of the elapsed time At (Section 1.2.5): the bilinear flow regime is characterized by a 
straight line passing through the origin (Figure 1.15). When the formation permeability 
is known, the slope mBLF gives the fracture permeability-width product from Equation 
1.28: 

kfwf:1944.8 / 1 ~ (  q B~ I 
~r hmBLF 

(1.28) 

Linear and Pseudo-radial flow analyses 

Specialized analyses of linear and pseudo-radial flow are performed as described in the 

previous Section 3.2, for a high conductivity fracture. On a Ap, ~/At scale, the straight 
line passing through the origin is used to estimate kxj 2 (Equation 1.26). When radial 
flow has been reached after the initial fracture flow regimes, the semi-log straight line 
can be used to estimate the permeability thickness product kh and the negative 
geometrical skin SCKV of Equation 3.15. 

3.3.6 Flux distribution along the fracture 
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Figure 3.13. Stabilized flux distribution. Uniform flux, Infinite conductivity (k/DwjD > 300) and 
Finite conductivity fracture (kjz)wjD = 0.5 and 5) models. 
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When the pseudo radial flow regime is reached, the distribution of the flux entering the 
fracture stabilizes. Figure 3.13 (Cinco-Ley and Samaniego-V, 1981) presents the 
dimensionless flux distribution for the uniform flux, infinite conductivity and finite 
conductivity fracture models. The flux per unit of fracture length being q(x, At), 

q(x, At)x 1 
q/b - 2 (3.16) 

q~,i' 

With the uniform flux model, qlz)=1. In case of infinite conductivity fracture (k/DW/D 
>300), the fluid enters the fracture mostly in the region near the tips. When the fracture 
conductivity is decreased, the fracture section near the wellbore becomes more 
productive. 

3.3.7 Field example 

Figure 3.14 presents the pressure and derivative responses of in a well intercepting a 
low conductivity fracture. During this two day build-up test, only the bilinear flow 
regime is evident with a long quarter unit slope straight-line. At very early time, the data 
is apparently affected by the end of wellbore storage but, on the late time data, no 
transition towards the linear or the radial flow regime can be identified. 

The test is too short for estimating the reservoir permeability and only the group 

ff-k(k/.w/) can be accessed from the analysis of the bilinear flow regime (with 

Equation 1.28). 

10 3 

~- v 

d e  
o'J.>_ 

c- 

�9 
L_ 

O0 ',-- 
O0 :~ 

10 2 

101 

1 

10-2 

i l U i l i l i  i l l l u m  

�9 . " i i  .............. 

10 -1 1 101 10 2 

Elapsed time, At (hours) 
Figure 3.14. Build-up test in a well intercepting a low conductivity fracture. Log-log scales. 
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3.4 WELL IN PARTIAL PENETRATION 

In the case of limited entry or partial penetration, the well communicates with only a 
fraction of the producing zone thickness. This could be due to plugged perforations for 
example, but partial penetration is also sometimes decided on for production efficiency. 
This happens when a gas cap or a bottom water drive is active at the upper or lower 
boundary, the well being perforated as far away as possible from the constant pressure 
surface. A discontinuity in the upper or lower sealing boundaries, which create 
communications between the open interval and another zone, also produces partial 
penetration behavior. This latter configuration can be analyzed with the two- 
permeability solution (Chapter 4). 

Partial penetration corresponds to a reduction of the surface of contact between the well 
and the reservoir, as opposed to the other wellbore conditions discussed in this chapter, 
such as fractured wells, slanted and horizontal wells. They all increase this contact, and 
are characterized by a negative geometrical skin. Partial penetration effects produce a 
positive geometrical skin, resulting from the distortion of the flow lines when 
converging towards the perforated interval (see Figure 1.16). 

3.4.1 Model description 

A schematic of a well with limited entry is shown in Figure 3.15. The interval open to 
flow has a thickness h,,,, which is a fraction of the reservoir thickness h. The center of 
the open interval is at a distance zw from the lower reservoir boundary. The permeability 
is kH in the horizontal direction and kv in the vertical direction. 

Characteristic flow regimes 

When the lower and upper boundaries are impermeable such as on the flow diagram of 
Figure 1.16, three characteristic regimes can be observed after the wellbore storage 
early time effect: 

S w 

hw~~ ;z  w 
l, kv 

k H 

Figure 3.15. Geometry of a partially penetrating well. 
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1. Radial J low over the open interval h,., with kp proportional to log(At) and a first 
derivative plateau. Analysis of the initial radial flow regime yields the permeability- 
thickness product for the open interval kH h,, and the infinitesimal skin of the well, S,~. 
2. Spherical flow with Ap proportional to A t  1/2 and a negative half unit slope straight 
line on the derivative log-log curve (Figure 2.18). The spherical flow regime lasts until 
the lower and upper boundaries are reached. Analysis yields the permeability anisotropy 
k~./kH (Section 1.3.6). 
3. RadialJlow over the entire reservoir thickness with kp proportional to log(At) and a 
second derivative stabilization. The reservoir permeability-thickness product kHh, and 
the total skin S~ can be estimated from the second radial flow regime 

If the top or bottom boundary is a constant pressure interface, the pressure stabilizes and 
the derivative drops after the spherical flow regime. 

Analytical solutions 

The partial penetration solution for uniform flux and infinite conductivity wellbore was 
presented by Gringarten and Ramey (1975 b), using the same approach as for the 
fractured well models (see Section 3.2). When there is no pressure loss in the wellbore, 
the infinite conductivity well is obtained from the uniform flux partial penetration 
solution by computing the wellbore pressure at an effective point located at 0.732 of the 
half-length of the producing interval. 

3.4.2 Model responses, sealing upper and lower limits 

Due to the lack of distinguishable features on pressure responses, no type curves for 
wells in partial penetration are currently used, although some have been presented in the 
literature (Kuchuk and Kirwan, 1987). The derivative is firstly used for the analysis of 
limited entry wells, and a computer program is required for generating and matching the 
model. 

Influence of kv /  kH 

Typical responses of partial penetration in a reservoir with sealing upper and lower 
limits are presented in Figures 3.16 with the usual pj) versus tJC~_) dimensionless 
variables. Only 20% of the thickness is communicating with the well and the producing 
segment has no skin and is centered in the formation. Three permeability anisotropy are 
considered with k~-/kH = 10 l,  10 .2 and I 0 -s. 
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Figure 3.16. Responses for a well in partial penetration with wellbore storage. Log-log scales, p> 
versus tD/C>, h,/h = 1/5 in center of the interval, CD = 33, S~=0, kv/ka = 0.1, 0.01 and 0.001. 

During the final radial flow regime for the complete interval thickness, the derivative 
stabilizes at 0.5 whereas it stabilizes at 0.5 h/h,, during the first radial flow regime in 
front of the perforated segment. The negative half-unit slope straight-line transition 
between the two derivative plateaus defines the quality of the vertical communication in 
the reservoir. With low kv/kH, vertical flow is limited and the spherical flow regime is 
seen late. On the example kv/kH = 10 -3, the first stabilization is well developed before 
the subsequent negative half-unit slope line. More frequently, partially penetrating well 
responses are similar to curve kv/kH = l 0  1, where the first stabilization does not exist 
and spherical flow is reached as soon as the wellbore storage effect ends. 

With low vertical permeability, a significant pressure drop is created when the flow 
lines converge towards the producing segment, generating a large positive geometrical 
skin See. The total skin &,, measured during the final radial flow regime, combines the 
well infinitesimal skin Sw, and the additional completion skin Sep with : 

h 
ST - -7--- S w  q- Spp (3.17)  

/%, 

On Figures 3-16, the largest geometrical skin See corresponds to kv/kH = 1 0  -3. this 
pressure curve is above that for kv/kH =10 -1 during the final radial flow. The different 
skin factors for limited entry wells are further discussed in Section 3.4.3. 

Influence of zJh 

If the perforated segment is not centered in the producing formation, the spherical flow 
regime ends when the closest upper or lower boundary is reached. A hemi-spherical 
flow geometry is then developed, until the second boundary is seen. 
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As shown on Figure 3.17, the derivative also follows a negative half-unit slope straight 
line during the hemi-spherical flow regime, but displaced above the first corresponding 
to spherical flow. A similar behavior has been discussed for radial flow in Chapter 2 
with the sealing fault example in Figure 2.20. In the case of spherical geometry, the 
hemi-spherical flow regime shows the characteristic behavior of spherical flow, but the 
apparent permeability is half the true kx of Equation 1.29. 

The example response of Figure 3.17 with a centered perforated segment (z,/h -- 0.5) is 
used in the Section 9.4.2, for the vertical interference test discussion. 

3 . 4 . 3  S k i n  d i s c u s s i o n  

Several methods have been proposed to estimate the geometrical skin See from the 
system parameters. Gringarten and Ramey (1974 b) and Streltsova (1979) use infinite 
series, Brons and Marring (1961 a) presented several graphs, and Odeh proposed an 
empirical equation (1980). 

In 1987, Papatzacos derived a formula, using the penetration ratio hw/h , the 

dimensionless reservoir thickness-anisotropy group @, and the distance z,,, from the 
center of the open interval to the lower or upper boundary 

hw i 
I~,, 12 + h~__~,h (zw-h~'/4){h-z"-t~"/4) 

(3.18) 

where 
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hD =-~~I kHkV 

In 1991, Vrbik proposed another approximation" 

Spp =(---~-l)(1.2704-lnhD)-(-~)2[f(O)- f(@-)+ 
f(2f-ff-)-O.5f(2ZWhhW)-O.5f(2ZWhhW)] 

(3.19) 

(3.20) 

where 

f (y )  - y In y + (2 - y) ln(2 - y) + -  1___ In [sin 2 (a-y/2) + 0.1053/h 2 ] 
7r h D 

(3.21) 

Equations 3.18 and 3.20 provide a good approximation of See for typical partial 

penetration well configurations (Papatzacos indicates that h w/h and (h w/r w)x/kH/k V 
should not be very small). Ding and Reynolds (1994) extended the equations 3.18 and 
3.20 to a multi-layer case, and compared the resulting skin approximations to the skin 
estimated with a finite-difference simulator. They confirmed the limits of validity of the 
approximations, but they concluded that Equation 3.18 seems to give accurate results 
for a wider range of parameters. 

In the following tables, the geometrical skin Spp is estimated for a reservoir of thickness 
h =1000rw. Two well locations are envisaged and different penetration ratios and 
permeability anisotropies are considered. The tables present firstly results from 
Equation 3.18 and secondly results from Equation 3.20. 

Table 3.2. Geometrical skin Spp for a centered partial penetration well (Zw/h=0.5). 
kv/kH 1 10 -~ 10 -2 10 -3 

hw/h =0.1 36.8-35.3 47.1-45.4 57.5-55.7 67.9-66.0 

h .... /h =0.25 14.3-13.6 17.7-17.0 21.2-20.4 24.7-23.9 

h~/h =0.5 5.2-4.7 6.3-5.9 7.5-7.0 8.6-8.2 

Table 3.3. Geometrical skin Spp for an off-centered partial penetration well (the perforated interval 
is on top or at bottom). 
kv / kH 1 10 -I 10 -2 10 -3 

h~/h -0.1 41.5-41.3 51.9-51.5 62.3-61.8 72.6-72.2 

h~/h =0.25 15.8-15.6 19.2-19.0 22.7-22.4 26.1-25.9 

h~/h =0.5 5.6-5.4 6.7-6.6 7.9-7.7 9.0-8.9 
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The two tables show that, even with a small penetration ratio, the geometrical skin See is 
seldom larger than 30 or 50. If the producing segment is in addition damaged, the 
product (h/hw)&~, of Equation. 3.17 can be very large, and the total skin Sz. can reach 
values of several hundreds. On limited entry wells, wellbore damage is amplified. 
Removing a wellbore damage S,,, by acid stimulation, can significantly increase the 
productivity of a limited entry well. 

For a fully penetrating damaged well, S could be as high as 30, but not significantly 
above. If a well shows a skin value higher than 30, partial penetration should be 
envisaged even if the derivative response does not display the characteristic behavior of 
a limited entry well. 

3.4.4 Matching procedure on pressure and derivative responses 

When matching test data from a partially penetrating well, reservoir and well 
parameters can be estimated provided the three characteristic flow regimes are clearly 
defined. The pressure match, adjusted with the final derivative stabilization during the 
radial flow regime over the complete thickness, is used to determine the permeability 
thickness product kH h and the total skin S> The wellbore skin S,. and the penetration 
ratio h,/h are estimated from the first radial flow (derivative plateau at 0.5 h/hw in 
dimensionless terms). Once the kH h product is fixed, reducing h,,/t7 moves upwards the 

first derivative plateau AF ~st stab: 

/Tu, = zSD2ndstab ' (3.22) 
h AP l  st stab. 

The permeability anisotropy k~./kH and location of the open interval are estimated from 
the spherical flow match on the -1/2 slope straight-line. Decreasing kf../kH displaces the 
negative half unit slope straight lines toward/ate times, on the right of the plot. 

In practice, partial penetration responses rarely exhibit the three individual flow 
regimes. 

�9 The first radial flow is often masked by wellbore storage effect. In such cases, h,./h 
and S,,.. are not uniquely defined. 
�9 The transition does not always follow a pure spherical flow behavior. It can for 
example start in spherical geometry, and change to a hemi-spherical regime when the 
well is not centered in the zone thickness and one of the sealing horizontal limits is 
reached before the other. The definition of z~,/h from the spherical flow transition 
between the two derivative plateaus is in many cases approximate. 
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Discussion of  the match results 

When the relationship Equation 3.22 is used to estimate the penetration ratio h,Jh, a 
constant permeability is assumed along the reservoir thickness. If the permeability 
varies with the depth, the apparent perforated interval length h,,, estimated from the 
partial penetration match is effectively longer or shorter than the real producing 
segment when the well is perforated in front of a high (low) permeability interval. A 
layered reservoir model can be used to refine the analysis (Section 4.2.3). 

Similarly, the permeability anisotropy kv/kH estimated from the derivative match is the 
ratio of the average vertical permeability to the average horizontal permeability. In the 
vertical direction, permeability is averaged with a harmonic mean (see discussion of 
Equation 3.56, Section 3.6.11). In case of low vertical permeability streaks in the 
formation, the vertical permeability resulting from the match can be significantly lower 
than the average vertical permeability estimated from core analysis. Values of kv/kH as 
low as 10 -3 are not exceptional in transient test analysis results. 

3.4.5 Associated specialized plot straight lines 

After the usual wellbore storage regime, each of the three characteristic regimes of a 
limited entry well can be analyzed by straight-line methods, provided the derivative data 
plot indicates that they are well defined and not dominated by transitional behaviors 
from one regime to next. The following Figures 3.18 and 3.19 are the radial flow and 
spherical flow specialized plots of the three examples Figure 3.16. 

Radial f low analysis 

The two radial flow regimes can be analyzed on the usual semi-log scales. The first 
radial flow relative to the open interval is frequently poorly defined as shown by the 
examples in Figure 3.18 and semi-log analysis is mostly made on late time data, during 
the radial flow regime over the complete reservoir thickness. 

The analysis of the first semi-log straight line provides an estimate of the permeability 
thickness product kHh,,, and the wellbore skin coefficient Sw. For shut-in periods, this 
straight line extrapolates to a value higher than the initial pressure. The true 
extrapolated build-up pressure p* is estimated from the second semi-log straight line, 
which also defines the permeability-thickness product kH h for the complete reservoir 
thickness and the total skin ST of Equation 3.17. 
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Figure 3.18. Semi-log plot of Figure 3.16 examples. Influence of k~./kH on Spp (5',,=0). 
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Figure 3.19. Spherical flow analysis of Figure 3.16 examples. 1/~fAt plot. 

Spherical flow analysis 

During spherical flow, the pressure is proportional to the inverse of the square root of 

time. In some cases, the 1/~/At time scale of the specialized plot significantly 

compresses the data, and the spherical flow straight line can be difficult to identify, as 
illustrated in Figure 3.19. With the curve k~./kH = I03 for example, the derivative curve 
shows that the spherical flow regime is established between tu/Cz) =2* 104 and 2"105 

The limits of the straight line are therefore 1/@/)/C D =0.002 and 0.007. With the 

curve kr/kH = 101, the straight line, between 1/~/tl)/C P =0.02 and 0.07, is easier to 

identify. 

When the open interval is in the middle of the formation, the slope msPH of the spherical 
flow straight line gives the permeability anisotropy from Equations 1.31 and 1.32. If the 
open interval is close to the top or bottom-sealing boundary, flow is hemi-spherical and 
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the slope rnspH must be divided by two in Equation 1.31. The intercept of the spherical 
flow straight line with the pressure axis is not used. 

3.4.6 Influence of the number of open segments 

When the open interval is distributed in several segments, the ability of vertical flow is 
improved compared to the single segment partially penetrating the well with the same 
h.,. On the examples Figure 3.20 with 1, 2 and 4 segments, the negative half unit slope 
straight line is displaced towards early time when the number of segments is increased. 
The geometrical skin of the single segment curve is Spp =17.9 (18.5 and 17.7 with 
Equations 3.18 and 3.20), but it is respectively 15.9 and 13.9 with 2 and 4 segments. 

3.4.7 Constant pressure upper or lower limit 

In the example Figure 3.21, the bottom boundary, corresponding to a water / oil contact, 
behaves like a constant pressure surface. No final radial flow regime develops after the 
spherical flow regime, the pressure stabilizes and the derivative drops (Abbaszadeh and 
Hegeman, 1988). 

The effect of a gas cap or a bottom water drive on well responses is further discussed in 
the boundaries Chapter, Section 5.10.3. 
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Figure 3.20. Responses for a well in partial penetration with wellbore storage. Log-log scales, PD 
versus tD/CD, h,/h = 1/4, one, two or four segments. CD = 100, Sw=0, kv/kn = 0.01, one segment 
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Figure 3.22. Build-up test in a partially, penetrating well. L0g-10g scales. 

3.4.8 Field examples 

In the following section, two partial penetration build-up examples are briefly 
discussed. For the example shown in Figure 3.22, the well is shut-in at surface. The 
response describes a long wellbore storage unit slope straight-line, followed by the 
characteristic derivative hump, and by a negative half unit slope straight line. No 
derivative stabilization is seen, neither of the two radial flow regimes is present on the 
well response. 
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The spherical flow regime starts after 15 minutes of shut-in, and is not finished at the 
end of the two days build-up test. During the long spherical flow regime, the derivative 
drops from 102 to 10 psi. Clearly, the penetration ratio hw/h must be less than 10 -]. The 
horizontal and vertical permeability cannot be estimated from this test data, only the 
spherical permeability of Equations 1.29 and 1.30 can be evaluated. 

For the 10 hours build-up example of Figure 3.23 the well was shut-in down hole. The 
wenbore storage effect ends after one minute, a long declining derivative transition 
fonows immediately, and the final stabilization for radial flow is reached at the end of 
the test response. The shape of the derivative curve suggests a partial penetration 
behavior but, it does not follows the negative half unit slope straight line. The response 
is in transition between the two theoretical derivative stabilizations (the first is masked 
by the wellbore storage hump). The penetration ratio is large (hJh~0.3). 

With this test, the vertical and horizontal permeability are defined, only the perforated 
interval thickness h., and the wellbore skin S,, are approximate. 
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Figure 3.23. Build-up test in a partially penetrating well. Log-log scales. 

3.5 SLANTED WELL 

With directional drilling, many wells are not vertical when the formation is reached. In 
the following section, we discuss the influence of the angle of slanted wells on pressure 
behavior. We assume that the reservoir is homogeneous, the slanted well penetrates and 
is perforated over the full formation thickness. The well deviation is defined by the 
angle 0 with respect to the vertical plane. 
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3.5.1 Behavior 

Two radial flow regimes can be expected on slanted well responses: the first, at early 
times, is in the plane normal to the slanted well. The second, after a transition period, 
corresponds to horizontal radial flow in the producing zone. In practice, except when 
the angle 0 is very large, the first regime is masked by wellbore storage effects and the 
well behavior is similar to the response of a vertical well. In case of a fully penetrating 
slanted well, the surface area exposed to flow is increased compared to a vertical well, 
thus the slant produces an apparent geometrical negative skin. For very large angles, the 
response tends towards a horizontal well response (Abbaszadeh and Hegeman, 1988). 

3.5.2 Skin discussion 

Several components are contributing to the total skin factor $7 ~ estimated during the 
horizontal radial flow regime: the wellbore skin S,, the negative skin due to anisotropy 
between vertical and horizontal permeability Sa,, (see discussion of permeability 
anisotropy Section 3.1.5), and the geometrical skin effect So. 

Cinco-Ley et al. (1975) give an approximated equation for the geometrical skin So" 

i 11865 S o - -  Ow' - _ Ow' h k~ (3.23) 
log 100 r ,  

where 0,, 'is an equivalent angle, for the transformed isotropic system : 

tan tan01 (3.24) 

Equation 3.23 shows that the larger the thickness, the more negative is the geometrical 
skin. The authors report that the approximation is valid when 0~ ' <75 ~ 

After transformation of the vertical distances to correct the permeability anisotropy, 
Abbaszadeh and Hegeman (1988) express the skin Sam describing the elliptical wellbore 
a s :  

1+ 1//~/ ~ (kv, H ' cos-0,, + /k  )sin: O, 
S a n  i - -  - In  (3.25) 

2 

Pucknell and Clifford (1991) define the total skin factor Sz. : 
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COSOw (S w + Sani)+ S O (3.26) 
S T = ~/cos 20 w + (k V/kH )sin 2 0 w 

For usual angles, the skin So is not less than -2 or -3. For very large angles, the response 
tends towards the horizontal well response, and So can be lower. When the vertical 
permeability kv is low compared to kH, G '  is small and the geometrical skin So becomes 
negligible. In such cases, the effect of the anisotropy is more pronounced and San i c a n  be 
more negative than So. 

In the following tables, geometrical skin So and &ni are estimated in a reservoir of 
thickness h = 1000 r,,. 

Table 3.4. Geometrical skin So 
kv/kH 1 i0 q - 10 -2 -10 -3 

8=30 ~ -0.8 -0.1 0 0 

0=60 ~ -3.3 -0.9 -0.1 0 

Table 3.5. Anisotropy. skin San i 
kt,, / kH 1 10-1 10 -2 10 -3 

0=30 ~ 0 0 -0.1 -0.1 

0=60 ~ 0 -0.3 -0.4 -0.4 

3.5.3 Associated specialized plot straight lines 

In theory, the two radial flow regimes can be analyzed using semi-log straight line 
techniques. The first defines the average permeability in the plane normal to the well, 
multiplied by the well penetration length. In practice, only the second regime, 
corresponding to horizontal flow from the producing interval, is seen. Semi-log analysis 
yields the permeability thickness product kH h of the producing zone and the total skin 
factor St.  

3.6 HORIZONTAL WELL 

Advances in drilling and completion technologies have placed horizontal wells among 
the techniques used to improve production performance. For example in the case of gas 
cap or bottom water drive, horizontal wells prevent coning without introducing the flow 
restriction seen in partial penetration wells. Horizontal drilling is also efficient to 
increase the well surface area for fluid withdrawal, thus improving the productivity. 
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3.6.1 Model description 

In this section, we consider first the pressure behavior of horizontal wells in 
homogeneous reservoirs with sealing upper and lower boundaries. As shown in Figure 
3.24 the well is strictly horizontal, the penetration half-length is L and zw defines the 
distance between the drain hole and the bottom-sealing boundary. The vertical part of 
the well is not perforated, there is no flow towards the end of the well and the well 
conductivity is infinite, kH and k~-are the horizontal and the vertical permeability. 

Characteristic flow regimes 

In an infinite system, the geometry of the flow lines towards a horizontal well produces 
a sequence of three typical regimes, as depicted in Figure 3.25. On the corresponding 
pressure and derivative response illustrated in Figure 3.26, three characteristic behaviors 
are displayed after the wellbore storage unit slope straight line: 

1. The first regime is radial flow in the vertical plane. On a log-log derivative plot, 
the wellbore storage hump is followed by a first stabilization. During this radial flow 

regime, the permeability-thickness product 2~/k~,k H L is defined with the average 

permeability in the vertical plane, and the well effective length 2L. 

2. When the sealing upper and lower limits are reached, a linear flow behavior is 
established. The derivative follows a half-unit slope log-log straight line. 

3. Later, the flow lines converge from all reservoir directions towards the well, 
producing a horizontal radial flow regime. The derivative stabilization corresponds to 
the infinite acting radial flow in the reservoir, the permeability-thickness product is kH 
h. 
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Figure 3.25. Flow geometry to an horizontal well. 

Extensions o f  the model  

In practice, the well geometry is not as simple as in the ideal configuration described on 
Figure 3.24. Most horizontal drain holes are not straight and parallel to the upper and 
lower boundaries, but show several oscillations over the formation thickness. 
Frequently, the skin is not uniform along the drain hole and in many cases the well does 
not produce on the complete length but in one or several segments. When the pressure 
gradient in the wellbore become large, the infinite conductivity hypothesis is not 
applicable and the horizontal well shows a finite conductivity behavior. 

10 
C3 

O. 

(1) 
~-- C3 

~ - o .  

m ~ 

_~ I0-I 
c- 
0"0 

c 

E 10-2 c~ 

~ f , ~ " ' , , ~ ~ t a b i  I iza2io n ~ s , ~  

. / 7 - - -  k. L 
~" C " kvkH 2L 

0.5 

kHh 

10 -2 10 -1 1 10 10 2 10 3 10 4 10 5 10 6 

Dimensionless time, tD/C D 
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The basic horizontal well model is presented in details Sections 3.6.1 to 3.6.7. 
Variations from the ideal horizontal well geometry are discussed in Section 3.6.9, 
fractured and multilateral horizontal well responses are described in Sections 3.6.10 and 
3.6.12. In Section 3.6.11, the influence of changes of reservoir properties in the 
horizontal or vertical directions, or change of fluid properties in the formation, are 
briefly reviewed. It is shown that when the basic horizontal well model depicted in 
Figure 3.24 is used to describe complex well or reservoir configurations, the effective 
well length and the average vertical permeability kz-resulting from analysis can be 
significantly in error. With complex wellbore conditions, k~, is frequently under- 
estimated whereas it can be over-estimated in layered systems with semi-permeable 
interbeds. 

Analytical solutions 

The first analytical solutions for uniform flux and infinite conductivity horizontal well 
responses have been derived in the mid 80's: Daviau et al. (1985), Clonts and Ramey 
(1986) and Rosa and Carvalho (1989) have used source and Green's functions whereas 
Goode and Thambynayagam (1987) and Kuchuk et al. (1991 a) obtained a solution by 
application of Laplace and Fourier transforms. With the infinite conductivity horizontal 
well model, the pressure is assumed constant along the wellbore. This is obtained by 
measuring the pressure of a uniform flux horizontal drain at an equivalent point in the 
well (Daviau, Clonts, Rosa), or by averaging the pressure along the length of the well 
(Goode, Kuchuk). The effect of pressure drop within the horizontal section, and the 
validity of the infinite conductivity assumption are discussed in Section 3.6.9. 

Horizontal well solutions are approximate. They are generated using the line-source 
solution, which is valid only when te)/r,,<: >25. For large negative skin, this condition is 
not satisfied at early time. Furthermore, when the anisotropy between vertical and 
horizontal permeability is large, small discrepancies can be observed between different 
horizontal well solutions. With the uniform flux distribution, the pressure is not uniform 
around the wellbore circumference, and the choice of the reference point on the 
wellbore can influence the result slightly. 

Dimensionless variables 

For a horizontal well with wellbore storage and skin, the dimensionless variables are 
defined with respect to the total formation thickness. Equation 2.3 gives the 
dimensionless pressure. 

In the case of permeability anisotropy between vertical and horizontal directions, an 
equivalent isotropic solution is used by introducing the anisotropy term kv/kH in the 
definition of the dimensionless vertical distances (see discussion of horizontal 
permeability anisotropy Section 3.1.5): when the vertical permeability kv is low, the 
apparent vertical distances are increased. The apparent open interval thickness ha and 
position of the horizontal drain hole with respect to the lower boundary of the zone zwa 
are defined respectively : 
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h a =hlkVkv (3.27) 

I k H  
Zwa = Zw k~/ (3.28) 

The circular section of the horizontal well is changed into an ellipse and the horizontal 
well behaves like a cylinder with the apparent larger equivalent radius rw~ of Equation 
3.6. With large anisotropy kv/kH, rwe can be 2 or 3 times larger than the actual wellbore 
radius and the resulting anisotropy skin San i clearly negative (see Table 3.1). 

Several skin coefficients are defined for horizontal wells" the mechanical infinitesimal 
skin S,,,, the anisotropy skin S,ni, the apparent skin during the vertical radial flow regime 
STy, the geometrical skin Sc and the total skin during the horizontal radial flow STH. The 
definitions of all skins are presented in detail in the subsequent sections. 

In the definition of the dimensionless terms, several well parameters can be used for the 
reference length, considering the wellbore radius r,, or, by analogy with wells 
intercepting a fracture of half-length xf (see Section 3.2, Equation 3.8), with the well 
half-length L. For the dimensionless time for example, tD can be expressed by Equation 
2.4 or by: 

0.000264k 
tDi ~ = At (3.29) 

~b,l, l C t L2 

No group of independent variables has been identified to provide a universal description 
of horizontal well responses, as it has been possible with most well models. Many 
authors use the ratio hD of the apparent thickness ha of Equation 3.27, by the well half 
length L, as a leading parameter of horizontal well behavior (similar to Equation 3.19): 

_ h__q< _/7 J kH (3.30) h> m 

L L I~ k v 

In the following examples, the wellbore radius rw is used in the dimensionless 
parameters definition. The dimensionless wellbore storage coefficient and the 
dimensionless time group t>/CD are given respectively in Equation 2.5 and 2.6. All 
examples presented below are generated with h = 100 ft and r,,, = 0.25 ft and the 
dimensionless pressure PD is presented versus the dimensionless time group tD/CD. 

The question of the reference in the definition of the dimensionless terms is further 
discussed in subsequent sections for the different skin parameters estimated on 
horizontal well responses. 
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3.6.2 Equations for the characteristic regimes 

In the following sections, the different limiting forms of the Kuchuk et al. (1991 a) 
solution are presented, and the different skin coefficients defined from horizontal well 
responses are described. 

Radial flow in the vertical plane 

During the vertical radial flow regime, the equation of the semi-log straight line is 
expressed (Kuchuk, 1995): 

162.6qB/~ I x/k~. kH At 

~,ld C l t'~, 
-3 .23+0 .87S , , -21og2~ /kH ~kv )j (3.31) 

The second logarithm of Equation 3.32 corresponds to the negative anisotropy skin San~ 
resulting flom the equivalent wellbore radius rw~, of Equation 3.6. The total skin factor 
STV measured from the early time radial flow analysis combines the wellbore 
mechanical skin factor S,,. and Sani. 

- sw +so, , , -  s,, -ln 
2 

(3.32) 

In the following text, it is assumed that the wellbore mechanical skin factor S,,.. is 
uniform along the well length. The influence of non-uniform damage is discussed in 
Section 3.6.9. 

Linear flow regime 

During the linear flow regime, the pressure changes as the square root of the elapsed 
time: 

8.128qB / / d A t  141.2qBlz 141.2qB/d 
- ~  ~ + S,,. + S (3.33) 

The first term of Equation 3.33 is similar to Equation 1.25 for a well intercepting a fully 
penetrating vertical fracture. With a horizontal well, the flow lines have to converge 
towards the well located at z,, in the formation thickness. This partial penetration effect 
produces a pressure drop, expressed with the skin &. During the linear flow regime, the 
two skin effects &, and Sz are additive. 
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Nz - - l  l511k-~v ~ l o g I - ~ ( l +  k k ~  )sin(Trzwl]h (3.34) 

Equation 3.34 is approximate and only valid when the length of the well is long 
compared to the apparent thickness (Equation 3.30, h D < 2.5 ). 

Pseudo-radial flow from the reservoir 

Using the well half-length L as the reference for semi-log analysis of horizontal radial 
flow, Kuchuk et al. define: 

~ [  ] 141.2qB/~ Ap = 162.6 qB~ log kHA~t 141.2qB/~ Sw + Sz r 
kHh ~b/zctL2 -2.53 + 2ffkvkH L k H h 

(3.35) 

where SzT, is : 

S,~,-S_,:-0.5 k H --:- h2 _1 . . . .  z w + z w 
kv L ~ 3 h 

(3.36) 

In practice, the efficiency of horizontal wells is frequently described by the total skin 
STH defined with reference to a fully penetrating vertical well of radius r,,. With the 
usual radial flow relationship, 

Ap - 1 6 2 6  qB/a [ l~ kHA~t ] 
k H h ~b~ct r2w - 3.23 + 0.87STH (3.37) 

the total skin factor ST~ combines the wellbore mechanical skin factor &,, and the 
geometrical skin So. Comparing Equations 3.35 and 3.37, 

h 
I "----~-~ Sw + S G 

_- h_h S w +SzT +1.151 0.70+21og--~ 
2L ~] k V 

(3.38) 

the horizontal well geometrical skin So is expressed as : 
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S G 0.81 In L 
_ _ ~ + S z T  

F W 

/ - - -  + -- 1oo 1 + sin 
,',,. k~. ~ L h  

-0 .5  k# h 2 __1 Zw + Zw 
k t . - S  3 h 

(3.39) 

In Equation 3.39, the term [0.81-In(L/r,,.)] is very close to the pseudo-skin of a 

fractured well (Equation 3.12) and S-y. (Equation 3.36) describes the pressure drop due 
to the convergence of the flow lines before reaching the well. This term disappears 
when hi) of Equation 3.30 is very small, for example in the case of a long well and high 
vertical permeability kz.. The geometrical skin S(; of horizontal wells is further discussed 
in Section 3.6.4. 

3.6.3 Derivative behavior 

Description 

Due to the complex behavior of pressure and derivative responses, no type curves are 
available for horizontal wells. The derivative log-log curve is used for the identification 
of the characteristic flow regimes, but the analysis is made by generating pressure and 
derivative responses with a computer or, when applicable, by using specialized plot 
straight lines. 

In the example of a horizontal well response of Figure 3.26, the last derivative 
stabilization (on the 0.5 line) corresponds to pseudo radial j low in the producing zone 
whereas the first stabilization describes the initial radia/flow in the vertical plane. The 
average perlneability in the vertical plane is defined as the geometric mean of k~,, and kH 

and the permeability thickness product is 2x/k~.k H L. In dimensionless terms, the level 

of the first stabilization is expressed with the dimensionless apparent thickness hz) : 

(APl stab )D -- 0"25/7/D -- 0 25 /7 [k H (3.40) 

When both the upper and the lower boundary have been reached, there is no vertical 
contribution to the flow any more, and expansion of the drainage volume becomes 
strictly horizontal. If the length of the well is significantly larger than the reservoir 
thickness, most of the production is due to linear flow in front of the horizontal drain, 
and the flow contribution from the two ends of the well are negligible. During this 
intermediate time linear flow regime, the derivative follows a half-unit slope straight 
line. 
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Figure 3.27. Horizontal well. Influence of L. Log-log scales, Pz) versus tp/Cz). 
Cz) =1000, Sw =5, kv/kH =0.004, rw =0.25ft, Zw/h =0.5, L =3000, 1500 and 500ft. 

Once the linear flow regime has started, horizontal wells behave like wells intercepting 
an infinite conductivity vertical fracture of half-length x/.= L (Section 3.2). The presence 
of an initial vertical radial flow regime before linear flow is simply seen as a skin on the 
equivalent fracture model (Equations 3.34 during linear flow and 3.39 during pseudo- 
radial flow). 

Influence of L and kv / ki~ 

With the tD/CD time scale, the location of the half unit slope straight line indicates the 
effective well half-length L. When L is doubled, the line is displaced by a factor of 4 
along the time scale and, as the first derivative stabilization is an inverse function of L, 

zX/!)lst stab. is twice as low (Figure 3.27). 

In the examples of Figures 3.28 and 3.29, three well lengths are considered but the 
permeability anisotropy kv /kH is adjusted in order to keep the same derivative 
stabilization during the vertical radial flow regime. With Figure 3.28, the vertical 
permeability kv is relatively large and (APlst ~tab.)D = 0.223 is below the radial flow 0.5 

line. In such cases, the horizontal drain produces a negative geometrical skin (See 
discussion of the geometrical skin Sections 3.6.4 and 3.7). 
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Figure 3.28. Horizontal well. Influence of L, (Apl~t s t a b ) D  = 0.223. C1) = 100, Sw =0, kv/kH =0.2, 
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Figure 3.29. Horizontal well. Influence of L, (Aplst stab)D =1. C'z)=100, &~=0, k~,/kH=O.O1, 
L =250ft; k~./kH =0.0025, L =500ft; k~./kH =0.000625, v=1000ft; h =100ft, rw =0.25ft, Zw/h =0.5. 

Conversely, when k~, is low, the first derivative stabilization is above 0.5 

((A/)lststab.)D = 1 on the examples Figure 3.29), and the horizontal well behavior tends 

to be equivalent to a well in partial penetration (Section 3.4). In the case of low vertical 
permeability, short horizontal wells exhibit a positive geometrical skin, and therefore an 
overall damaged well behavior. This is an important point and demonstrates that not all 
horizontal wells will increase productivity. 

10 
s 

C'~ 

The first vertical radial flow lasts until one of the upper or the lower boundary is 
reached. If the horizontal well is not centered in the zone thickness (z,,,/h ~ 0.5), a hemi- 
radial f low regime can develop when only the closest limit is seen. As long as the 
second sealing boundary is not reached, the shape of the derivative curve is similar to 
that of a vertical well near a sealing fault (Section 5.1). The second derivative 
stabilization is at a level twice the first (of Equation 3.40), as illustrated on the examples 
of Figure 3.30. 
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Figure 3.30. Horizontal well. Influence ofz~,. Log-log scales, PD versus tD/CD . 
Cz) =1000, Sw =2, L =1500ft, kv/kH =0.02, h =100ft, rw =0.25ft, zw/h =0.5, 0.25, 0.125. 



Horizontal well 91 

The influence of zw/h on horizontal well responses is further discussed next and in 
Section 3.6.6, with a semi-log plot of Figure 3.30 examples. 

3.6.4 Skin of horizontal  wells 

Since several distinct flow regimes are observed during horizontal well responses, 
several skin parameters can be defined to describe the different flow geometries, even 
though the infinitesimal skin damage &, is constant at the wellbore. Furthermore, since 
the skin factors are a dimensionless pressure drop, several references can be used to 
normalize the different Apsk~n. In the following, we summarize the influence of the well 
and reservoir parameters on the three skins usually estimated from analysis. We show 
that, in the presentation of the analysis results, the reference used to express the skin 
parameters must be clearly defined. 

Mechanical skin Sw 

As an extension of the total horizontal radial flow skin concept STH used in Equation 
3.37, the infinitesimal wellbore skin Sw is sometimes also defined with reference to a 
vertical well of radius rw and a permeability kH. The resulting skin parameter S'w does 
not define the completion quality as does Sw of Equations 3.31 and 3.32. 

h / kH S 
= o.sh sw : (3.41) 

Geometrical skin Sc 
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On Figures 3.31 and 3.32, the geometrical skin S(~ of Equation 3.39 is graphed versus 
log(L/r,,). With Figure 3.31, several hypothesis of permeability anisotropy k~,/kH are 
considered, assuming a constant formation thickness h/r,,,. When the vertical 
permeability is very large (k~.-~ oo), the partial penetration term S:T cancels out, and the 
negative geometrical skin S(~ is a linear function of log(L/r,,). When a vertical pressure 
drop is introduced as on the examples k~,/kH _<1, the geometrical skin is less negative, 
and the curves reach the infinite vertical permeability behavior only when the drain hole 
is very lono 

For a given permeability anisotropy k~,/kH, increasing the formation thickness h/r,,, also 
produces more partial penetration skin effect as shown on Figure 3.32. Again, when the 
horizontal well becomes very long, the adverse effect of the vertical pressure drops on 
the geometrical skin S<~ is reduced. Ozkan and Raghavan (1989) indicate that the late 
time response of horizontal wells tends to be equivalent to that of vertically fractured 
ones when h D _< 0.25. 

The dotted curves on Figures 3.31 and 3.32 show the geometrical skin when the well is 
not centered in the formation thickness. With z, /h =0.1, a small additional pressure 
drop is introduced on the response, and S(j is slightly less negative (see discussion of 
Figure 3.33 in Section 3.6.6). 

Total skin STn 

As shown on Equation 3.38, the total skin STU estimated on horizontal well responses 
combines the geometrical skin Sc~ of Equation 3.39 and the mechanical infinitesimal 
skin Sw normalized by hD (to give S'w of Equation 3.41). For long horizontal drain holes, 
hD is in general smaller than unity and the effect of a wellbore damage is reduced. The 
opposite effect is observed on partially penetrating wells, where a mechanical skin 
damage &,, is amplified in the total skin (Equation 3.17). 
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3.6.5 Matching procedure on pressure and derivative responses 

Frequently, horizontal well responses do not exhibit the three individual flow regimes. 
Horizontal wells involve large wellbore volume, therefore a large wellbore storage 
coefficient and the wellbore storage effect lasts in general longer than in vertical wells. 
For this reason, the first radial flow may be difficult to identify. The last derivative 
stabilization is not always present within a normal test duration: the linear flow 
transition, before pseudo-radial flow regime, can last several log cycles on the time 
scale. The log-log diagnostic indicates the different flow regimes present on the 
response, and which parameters, or groups of parameters, can be estimated and which 
are not defined. Manual log-log analysis is not appropriate with horizontal wells, the 
match is performed on a computer-generated response. 

When the complete sequence of flow regimes is identified on the derivative response, 
the early time unit slope straight line and the final stabilization are used to define the 
time and pressure matches, yielding the permeability-thickness product kHh from 
Equation 2.9 and the wellbore storage coefficient C from Equation 2.10. The 
intermediate time linear flow regime is used to estimate the effective well half-length L, 
by adjusting the match of the generated curve on the half unit slope straight line. kH and 
L being defined, the first derivative stabilization determines the permeability anisotropy 
kv/kH. The match of the pressure curve during the initial vertical radial flow regime 
gives the mechanical skin S,,, (or STy). The geometrical skin So, and therefore the total 
skin STH are defined from the estimated well and reservoir parameters (Equations 3.39). 
When the analysis is consistent, the theoretical pressure curve matches the data during 
the complete response. 

Frequently, some segments of the well do not produce and the effective length 2L 
resulting from analysis is smaller than the drilled length. In Section 3.6.9, it is shown in 
the discussion of Figures 3.37 and 3.38 that, when several sections opened to the flow 
are distributed along the complete drain hole, a good match is frequently obtained by 
assuming the total drilled length. Then, the estimated vertical permeability kv can be 
greatly under estimated. 

When the vertical radial flow regime is masked by wellbore storage, the permeability 
anisotropy kv/kH cannot be assessed. The late time data give the total skin STH but, since 
the geometrical skin So is not defined, &,, is not reliable. Different hypothesis of kv/kH 
can change &,, from negative to positive values. 

If the test data ends before the final derivative stabilization is reached, the horizontal 
permeability kH and the total skin STH are not fixed, but the half unit slope straight line 
gives k# L 2 (see Equation 3.33). In such case, the vertical permeability kv can be 
estimated from the vertical radial flow derivative stabilization, if present. Again, the 
permeability anisotropy kv/kH and the mechanical skin &,, are not accurately defined, 
but the error on &,, is in general small. 
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3.6.6 Associated specialized plot straight lines 

Four specialized analyses are possible, depending upon the type and the duration of the 
regimes defined by the derivative log-log plot. The wellbore storage analysis is the 
same as for vertical wells (Section 1.3.2). In the following section, straight-line analysis 
methods are presented for the vertical radial flow, linear flow and the horizontal pseudo 
radial flow regimes. 

Figure 3.33 is a semi-log plot of the Figure 3.30 examples for three different well 
locations z,~/h. When the well is centered (z, /h =0.5), the response exhibits two straight 
lines on semi-log scale and, as the permeability thickness product during the initial 
vertical radial flow is larger than kH 17, the first slope mvav is lower than the final straight 
line slope mHRF. When the well is off-centered, an intermediate time straight line of 
slope 2 mv~ can be observed during the hemi-radial flow in the vertical plane (curve z,,, 
/h =0.125). In such case, the final semi-log straight line is displaced upwards, because 
of the influence of_-,,/h on the geometrical skin Sc~ of Equation 3.39. A similar effect on 
late time semi-log straight lines can be observed in reservoirs with multiple boundaries 
(Figure 5.13 of Chapter 5 for example). 

Frequently, after wellbore storage, horizontal well responses only show transitional 
behaviors between the characteristic flow regimes, and no specialized analysis is 
possible. Furthermore, with build-up data, the Homer or multiple-rate superposition 
methods used on the specialized plots can distort the characteristic straight lines, as a 
result of the changes of flow behavior during the response (see Section 2.3.4). Except 
for the final horizontal radial flow regime, the straight-line methods presented in the 
following are seldom used. 
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Radial flow in the vertical plane 

During the first radial flow regime in the vertical plane, the equation of the semi-log 
straight line is expressed in Equation 3.31. The slope mve, F gives the product of average 

permeability in the vertical plane ~/kH k V , multiplied by the perforated half-length L: 

--x/kv k H L _ (3.42) 
mVRF 

When L and the permeability anisotropy kv/kH are known, the skin STy measured from 
the first semi-log straight line is used to estimate the infinitesimal skin S,~. From 
Equation 3.31, 

S w = 1.151[ p(lhr )-mvRFp(At = 0)_ log ~fkvkH 1(4 k~v +4k~H/ 3.23 l 
chact r2 + 2 1 ~  H ~ kv )+ 

(3.43) 

Provided the ~/k H k V L product is correctly estimated from mVR_F, the dependence of Sw 

on the anisotropy kv/kH and on the effective well half-length L are logarithmic. The 
calculation of the infinitesimal skin with Equation 3.43 is not very sensitive to an error 
on kv/kH or L (in Section 3.1.5, it is shown that San i is in general between 0 and - 1). 

When the nearest upper or lower sealing boundary is reached, the flow regime changes 
to hemi-radial flow and the response deviates from the semi-log slope mvav to follow a 
semi-log straight line of slope 2mvav. The time of intercept between the mvav and 2mvaF 
straight lines can be used to estimate the vertical permeability kv with a relationship 
similar to Equation 1.33 for a sealing fault (see section 5.1.3). Kuchuk et al. (1991 a) 
propose to use the time A/en d of end of the initial vertical radial flow (i.e. when the 
derivative deviates from the first stabilization, and not the mid point of the derivative 
transition as in section 5.1.1) with : 

(},l-let {2,2 2} k V = rain w, (h -  z w) (3.44) 
0.000264rcAte, d 

For a build-up analysis, the first straight line extrapolated pressure is not used, p* is 
estimated from the horizontal radial flow regime (Section 3.6.7). 

Linear flow regime 

This flow regime results of the influence of the two sealing upper and lower limits. As 
already mentioned, the horizontal well behaves like an infinite conductivity fractured 
well, but the linear flow regime can also be described as a boundary effect. In fact, by 
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rotating the horizontal well through 90 ~ the configuration is similar to a vertical well 
between two parallel sealing faults (Chapter 5.2). As opposed to a fractured well and 
channel responses, described by Figures 3.5 and 5.4 for example, none of the curves 
presented in Figures 3.26 to 3.30 present a long derivative half unit slope straight line. 
On horizontal well responses, the vertical radial and hemi-radial flow regimes dominate 
the early time data. Later, the transition between linear flow and the final pseudo radial 
flow regime is long, a flow contribution from the reservoir region at both ends of the 
well is felt a long time before the start of the final radial flow regime, and the pure 
linear flow regime is short lived. In order to see this characteristic regime, the distance 
between the two derivative stabilizations must be large. From Equation 3.40, it can be 
seen that the well length 2L must be very long compared to the apparent thickness h, of 
Equation 3.27 (small hz), Kuchuk et al., 1990). 

When the half unit slope derivative straight line is clearly established, the corresponding 
pressure points are analyzed on a plot of the pressure versus the square root of the 
elapsed time, as for a fractured well or a channel reservoir (see Sections 3.2 and 5.2). 
From Equation 3.33, the slope tnLF of the straight line gives kH L 2 " 

-) 

/ 1 L2 qB /,l 
kH = 16.52 mLF h ~bc, (3.45) 

The intercept p(0hr) of the linear flow straight line at time 0 can theoretically be used to 
estimate the infinitesimal skin &, (Kuchuk et al., 1990): 

S,~ = [p(0hr)-/)(At = 0)]+ 2.303 log 1 + sin (3.46) 
141.2qB,H 

Alternatively, when &, is known from previous vertical radial flow regime, z , / h  can be 
estimated from Equation 3.46 in the same way as, for channel reservoirs, the intercept 
p(0hr) defines the well location between the faults (see Section 5.2.5). It can be noted 
that the linear flow partial penetration skin effect S: of Equation 3.34 has the same form 
as the geometrical skin of channel reservoir (Equation 5.8), discussed in Section 5.2.5. 

Pseudo-radial flow from the reservoir 

The analysis of the pseudo-radial flow regime is identical to the semi-log analysis of a 
vertical well response (Equation 3.37). The straight line slope mnav gives the horizontal 
permeability thickness product kH h, the straight line intercept at 1 hour is used to 
estimate the total skin coefficient STn and, for a build-up periods, the extrapolation to 
infinite shut-in time gives p*. 

162.6qB/a 
kHh = (3.47) 

m H R F  
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STH -- 1.1511 p(lhr)-m~P(At = 0)_ log kH 1 qk/lclr2 w + 3.23 (3.48) 

Either the mechanical skin &,, or the geometrical skin Sc can be estimated from 
Equations 3.38 and 3.39. 

3.6.7 Build-up analysis 

On horizontal well responses, the flow geometry changes from early time to late time 
and three different characteristic regimes can be observed, as illustrated on previous 
derivative examples. For shut-in periods, the Homer and time superposition methods 
used for straight line and derivative analysis are based on the assumption that all 
superposed periods follow the same flow regime (see Section 2.2.2 and 2.3.4). In the 
case of complex responses, it is likely that the extrapolated periods follow different 
behaviors, and the multiple-rate superposition method is theoretically invalid. 

The resulting build-up derivative can be distorted (see discussion Figure 2.20 for 
example) but, since the log-log match of horizontal well responses is made on a 
computer generated multiple-rate pressure and derivative curves, the use of 
superposition time does not introduce error in the results. 

With straight-line methods, it is found in practice that unless the production time is very 
short and the well has been closed during the vertical radial flow regime, the 
superposition methods are applicable for all flow regimes. 

The semi-log superposition function can be used for radial flow analysis. As the 
producing time tp is generally significantly greater than At during the early time vertical 
radial flow regime, the Homer time can be simplified with 
log(t~ + At/At)~ log t p - log At (Equation 2.16), and the result becomes independent 

of the production history. On a Homer plot of horizontal well response, the first straight 

line gives the correct ~/kHk VL product with Equation 3.42. The first straight line 

extrapolated pressure is not used, the pressure at infinite shut-in time p* is estimated 
from the second straight line during the horizontal radial flow regime, if present. 

When the linear flow regime is clearly established, build-up responses can be analyzed 
with the Homer or multiple-rate superposition time corresponding to this flow regime 
(Equation 2.19). If the previous drawdown had reached the horizontal pseudo radial 
flow at time of shut-in, tp >> At then the method remains applicable. 
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Figure 3.34. Build-up test in a horizontal well. Log-log scales. 
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Figure 3.35. Build-up test in a horizontal well. Log-log scales. 

3.6.8 Field examples 

In Figures 3.34 and 3.35, two examples of horizontal well build-up tests are presented. 
For the example in Figure 3.34, the response describes the wellbore storage unit slope 
straight-line, followed successively by the characteristic derivative hump, a first 
derivative stabilization during the vertical radial flow, an increase of derivative near 10 
hours, and the final derivative stabilization during the horizontal radial flow. This well 
shows a usual horizontal well behavior similar to the responses in Figure 3.26, all 
reservoir and well parameters can be estimated. The geometrical skin of this horizontal 
well is negative. 

A completely different response is obtained on the 100 hours build-up example of 
Figure 3.35. After a short wellbore storage effect, the derivative stabilizes during the 
first hour, and later it declines slowly until the end of the build-up test. No final 
derivative stabilization is seen; the horizontal radial flow is not reached. The overall 
behavior is similar to the low kv examples of Figure 3.29: the geometrical skin is 
positive. Straight-line analysis of this horizontal well response is only applicable during 
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the vertical radialflow regime, to provide ~/k H k V L and Sw. When the data is matched 

against a computer-generated model, a relatively unique analysis is obtained. The 
mechanical skin Sw is negative (no derivative hump is seen before the stabilization). 

3.6.9 Discussion of the horizontal well model 

In the following, several variations of the basic horizontal well model are considered. 
With finite conductivity wells, or when the skin is non-uniform along the well length, 
and with partially open horizontal wells, a pressure gradient is introduced in the 
reservoir along the well length. These wellbore conditions can distort the pressure 

response, especially at early time, and produce an under estimated ~Jkvk H L product 

when they are ignored. In case of non-rectilinear wells, the response is affected at 
intermediate times, with little effect one the estimated parameters. 

Finite conductivity horizontal wells 

In the previous discussion, the horizontal drain is assumed to be of infinite conductivity. 
Frequently, highly productive horizontal wells are completed with small diameters and 
the pressure gradients along the well length cannot be neglected, particularly when the 
flow becomes turbulent. Several authors have considered the effect of pressure drop in 
the wellbore on horizontal well responses (Dikken, 1990; Ozkan et al., 1995; Ozkan and 
Raghavan, 1997). 

Using the same approach as Cinco et al. (1978 a) for finite conductivity fractured wells, 
Ozkan et al. express the pressure drop with an equivalent wellbore permeability in the 
case of laminar flow. The conductivity of the horizontal well is defined as an inverse 
function of the well length 2L. They describe the flux distribution along the wellbore as 
follows, for high and low conductivity wells: 
�9 When the pressure gradients in the wellbore are negligible compared to the pressure 
gradients in the reservoir, the well shows a high conductivity behavior. At early time, 
the flux distribution is uniform along the wellbore. When the flow tends towards the 
horizontal radial flow regime, the two ends of the horizontal drain are the most 
productive sections, and the flux profile along the well length is described by a U- 
shaped symmetric distribution, similar to the flux towards a well with an infinite 
conductivity fracture (Figure 3.13). 
�9 In the case of a low drawdown (such as when the reservoir permeability is high, the 
thickness small and the horizontal section long), when the wellbore radius is not large 
enough, the pressure drop in the wellbore can be comparable to the pressure drop in the 
reservoir. The well behavior deviates from the infinite conductivity response. Due to the 
pressure gradients in the low conductivity well, most of the fluid enters near the heel of  
the well, resulting in a distortion of the flux profile from the uniform or U-shaped 
distribution, into an asymmetric shape. 
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As for the finite conductivity fracture model of Cinco et al., the effect of a finite 
conductivity horizontal well is more pronounced at early times. The presence of high 
pressure gradients in the wellbore can distort the pressure response during the vertical 
radial flow and linear flow regimes, since the flow in the reservoir becomes three 
dimensional (with a component parallel to the well axis). For low conductivity 
horizontal wells, the derivative is above the vertical radial flow stabilization of Equation 
3.40. The effect of wellbore friction is the highest in non-damaged horizontal wells, and 
it tends to be reduced when the mechanical skin factor S,, is large (Ozkan and 
Raghavan, 1997). 

By neglecting wellbore hydraulics, the product 2x/kz,k H L can be underestimated by a 

factor of 3 or more, but the permeability-thickness product kH h should be accurately 
defined. In the analysis results, both the vertical permeability kv and the effective well 
half-length L are too low, whereas the estimated mechanical skin factor S,,, is too large. 

During the horizontal radial flow regime, the authors explain that the wellbore pressure 
gradients simply introduce an additional pressure drop and the response of a low 
conductivity horizontal well becomes similar to that of a damaged infinite conductivity 
horizontal well (with a less negative total skin &-H). 

Bourgeois et al. (1996 a) propose to approximate the effect of wellbore friction on the 
total skin SvH by a rate dependent skin effect similar to the non-Darcy skin of gas wells 
(Section 7.2.4). The total skin of Equation 3.38 is then changed into : 

STH = 2L ~] k V 

where Dq describes the friction skin during the horizontal radial flow regime. 

(3.49) 

Non-uniform mechanical skin 

Ozkan and Raghavan (1997) investigated the influence of a non-uniform mechanical 
skin on infinite conductivity horizontal well responses. They concluded that, in early 
time response, a change of skin damage along the well length tends to move the 
derivative above the vertical radial flow stabilization of Equation 3.40. During the 
horizontal radial flow regime, the derivative stabilization can be used to estimate the 
kHh product but the well productivity (or the total skin STH) is slightly influenced by the 
skin factor distribution. STU is more negative when the two ends of the horizontal drain 
are not damaged, and the mechanical skin is mostly located in the central section of the 
well. No damage at the heel and toe of the well improves the productivity because of 
the U-shaped flux profile discussed earlier for high conductivity horizontal drains. As 
described next, a similar conclusion is obtained with partially completed horizontal 
wells. 
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On Figure 3.36, three examples of non-uniform skin distributions are compared to the 
response of a well with a constant mechanical skin factor S., = 4. The well length is 
divided into four equal segments and each segment is affected by a skin factor &,,, such 
as the arithmetic mean of &,, is constant at 4. In one case, the skin is linearly decreasing 
from one end to the other and, in the two other cases, the damage is either located on the 
two external segments or on the central sections. The examples Figure 3.36 confirms 
that, when the ends are not damaged, the total skin of the well STH is slightly more 
negative than on the three other responses (STH =-6 .4  instead of-6.2).  The authors 
conclude that stimulation treatments of horizontal wells should preferably concentrate 
on the heel and the toe. 

Partially open horizontal wells 

Frequently, some sections of the horizontal drain are not contributing to the flow and 
the effective well half-length L estimated by analysis is smaller than the length of the 
drilled well. It is shown in the following that the pressure behavior of partially open 
horizontal wells depends not only upon the effective well half-length L, but also upon 
the number and the distribution of the open sections along the well-drilled length 
(Goode and Wilkinson, 1991; Kamal et al., 1993; Yildiz and Ozkan, 1994). 

On Figure 3.37, three different repartition examples of the productive segments are 
compared. For all completion scenarios, the same effective well half-length is assumed 
with Ld=I/4L of the total drilled length (the response corresponding to the fully open 
horizontal well is shown with the thin dotted curves). When only one section is 
producing, the response corresponds to a horizontal well with half-length Ld.(thin solid 
curves). 
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Whatever is the repartition of the open sections, only the total length of the producing 
intervals influences the response during the initial vertical radial flow. At early time, the 
pressure and derivative curves generated for several producing intervals shows the same 
behavior as the single producing interval with similar L4/. Later, when the distances 
between the open intervals are large, each segment acts as a horizontal well, and a 
horizontal radial flow geometry develops around the different producing sections. 
Kamal et al. (1993) showed that, during this intermediate time radial flow regime, the 
derivative stabilizes at 0.5 divided by the number of open segments. When only the heel 
and toe of the well are producing (thick dashed pressure and derivative curves), the 
derivative stabilizes at 0.25 and, when four segments are open to flow, it stabilizes at 
0.125 (thick solid curves). 

Once the interference effect of neighboring segments is felt, the intermediate radial flow 
regime changes into linear flow and the derivative response reaches that of a single 
horizontal drain hole whose length corresponds to the distance between the two ends of 
the external open segments. During the final horizontal radial flow, the total skin STH is 
slightly more negative when the open section is more distributed: with 4 segments, 
STH = -6.7 on Figure 3.37 whereas STH = -6.3 in case of two segments and STH = -5.4 
with only one segment. 

When analyzing the example with four segments of Figure 3.37, the horizontal 
permeability is defined from the final derivative stabilization. The half unit slope 
derivative straight line gives access to maximum external distance of the open 
segments, which is 4 times the effective well length in this example. By assuming that 
100% of the well length is producing with a single horizontal drain model, Kamal et al. 
(1993) noted that the vertical permeability value resulting from the vertical radial flow 
analysis of the first derivative stabilization is under estimated (by a factor of 16 in the 
example). 
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Figure 3.38. Partially open horizontal well. Influence of the penetration ratio. Log-log scales, DD 
versus tD/CD. CD = 100, 4 segments with Sw~ =0, ZLeff = L/8, L/4, L/2 and L, L =2000ft, h = 100fl, 
rw =0.25ft, Zw/h =0.5, kv/ki4 =0.1. 

Figure 3.38 shows the influence of the penetration ratio for a horizontal well with four 
uniformly distributed segments of equal length. The ratio of the total length of the open 
segments to the length of the drilled well is respectively 12.5, 25, 50 and 100%. As 
already observed on Figure 3.37, all derivative curves merge at late time, during linear 
and pseudo radial flow, on the fully penetrating horizontal well response. Before, the 
derivative is displaced upwards. In case of low penetration ratio such as on the example 
12.5%, the flow is three-dimensional  at early time (Yildiz and Ozkan, 1994) with a 
decreasing derivative trend. Assuming no mechanical skin damage, the total skin STH of 
the fully penetrating horizontal well of Figure 3.38 is STH =-7.9. With a penetration ratio 
of 50, 25 and 12.5%, STn is still very negative with respectively-7.4, -6.6 and-5.1. 

Yildiz and Ozkan (1994) presented a general selectively completed infinite conductivity 
horizontal well model. They observed that the rate profile and the pressure response are 
affected at early time by a non-uniform skin distribution between the productive 
segments and use of vertical radial flow analysis is not possible. They concluded that it 
is not possible to estimate length and distribution of the open interval from use of 
transient analysis. 

Non-rect i l inear  horizontal  wells 

Horizontal wells are in general not parallel to the top and bottom sealing interfaces. In 
Figure 3.39, two examples of non-rectilinear horizontal well responses are compared to 
the straight horizontal drain hole model. Two symmetric geometries are considered: half 
of the well length is either centered in the formation thickness (z,,, =0.5h) or close to 
upper or lower sealing boundary (zw =0.05h). The other half, distributed in two equal 
segments at the heel and toe, is close to a boundary in the first case (zw =0.05h), and 
centered in the other. The linear horizontal well, shown with a thin pressure and 
derivative curve, is located at the average distance with zw =0.275h. 
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Figure 3.39. Non-rectilinear horizontal well. Log-log scales, pj> versus tD/C/o. C/> =100, L =2000ft 
(500+1000+500). S,,, =0. t7 =100ft. t-,, =0.25fl. kz./kft =0.1. (z,, / h),=0.5 or 0.95 (average 0.725). 

When some segments of the horizontal well are closer to the upper or lower boundary, 
the vertical radial flow regime ends earlier than when the well is a single linear segment 
at the average vertical distance. The transition from the first derivative stabilization to 
the half unit slope straight line is slightly distorted but, as shown Figure 3.39, the three 
derivative responses are very similar. The pressure curves are not distinguishable (the 
total skin STH being slightly less negative when the two ends of the well are off- 
centered). 

3 . 6 . 1 0  F r a c t u r e d  h o r i z o n t a l  w e l l s  

When fracturing horizontal wells, the fracture direction with respect to the wellbore 
depends upon the orientation of the well compared to the least principal stress. If the 
well is drilled in the direction of the least stress, several vertical fractures transverse to 
the well may be created along the well length. When the well is perpendicular to the 
least stress, the fractures are parallel to the well. 

Soliman et al. (1990) presented an approximate analytical solution for horizontal wells 
in the direction of the least stress, with circular finite conductivity transverse fractures. 
Larsen and Hegre (1991) investigated both circular transverse, and rectangular 
longitudinal, finite conductivity fractures. They assume the horizontal wellbore is not 
perforated outside the fractured segments. 

With a transverse fracture, the flow at early time is linear from the formation to the 
fracture, and radial inside the fracture to the wellbore. Larsen and Hegre (1994 a) note 
that this radial-linear f low geometry is similar to that of transient double porosity 
reservoirs, slab matrix blocks with a semi-log straight line of slope half that of the radial 
flow in the fissure system (Section 4.1.3). With transverse fractures, the radial-linear 
flow regime is characterized by a semi-log straight line of slope maLv half that of the 
pure radial flow in the fracture. Therefore, the slope is only a function of the fracture 
conductivity kjw.f: 
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mRL F = 81.3 qB/a 
k f  wf  

(3.50) 

With a longitudinal fracture, a bilinear flow regime develops at early time, as for a 

vertical well intercepting a finite conductivity fracture. On a pressure versus f a t  plot, 

the slope ruBLE, similar to Equation 1.27, is a function of the fracture half-length xfalong 
the horizontal well direction. When the reservoir permeability kH is known, rnBLV also 
gives access to the fracture conductivity kjwf: 

mBL F = 44.11 qB/a (3.51 ) 
x f ~ 4 x / # a c t k H  

In the case of a single fracture, the radial-linear or bilinear flow regime is followed by 
the formation linear flow, and finally the pseudo-radial flow towards the horizontal 

well. During the linear flow regime, the slope roLE of the pressure versus ~ straight 
line can be used to estimate the fracture extension if the formation permeability is 
known. For a transverse circular fracture of radius rj, the authors express mLF as: 

mLF = 5.17 hrf qkctk H (3.52) 

For a rectangular fracture of horizontal extension 2xj; a relationship similar to Equation 
3.45 is obtained: 

f 

=4.06 qB [ /a mLF 
hx f ~ ~cfk H 

(3.53) 

On a log-log derivative plot, the sequence of characteristic straight lines is, after 
wellbore storage, 
1. first stabilization in case of transverse fracture (radial-linear flow) or quarter unit 
slope with longitudinal fracture (bilinear flow), 
2. half unit slope during formation linear flow 
3. final stabilization during formation pseudo radial flow. 

The fracture conductivity determines the location of the first derivative straight line 
(stabilization or 1/4 slope). For high conductivity fractures, the derivative response is 
low during the radial-linear or bilinear flow regimes, the corresponding early time 
straight line is moved down on the log-log scale, and the formation linear flow develops 
early. It is shown in Section 3.6.3 that for non-fractured horizontal wells, the linear flow 
1/2 slope defines the effective well length. In the case of fractured horizontal wells, it 
gives the horizontal extension of the fracture. With long fractures, the 1/2 slope 
derivative straight line is displaced towards late times. 
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For multi-fractured horizontal wells, the different fractures produce independently until 
interference effects between neighboring fractures are felt. Then, a compound linear 
flow develops before the final pseudo radial flow regime. 

At early time, if the independent fractures have similar characteristics, the response is 
directly proportional to the number of fractures and can be analyzed with a single 
fracture model by dividing the flow rate by the number of fractures (Larsen and Hegre, 
1994 a; Raghavan et al., 1997). Radial-linear (transverse fractures) or bilinear flow 
regimes (longitudinal fractures) can be analyzed on such multi-fractured horizontal well 
responses. Later, linear flow and pseudo radial flow around the different fracture 
segments (when the distance between the fractures is large) can also be identified. Once 
the interference between the fractures is felt, the response deviates like in the case of 
partially open horizontal wells presented in Section 3.6.9. The end of the compound 
linear flow regime, and start of the final pseudo radial flow, is independent of the 
number of fractures but depends only on the distance between the outermost fractures. 

3.6.11 Horizontal wells in reservoirs with changes of permeability 

In the following, it is shown that two types of reservoir heterogeneities affect the 
analysis results of horizontal well responses, even though the overall well behavior is 
apparently homogeneous. The influence of horizontal permeability anisotropy is first 
discussed. In layered reservoir, changes of permeability in the vertical direction can 
reduce the ability of vertical flow during the early time response. 

Horizontal permeability anisotropy 

With horizontal wells, it takes frequently a long time before the final horizontal radial 
flow regime is established. In the case of horizontal permeability anisotropy, the well 
response is sensitive to the well orientation (Goode and Thambynayagam, 1987; Kamal 
et al., 1993). 

With the three directions of permeability defined on Figure 3.40, the characteristic 
regimes of an horizontal well response are controlled by a different permeability: 

1. At early time, the average permeability during the vertical radial flow is ~[kzky J 

2. During the linear flow regime, only the permeability ky normal the well orientation 
is acting. 
3. The final horizontal radial flow regime defines the average horizontal permeability 

k H - ~kxk~ of Equation 3.3. 

When the isotropic horizontal permeability model is used for analysis, the vertical 
permeability kz is unchanged but the apparent effective half-length is: 
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Figure 3.40. Horizontal permeability anisotropy. 
Effective permeability during the three characteristic flow regimes towards a horizontal well. 

La - ~ k y / k x L  (3.54) 

Equation 3.54 shows that, if the horizontal well is in the minimum (maximum) 
permeability direction, apparent effective length increased (decreased). 

Horizontal wells in vertically heterogeneous reservoirs 

Even though the homogeneous reservoir model is currently used for many well test 
analysis, most reservoirs are stratified and permeability varies with depth. In most cases, 
variations of horizontal permeability with depth do not alter significantly the horizontal 
radial flow regime (see Section 4.2) but, as horizontal wells responses are also sensitive 
to vertical flow, the changes of vertical permeability over the producing thickness affect 
the response. 

In the following, the horizontal well model of Kuchuk and Habashy (1996) for a multi- 
layer reservoir with crossflow is used to evaluate the effect of vertical changes of kv. It 
is shown that when the heterogeneity between the different layers is moderate, the 
homogeneous reservoir model can be used to provide average permeability in both 
horizontal and vertical directions. Conversely, when horizontal wells are completed in 
formations with several interbeds of reduced permeability between the main layers, the 
single homogeneous layer model considered in the previous sections is not appropriate 
for accurate analysis (Suzuki and Nanba, 1991). Finally, as horizontal drilling is a 
common practice in reservoirs with a gas cap or lower water drive to prevent coning or 
cresting, the effect of a constant pressure upper or lower boundary is discussed. 

On the example Figure 3.41, the reservoir is described as a three-layer system. The 
horizontal well is centered in layer 2, layers properties are defined in Table 3.6. 

Table 3.6. Layered system of Figure 3.41 
Layer hi km kvi (kv / kH)~ 
1 30 15 1.2 0.08 

2 30 10 0.5 0.05 

3 40 8 0.24 0.03 
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Figure 3.41. Horizontal \yell in a three la,vers reservoir xvith crossflow. Log-log scales, Pz> versus 
tu Cl0. C/) =100. L =lO00ft. S, =0, h =lOOft (30+30+40), t",, =0.25ft, : ' , /h  =0.55, kHl,/'kH2=l.5, 
kn3/kH:=0.8. (kt/kn)l=O.08. (ki/kn):=O.05. (kt./ kn)3=O.03. 

The thin curves of Figure 3.41 describe the response of the same horizontal well in the 
equivalent homogeneous layer. The two model responses appear very similar, the use of 
the homogeneous layer approximation is acceptable. For a n layer system, the average 
horizontal permeability is defined (Section 4.2.5) as: 

kH = k,h, h, 
1 / 1 

(3.55) 

For the vertical flow, the changes of permeability are acting in series. The resulting 
average vertical permeability estimated during the vertical radial flow is defined with 
the average vertical permeability above, and below the horizontal drain. If the well is 
centered in layer j ' 

l-I 
h, + hj//2 

kv - 0 . 5  1 
J-1 

Z h,/k, + h /2k  
1 

h, + h j~2 

+ /+1 (3.56) 

h, /'k, + hJ //2kj 
j+l 

Equations 3.55 and 3.56 are applicable to the example Figure 3.41 with n=3 and j=2" 

kv  - 10.7 and k~. - 0.5(0.82 + 0 . 2 8 ) -  0.55. 

On Figure 3.42, a low permeability zone is inserted in the producing interval: the 
horizontal well is located in layer 3, below the semi-permeable wall (layer 2). The 
response shows first the vertical radial flow regime around the wellbore in layer 3 and, 
when both the bottom boundary and the low permeability interbed are reached, it tends 
to deviates into a linear flow regime as if layer 3 was isolated (the thin dashed curves 
describe the response of the horizontal well if layer 2 is sealing). Later, a crossflow is 
established through the semi-permeable wall and layer 1 participates to the production. 
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The derivative deviates below the half-unit slope straight line in a transition, and finally 
reaches the stabilization when the flow becomes horizontal pseudo-radial. 

A match of the stratified reservoir response with an equivalent homogeneous model is 
presented with the thin curves. The average horizontal permeability is defined by 
Equation 3.55. Due to the early deviation above the first derivative stabilization when 
the semi-permeable wall is reached, the effective well length used for this match is only 
55% of the true length. L being under estimated, the vertical permeability resulting from 
the vertical radial flow stabilization is too large (3.8 times the vertical permeability in 
layers 1 and 3, and 6.7 times the average vertical permeability of Equation 3.56). 

The presence of interbeds with very low kv, in a otherwise homogeneous reservoir, 
affects the shape of horizontal well response curves and consequently the productivity. 
On the stratified reservoir example Figure 3.42, the total skin STH of the horizontal well 
is STH =-6.48. In case of a non-rectilinear well with a segment of L/2 in layers 1 and 3, 
the total skin would be lower at STH =-6.53 and, without layer 2 (homogeneous 
reservoir) it is &H =-6.78. 

Kuchuk and Habashy (1996) use the layered reservoir model to describe the influence 
of a gas cap or bottom water drive on horizontal well responses. Since in the model 
boundaries between layers are horizontal planes, they assume that the interface between 
the fluids is not moving or distorted by cresting during the production. In the example 
of Figure 3.43, the horizontal well is located at the bottom of a layer overlaid by a gas 
cap. The sequence of regimes is vertical radial flow and hemi-radial flow until the gas 
interface is reached. Later, due to the large mobility and compressibility of the top gas 
region, the pressure tends to stabilize and shows the influence of a constant pressure 
boundary similar to the partial penetration example of Figure 3.21. If the thickness of 
the gas cap is not large enough, the response deviates from the constant pressure upper 
boundary behavior, and finally stabilizes to describe the total mobility of the oil and the 
gas zones. 
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Figure 3.42. Horizontal well close to a low permeability interbed. Log-log scales. CD =100, 
L =1000ft, Sw =0, h =100ft (45+5+50), rw =0.25ft, Zw/h =0.25, km=kHs=lO0 kH2, (kJkH)i=O.1. 



rh 

(D 
~._ n 

to O) 
(D > ..~ 

to ._>  
or) 

-E ~ 
O "o  "5 g 
r 
@ 

E 

10 

10-1 

1 0  -2 

1 0  .3 

10 a 
O_ 

- ' "  ............... h~.~...-_..20..ft 

I hgas V lOOft 

' ho'~ \ 500 ft 
10 -1 1 10 102 103 104 105 106 

Dimensionless time, to/C D 
Figure 3.43. Horizontal well in a reservoir with gas cap. Cz) =100. L =1000ft, S,,, =2, hoil=100ft, 
r,, =0.25ft. -,,//7oi1=0.2, (ki,/kit),=0.1, /Zgas/ho, I =0.2. 1 and 5. ,1-lgas//-loi I : 0 . 0  l ,  Ctgas/Ctoil = 10. 

Fleming et al. (1994) observed that many build-up tests from horizontal wells in a 
fissured reservoir with a large gas cap show several oscillations on the late time 
derivative response. They explain this phenomenon by the changes of saturation as the 
gas recedes during shut-in. The gas movement within the fracture network can be 
stepping, with intermittent liberation of gas pockets. Horizontal wells in double porosity 
reservoirs are further discussed in Section 4.1.4. In addition, multiphase reservoirs are 
presented in Chapter 8. 

3.6.12 Multilateral horizontal wells 

In single layer homogeneous reservoirs, the behavior of wells with multiple horizontal 
drain-holes follows a logic similar to partially open and multi-fractured horizontal 
wells, discussed in previous sections" 
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Figure 3.44. Multilateral horizontal well. Log-log scales, PD versus tD/CD . CD =100, L =1000ft 
(500+500 and 250+250+250+250), Swi =0, h =100ft, rw =0.25ft, k v / k #  =0. l, Zw/h =0.5. 
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�9 At early time, the different branches produce independently and, when the different 
drain-holes have the same skin, the behavior is equivalent to a single horizontal well 
with a total effective length defined as the sum of the lengths of all branches. 
�9 Later, the response deviates due to interference effects between the different 
horizontal sections. The flow geometry is a function of both horizontal and vertical 
distances between the branches, and orientation. An analytical simulator is required to 
properly interpret the well response. 
�9 Finally, pseudo radialflow towards the multilateral horizontal well can develop. 

On Figure 3.44, two examples of multilateral horizontal well responses are compared to 
the horizontal well of similar total length. The drain-hole sections are perpendicular 

with two and four branches (L and + shape). At intermediate time, the interference 
effects produce an increase of the pressure response, and the derivative deviates above 
the half unit slope straight line of the single drain horizontal well curve. No mechanical 
skin damage is assumed on the three curves. The total skin STH of the horizontal well is 
STH =-6.8 whereas for the multilateral well examples STH is respectively -6.6 and -6.2 

with the L and + geometries. 

For a given total effective length, increasing the number of intersecting branches does 
not improve the productivity of horizontal wells in reservoirs with isotropic horizontal 
permeability (Larsen, 1996 a; Salas et al., 1998). When the horizontal perforated 
segments do not intersect, Larsen shows that the total skin STH can be expressed as a 
function of the dimensionless distance rD between the segments, with a decreasing 
function of In rD. On the examples Figure 3.45 where the distance between the two 
producing segments is large enough, the response becomes independent of the 
orientation of the branches and the total skin of the two multilateral horizontal wells is 
STH=-7.1 (more negative than STH=-6.8 with one branch). The responses Figure 3.45 
tend to be equivalent to the example with two segments of Figure 3.37. 
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Figure 3.45. Multilateral horizontal well. Log-log scales. CD =100, L =1000ft (500+500), Swj =0, h 
=100ft, rw =0.25ft, kv/kH =0.1, zw/h =0.5. The distance between the 2 parallel branches is 2000ft, 
on the second example the intersection point is at 1000ft from the start of the 2 segments. 
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3.7 SKIN FACTORS 

3.7.1 Components of the total skin 

The different components contributing to the total skin Sr measured on well test 
responses are summarized on table 3.7 below. 

Table 3.7. Components of the total skin Sz 
Name Description Type 

S1,  I,' 

S~ 

hi 

&c 

D.q 

Infinitesimal skin at the wellbore. 

Geometrical skin due to the streamline curvature (fractured, partial 
penetration, slanted or horizontal wells). 

Skin factor due to the anisotropy of the reservoir permeability. 

Skin factor due to a change of reservoir mobility near the wellbore 
(permeability or fluid property, radial composite behavior). 

Skin factor due to the fissures in a double porosity reservoir. 

Turbulent or inertial effects on gas wells. 

Positive or 
negative 

Positive or 
negative 

Negative 

Positive or 
negative 

Negative 

Positive 

The geometrical skin &~ has been discussed in previous Sections for various well 
configurations. In the following, the relationship between &; and derivative curves is 
demonstrated by comparing three simple example responses. Negative skin produced by 
natural fissures is discussed in the double porosity Section 4.1.5, and turbulence effects 
are described in the gas well Chapter 7. 

3.7.2 Geometrical skin and derivative curves 

The magnitude of the geometrical skin is easy to visualize when the derivative response 
is considered. This can be illustrated by the theoretical response of three wells of radius 
r,,,, producing in the same homogeneous reservoir (Figure 3.46). Well A is a fully 
penetrating vertical well, well B is in partial penetration, and well C is a horizontal 
well. For the three wells, the infinitesimal skin S,, is set to 0. 
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Figure 3.46. Configuration of well A, B and C. 
A = fully penetrating vertical well, B = well in partial penetration and C = horizontal well. 
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Figure 3.47. Pressure and derivative responses of well A (vertical), B (partial penetration) and C 
(horizontal). Log-log scales, PD versus tD/CD. 

In Figure3.47, the derivative response of the vertical well shows the usual stabilization 
when the wellbore storage is over. In the case of partial penetration well B, a first 
derivative stabilization is seen during the radial flow in front of the perforated interval. 
The derivative response is above that of the vertical well until tD/CD =10 4, the area 
between the two curves is a measure of the positive geometrical skin. The larger this 
surface, the larger is the skin due to partial penetration. In terms of pressure response, 
the partial penetration curve B is above the curve for the vertical well. 

For the horizontal well C, the derivative response stabilizes at a low level during the 
vertical radial flow and the resulting geometrical skin is negative. The longer is the 
horizontal well, the larger is the area below the vertical well derivative response, and 
the more negative is the total skin. 
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Figure 3.48. Semi-log plot of Figure 3.47 examples. 

The influence of the geometrical skin on the pressure response of wells A, B and C is 
illustrated on semi-log scale Figure 3.48. 
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CHAPTER 4 

EFFECT OF RESERVOIR HETEROGENEITIES 

O N  W E L L  R E S P O N S E S  

Heterogeneous reservoir models have attracted a lot of attention in the last twenty years. 
The first solutions were presented in the 60's, but these only became commonly used 
much more recently. 

Reservoir heterogeneities are identified by variations in the pressure response. 
Sometimes the pressure data deviates from the homogeneous behavior only during the 
first minutes of the test period under investigation, in other cases it takes from several 
hours to several days before the heterogeneity becomes evident. The introduction of 
high accuracy pressure measurements and computerized log-log analysis technique 
explains today's recent use of heterogeneous interpretation models. In addition, the 
derivative of pressure exaggerates the characteristic features of the response. 

In this chapter, the different heterogeneous reservoir models used in well test analysis 
are discussed. It is assumed that the well is affected by wellbore storage and skin only, 
but other wellbore conditions presented in Chapter 3 can be encountered in 
heterogeneous formations. An infinite reservoir is considered; all outer boundary effects 
are presented in Chapter 5. 

The basic heterogeneous solutions assume two different behaviors are combined in the 
reservoir response. They are described as double porosity models (restricted or 
unrestricted interporosity flow), double permeability models and composite systems 
(radial or linear interfaces). These three basic models are thoroughly presented in this 
chapter. The influence of the different parameters is described, and the analysis of 
build-up tests in heterogeneous formations is discussed. 

For each model, the extension of the basic solution to a larger number of elementary 
behaviors is considered (multi-porosity systems for changing matrix blocks sizes, multi- 
layer systems and multi-composite formations). The double porosity matrix skin theory 
is also discussed in detail. In the final section of the Chapter, different combinations of 
heterogeneous solutions are presented for fissured-layered systems and composite 
fissured or layered formations. 
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4.1 FISSURED RESERVOIRS 

Among the different heterogeneous interpretation models, the double porosity solutions 
have been the most frequently discussed in the technical literature. They assume the 
existence of two porous regions within the formation. One region, of high conductivity, 
is called the fissures whereas the other, of lo~,' conductivity, is called the matrix blocks. 
As described in Figure 4.1, the concept of double porosity is representative of the 
behavior of fissured and multiple-layer formations, when the permeability contrast 
between layers is high (the "fissure system" describes the high permeability layers, and 
the "matrix blocks" the tight zones). 

The double-porosity model was first introduced by Barenblatt et al. in 1960: a low 
permeability porous system, the matrix blocks, is surrounded by a fissure network of 
high permeability. The matrix blocks are not producing to the well, but only to the 
fissures. Several variations of this model are available (Warren and Root, 1963; Odeh, 
1965; Kazemi, 1969 a; de Swaan, 1976; Najurieta, 1980; Streltsova, 1983) for refined 
descriptions of the heterogeneous response. In all cases, the fissure network provides 
the mobility, and the matrix blocks supply most of the storage capacity. A double 
porosity response depends upon the storativity contrast between the two reservoir 
components, and the quality of the communication between them. 

The basic assumptions used for the double porosity solutions are discussed in Section 
4.1.1. Two types of flow from matrix to fissures are considered, depending upon the 
presence of minerals in the fissure network that reduce the flow from matrix to the 
fissures. The restricted interpo/'osiO'flo~,, hypothesis, also called the Warren and Root 
model, or pseudo-steady state interporosity flow model, was first available for transient 
test analysis. This model is discussed in Section 4.1.2 for a well with wellbore storage 
and skin. The unrestricted interporosiO: Jlow hypothesis is then presented in Section 
4.1.3. 

In Section 4.1.4, double porosity,' behavior is discussed in case of flow regimes other 
than radial flow, and extensions of the model to matrix skin and to multiple block size 
are considered. The double porosity models have also been extended to different well 
conditions presented in Chapter 4 (House et al., 1998, for infinite conductivity fracture; 
Cinco-Ley and Menh, 1988, for finite conductivity fracture and, for horizontal well, 
Carvalho and Rosa, 1988; Aguilera and Ng, 1991; Du. and Stewart, 1992). The effect of 
a sealing fault (Khachatoorian et al., 1995) and other reservoir boundaries are reviewed 
in Chapter 5. 

Matrix 

Fissure 

Vug 

Figure 4.1. Example of double porosity reservoir, fissured and multiple-layer formations. 
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4.1.1 Double porosity models 

Fissured reservoirs are complex. The density of the fissure network can vary with 
position in the reservoir, as a function of the rock stresses due to curvature of the 
formation. The orientation of the fissures can induce permeability anisotropy. The 
mathematical models for fissured reservoirs use a simplified description of the 
heterogeneous system. The parameters resulting from the interpretation define the 
idealized model, but they do not describe the geological configuration in detail. In the 
following, we summarize the different assumptions used in the equations for the 
models, and present the resulting dimensionless variables. 

Basic assumptions 

1 - The dimensions of the matrix blocks are small compared to the reservoir volume 
involved in the test. Each point in the reservoir is associated with two pressures, namely 
pfthe pressure of the fluid in the fissures, and Pro, the pressure of the fluid in the matrix 
pore volume. 

2 - The fluid flows to the well through the fissure system only; the matrix blocks are not 
connected (or the radial permeability of the matrix system is negligible, k,,, ra~. = 0). The 
isolated matrix blocks are described as source terms in the fissure element, and the 
mobility measured during the test corresponds to the fissure system alone. 

3 - Most of the reservoir fluid is stored in the matrix blocks porosity, the storage of the 
fissure network is only a small fraction of the reservoir storage. 

4 - Three matrix block geometries are usually considered, depending upon the number n 
of fissure plane directions. 

For n = 3, the matrix blocks are cubes (spheres are also described with three directions 
of fissure planes) but n = 2 (cylinder matrix blocks) and n = 1 (slab matrix blocks) can 
also be envisaged. 

5 - Two different types of matrix to fissure flow have been considered: 

In the first solution, as described by Barenblatt et al. in 1960, it is assumed that the flow 
of fluid from blocks to fissures occurs under pseudo-steady state conditions. The model 
was extended in the present form by Warren and Root (1963). Moench (1984) and 
Cinco-Ley et al. (1985) demonstrated later that it describes a restricted interporosity 
flow condition, when there is a skin effect between the matrix and the fissures, making 
the pressure gradient in the matrix blocks negligible. 

The second type of interporosity flow described by several authors (Kazemi, 1969 a; de 
Swaan, 1976; Najurieta, 1980; Streltsova, 1983), considers transient flow in the matrix 
blocks. There is no flow restriction at the matrix - fissure interface, and the matrix 
blocks response starts earlier. 
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6 - In the double porosity models, all matrix blocks are homogeneous, and they have the 
same size. Other multiple porosity solutions consider different matrix block sizes, either 
uniformly distributed in the reservoir, or organized according to several possible 
geometries. They are discussed in Section 4.1.4 and 4.4. 

Behavior 

When a well is opened in a fissured reservoir, a rapid pressure response occurs in the 
fissure network due to its high diffusivity. A pressure difference is created between 
matrix and fissure, and the matrix blocks start to produce into the fissures. The pressure 
of the matrix blocks p,,, decreases as flow progresses and, finally, tends to equalize with 
the pressure of the surrounding fissures/)1. 

Definitions 

In the permeability thickness product kh, an equivalent permeability is used. From 
condition 1, the fissure system is assumed to be uniformly distributed in all the reservoir 
thickness but, in practice, the fissures involve only a fl-action of the pay zone thickness 
17. The equivalent distributed perineability (bulkjissure permeability) k fis a function not 
only of the actual fissures thickness and intrinsic permeability, but also of the fissure 
network characteristics (such as tortuosity and fissure connectivity when material 
separates individual fractures). 

k h -  k lh  I (4.1) 

Two porosities are defined in double porosity systems. We call 95j and ~b,,, the ratio of 
pore volume in the fissures (or in the matrix), to the total volume of the fissures (of the 
matrix). ~ is the ratio of the total volume of the fissures to the reservoir volume, and V,,, 
that of the total volume of the blocks to the reservoir volume ( ~  + Vm = 1). The average 
reservoir porosity ~b is given by: 

- #.iG + #~v~ (4.2) 

In fissured formations, both ~bj and V,,, are close to 1. The average porosity of Equation 
4.2 can be simplified as: 

95- Vy +95 m (4.3) 

Frequently, V/is called the fissure porosity. 

The storativity ratio co expresses the contrast between the two porous systems" 
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(r 
(4.4) 

co defines the contribution of the fissure system to the total storativity. Usual values for 
co are in the order of 10 ~ for multiple-layer systems down to 10 -2 or 10 -3 for fissured 
formations" the fissures provide only a fraction of the total storativity. 

In case of multiple-layer systems, matrix blocks and fissures are represented by 
horizontal slabs, hm and hf being the cumulative thickness of the "matrix" and the 
"fissure" layers, the volume ratios of Equation 4.2 are ~.= h f / ( h f +  hm) and Vm = h m / ( h i  
+ hm). In Equation 4.1, the equivalent permeability is expressed as k = kf Vj. 

A second heterogeneous parameter, called interporosity flow coefficient 2, is used to 
describe the ability of the matrix blocks to f low into the fissures, d., as expressed by 
Warren and Root (1963), is a function of the matrix blocks geometry and permeability 
G. 

2 km (4.5) 
2 = a r w  k 

where a is related to the geometry of the fissure network. It is a function of the number 
n of families of fissure planes: 

n(~ + 2) 
a - ~  (4.6) 

r,, 

r,, is the characteristic size of the matrix blocks. It is defined as the ratio of the volume 
V of the matrix blocks, to the surface area A of the blocks with: 

V 
r m = n - -  (4.7) 

A 

If the matrix blocks are spheres (of radius rm) or cubes (of side 2rm), n=3, and c~ is 
expressed: 

15 
a = - -  (4.8) 

For n = 2, the matrix blocks are cylindrical of radius rm, and: 

8 
2 

r m 

(4.9) 
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for n = 1, the matrix blocks are slabs of thickness 2r,,,, and c~ is" 

a -  ~ (4.10) 
r m 

2 defines the communication between the matrix blocks and the fissures. When 2 is 
small, the fluid transfer from matrix to fissure is difficult, and it takes a long time before 
the double porosity model behaves like the equivalent homogeneous total system. Such 
behavior is obtained for example, when the matrix is tight, and the permeability k,,, is 
small. Low density of fissures is another example of poor matrix communication: the 
characteristic block size r,,, is large, and c~ is small. Usual values for 2 are in the range of 
10 -4 to 10 -l~ 

In the definition of A Equation 4.5, the matrix skin is not considered. In case of 
restricted interporosity flow, 2 does not describe completely the matrix flow condition 
and an effective interporosityJlow parameter 2elf should be used (Equation 4.39 of 
Section 4.1.4). 

Dimensionless variables 

The definition of the dimensionless pressure is the same as for homogeneous reservoirs 
(Equation 2.3). The reference thickness corresponds to the total zone, and the 
permeability is the equivalent permeability k introduced in Equation 4.1' 

kh 
PD = Ap (2.3) 

141.2qB/r 

The porosity is included in the definitions of the dimensionless time Equation 2.4 and 
the dimensionless wellbore storage of Equation 2.5. Depending upon the reference 
selected, two definitions of these dimensionless parameters are used. 

When the dimensionless time is expressed with the fissure system permeability and 
storativity, tDf is: 

0.000264k 
- ; < s  

At (4.11) 

When the reference is the total system, the dimensionless time tD/-,,, is" 

0.000264k 
= At (4.12) 
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For the dimensionless wellbore storage coefficient, the two definitions of the storativity 
give respectively: 

0.8936C 

-- ( vo,)j 
(4.13) 

0.8936C 
Ct2f+~ (~bVct)./+mhr2w (4.14) 

CO correlates the definitions of dimensionless time and wellbore storage: 

tDf +m = COtDf (4.15) 

CDU+m = COCDj. (4.16) 

4.1.2 Double porosity behavior, restricted interporosity flow model (Wellbore 
storage and skin ) 

In 1963, Warren and Root presented the double porosity solution described in this 
section. The flow from matrix blocks to the fissures is assumed to be pseudo-steady 
state regime. 

In the original Warren and Root model, no wellbore storage effect was considered. It 
was introduced by Mayor and Cinco-Ley in 1979 and, Bourdet and Gringarten (1980) 
presented a pressure type-curve expressed in terms of independent variables (Figure 
4.2), extended on Figure 4.6 to the derivative approach (Bourdet et al, 1983 b, 1989). 

Moench demonstrated in 1984 that the apparent pseudo-steady state flow regime in the 
matrix blocks is the result of damage at the surface of the blocks. The fissures are 
partially plugged by mineral deposition or by chemical precipitation, but they include 
some channels allowing the fluid to flow towards the well. The matrix feed the 
channels, but the flow first has to cross the thin low permeability deposit layer on the 
walls of the fissures. 

The matrix skin theory (also called interporosity skin) provides a link between the 
pseudo-steady state matrix flow condition discussed here and the transient interporosity 
solution presented in Section 4.1.3: the different mathematical approaches describe two 
limiting cases of the same reservoir configuration. The influence of the matrix skin S,~ is 
further discussed in Section 4.1.4 of this chapter. It is shown that, for large interporosity 
skin S,,, the pseudo-steady state hypothesis of Warren and Root's (1963) is a realistic 
approximation of the matrix flow condition (Moench, 1984; Cinco-Ley et al., 1985; 
Stewart and Ascharsobbi, 1988). 
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In the following section, we assume strictly pseudo-steady state matrix flow: the 
corresponding restricted interporosity flow model provides an effective interporosity 
flow parameter ~eff given in Equation 4.39, and not 2 of Equation 4.5. (note that the 
effective interporosity flow parameter 2ere is called 2 for purpose of conciseness). 

Behavior 

With restricted interporosity flow, three different regimes can be observed on a 
producing well response: 
1. First a JTssureflow, when the matrix contribution is negligible. This corresponds to 
a homogeneous behavior, where only the fissure system is producing. 
2. At intermediate times, during a transition regime, the response deviates from the 
fissure homogeneous behavior as the matrix blocks start to produce into the fissures. 
The pressure tends to stabilize to a constant value. 
3. Later, the pressure of the matrix blocks equalizes with the pressure of the 
surrounding fissures. A new homogeneous behavior is reached, called the total system 
flow regime. 

All the fluid flows to the wellbore through the fissures alone: the two homogeneous 
behaviors are characterized by the permeability thickness product kh of the fissure 
system (Equation 4.1). The first homogeneous regime corresponds to the fissure 
storativity, whereas the second involves the total storativity of Equation 4.2. The 
transition between the two homogeneous behaviors describes an increase of storativity 
(see also Sections 4.3.2 and 10.2.2), the pore volume of the fissures being a small 
fraction of the total. 

During the two homogeneous regimes, the pressure response can exhibit a straight-line 
behavior on semi-log scale. The first straight line corresponding to fissure flow, the 
second to the total system regime. The permeability thickness kh being the same during 
the two homogeneous regimes, the lines are parallel (Figure 4.4). 

More frequently, tests in fissured reservoirs do not show the characteristic "two parallel 
semi-log straight lines": either the first line is masked by wellbore storage effect, or the 
test period is too short to show the second. Many examples of analysis with double 
porosity type curves show that the occurrence of parallel semi-log straight lines is in 
fact exceptional. Furthermore, the characteristic features of double porosity responses 
can be identified in other regimes than the infinite acting radial flow (see discussion 
Section 4.1.4). 

Pressure type-curve 

The Bourdet and Gringarten type-curve of Figure 4.2 (1980) describes drawdown 
responses for a well in a reservoir with double porosity behavior, restricted interporosity 
matrix to fissure flow. The well can be damaged (positive skin) or stimulated (using the 
equivalent wellbore radius concept) and it is affected by a constant wellbore storage 
effect. 
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Figure 4.2. Pressure type-curve for a well with wellbore storage and skin in a double porosity 
reservoir, pseudo steady state interporosity flow. Log-log scales, Pro versus tJCD. 

Independent variables 

On the type-curve of Figure 4.2, the same groups of independent variables as on 
homogeneous reservoir type-curve (Figure 2.2) are used. The dimensionless pressure p~ 
of Equation 2.3 is expressed versus the dimensionless time group tJCD: 

t__DD = tD = tDf+,________2_, =O.OOO295kh A t  (4.17) 
C D CDj Cz)j.+, , /a C 

The pressure match and the time match are independent of the storativity. On a log-log 
plot, the same match point describes the two homogeneous regimes, fissure and total 
system flow. 

Three curves are needed to define the different regimes of a double porosity response. 
The corresponding independent parameters are" 

1 - (CD e2S)f at early time, duringfissureflow 

CDe2S)/. = 0.8936Ce2S 

�9 (~Vo,)jh d 
(4.18) 

2 - Ae -2s during transition regime, between the two homogeneous behaviors 

3 - (CD e2S)f+,, at late time, when total systemflow behavior is reached 



124 Reservoir heterogeneities 

C 2 5 ' )  _ 0.8936Ce2"~' 
l + , , ,  - (4.19) 

Description 

On the pressure type-curve of Figure 4.2, two families of curves are superimposed: the 
Cs_~ e z'v curves describe the fissure and the total system homogeneous regimes, the dashed 

2e -zv curves describe the transition. 

From the definition of the Cto e > parameter (Equations 4.18 and 4.19), a double porosity 
response goes from a high value (Cs~ e>)l when the storativity corresponds to fissures, to 
a lower value (Cs~ 2s e )1-,,, when total system is acting. 

The type-curve of Figure 4.2 describes the components of a double porosity response, 
not the actual curve. For illustration, two examples of double porosity responses are 
presented on the type curve Figure 4.3. With example A, the response follows first the 
fissure homogeneous curve (Q)e>)l =1, then a transition on 2,e -zv =3x10 -4 and finally it 
reaches the total system homogeneous behavior on (Qo e)/>,,,2"v = 10 ~. 

On the pressure type-curve, the limit "approximate start of the semi-log straight line" is 
shown by a dashed line. Figure 4.3 indicates that example A shows a semi-log straight 
line during each of the two homogeneous behaviors as illustrated on the semi-log plot 
Figure 4.4. The two semi-log straight lines are parallel. 
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Figure 4.3. Examples for a xvell with wellbore storage and skin in a double porosity reservoir, 
pseudo steady state interporosity flow. Log-log scales, PD versus tD/CD. 
A �9 ( C  D e2S) j  �9 = 1, (CD e2S)f+m = 0 .1 ,  03 = 0 . 1 ,  , ,~-2s = 3 x 10 -4. 

B (C> e2S)f = 10 s, (CD e2S)f+,,, = 104 , co = 0.1, ,,re -es = 10 -7. 
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Figure 4.4. Semi-log plot of Figure 4.3 examples. 

On example B, the pressure response goes from (CD e2S)l =105 tO(CDe2s)f+m =104 
through a transition on 2e 4s =10 -7. When the fissure regime ends, the storage effect is 
still present: response B shows only one semi-log straight line, during the second 
homogeneous regime when the total system is acting (Figure 4.4). 

Pressure type-curve analysis 

As for the homogeneous reservoir type-curve of Figure 2.2, analysis with the double 
porosity type-curves of Figure 4.2, yields: 

1. the permeability thickness product kh from the pressure match, 

kh=141.2AqB.(PM) (2.9) 

2. the wellbore storage coefficient C from the time match, 

: 0  (2.10) 

3. the skin factor S from one of the two homogeneous curves. In general, the total 
system regime is used: 

(c 2s) 
S 0.51n De /+m - �9 (4.20) 

CDf +m 

The two heterogeneous parameters are estimated from the curve match. 

4. comparing the two CD e 2x values gives the storativity ratio co" 



126 Reservoir heterogeneities 

(c 2s) 
D e ./+m 

D e ! 

(4.21) 

5. during transition, the ,ge -> curve describing the pressure stabilization defines the 
interporosity flow parameter. 

,~ - (/te-2s)e 2S (4.22) 

Frequently, the transition between the two homogeneous C'1~ e 2S curves is too short to 
reach a stabilized pressure behavior. The choice of the 2e -:s curve is then defined on the 
middle point of the transition. 

Derivative type-curve 

The two double porosib' examples A and B are presented on Figure 4.5 with the 
pressure and derivative. During the fissure flow, this homogeneous regime is described 
on the derivative response by a C1~ e 2x curve and, when semi-log radial flow is reached, 
the derivative stabilizes on 0.5 in dimensionless terms. At transition time, the flattening 
of the pressure curve is changed into an obvious valley on the derivative response. 
Later, the derivative returns to the 0.5 stabilization during the total system equivalent 
homogeneous behavior�9 

�9 With example A, the wellbore storage effect ends during fissure regime, and a first 
radial flow is seen before the start of transition. Two parallel semi-log straight lines are 
present on the semi-log plot Figure 4.4. On Figure 4.5, the derivative reaches the 0.5 
line, both before and after the transition valley. 
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skin in a double porosity reservoir, pseudo steady state interporosity flow. Log-log scales�9 
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�9 With example B, storage is still present when the transition starts: the semi-log 
curve of Figure 4.4 shows only one straight line, during total system flow. On Figure 
4.5, the derivative response goes directly from the wellbore storage hump to the 
transition valley, and the first 0.5 plateau is not seen. 

The two examples of Figure 4.5 illustrate that, as opposed to the log-log pressure 
curves, the derivative emphasizes the small variations of behavior characterizing double 
porosity responses. The pressure and derivative type curve for a well with wellbore 
storage and skin in a double porosity reservoir, restricted interporosity flow, is 
presented Figure 4.6 (Bourdet et al., 1983 b). 

Description 

With the pressure type curve of Figure 4.2, a double porosity response is defined by 
three components: (CDeZS)I; 2ce -2S and (CDe2s)t.+ m. On the type curve Figure 4.6, the 
derivative requires four components: the (CDe2S)fcurve and the 0.5 line are used for the 
homogeneous behaviors but, at transition time, two other curves are needed. 

After wellbore storage, the derivative valley during transition can be expressed as: 

I I co(1 - co) C D (1- c o ) C  D 
P'D (to/CD)= 0.5 l+e -e (4.23) 
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Figure 4.6. Pressure and derivative type-curve for a well with wellbore storage and skin in a 
double porosity reservoir, pseudo steady state interporosity flow. Log-log scales, El) versus tD/CD. 
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The early transition curve, corresponding to the decreasing derivative trend, is labeled 
(,ZC,:)j+,,,)/[o)(1-(o)] on Figure 4.6. When the derivative returns to 0.5, the late 

transition curve is defined with the {,gC1)/+,, )/(1- co) group. 

With the example B of Figure 4.5, the transition starts when the response is still under 
the influence of wellbore storage and the double porosity curve deviates from the early 
transition curve (2Clg)/[(o(1-co)] (at 1.1 lx10-2). Storage being over at late transition 

times, the example matches on the (RC /) )/(1- co) curve (1.1 lx104). 

Matching procedure with the pressure and derivative type curve 

As for the type-curve for homogeneous system with storage and skin, the derivative 
straight lines are used to select the match point on the type-curve Figure 4.6: the unit 
slope line during wellbore storage, and the 0.5 line during radial flow. From the 
pressure and time matches, kh and C are estimated (Equations 2.9 and 2.10). 

A type-curve match is defined by six components curves: three components for the 
pressure response [(CD e>)l, 2e ->' and (Cjo e2S)/_,,,], and three derivative curves (CD e2S)./; 

(2CDf+m)//[O)(1- CO)] and (2CDj+, , )//(1- co). 

The match is adjusted by trial and errors, until consistency is achieved between pressure 
and derivative results: 

�9 A first check is made on the early time fissure flow analysis" the (CD e2X)/parameter 
of the pressure and derivative curves must be the same. 

(CDe2S)./PRESSUR E = (CDe25 )/ DERIVATIVE 

�9 The storativity ratio is estimated from the two transition curves of the derivative 
match. It is compared to co found with Equation 4.21. 

co = late transition/early transition 

_ 2CD / 2CD 
- 

(4.24) 

�9 The interporosity flow parameter is preferably calculated from the late transition 
curve. It has to be in agreement with 2 estimated from pressure response (Equation 
4.22). 

2CDf +m O-co) ,r = (4.25) 
(1--O9) CDf +m 
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In general, double porosity responses do not follow perfectly the component curves, 
except for short periods of time: the responses show transitional behavior between one 
component curve to the next. Matching on the pressure and derivative type-curve of 
Figure 4.6 is performed by interpolation between component curves, and frequently 
reiterations are needed before the final solution is reached. With some experience, the 
adjustment converges quickly, and no more than two or three tentative are necessary. 

Discussion of double-porosity parameters 

In this section, we describe the influence of the two heterogeneous parameters co and it 
on log-log and semi-log curves. This shows how the shape of a double porosity 
response curve can be adjusted on actual data, when the match is made by computer. 

I~fl~nce of co 

The storativity ratio defines the contrast between the fissure regime and the total system 
regime. It relates the two homogeneous pressure curves (C> 2s e )1. and (CD e2S)l+,,. With 

small co values, the two curves are very different and, on pressure curves, the transition 
regime from (CD e2S)rto (C> e2S)f+m is long and fiat. 

Figure 4.7 and 4.8 presents on log-log and semi-log scales three examples of curves 
generated for different values of co (10 -1, 10 .2 and 10-3), Cnf+m, S and it being the same. 

On the derivative responses of Figure 4.7, the depth of the characteristic valley is a 
function of the transition duration. For small co values, long transition regimes 
correspond to deep valleys on derivative. The minimum of the valley is given, from 
Equation 4.23, by: 
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10 8 

1 - (o  1-(o (4.26) 

For a given total system curve (Ce)e- )1 ,,,, a decrease of" co value produces an increase of 
the fissure curve parameter (Ce_)e- )/. On the semi-log plot Figure 4.8, the first semi-log 
straight line is displaced upwards, the horizontal transition between the two parallel 
lines is longer. 

Influence of 2 

The interporosity flow parameter defines the ability of the matrix blocks to produce into 
the fissure system. The previous example Figures 4.7 and 4.8 are generated for the same 
value of 2: as shown by the log-log and semi-log curves, 2 determines the time o f  end of 
the transition, and the start of the equivalent homogeneous total system flow regime. 
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Figure 4.10. Influence of 2 on semi-log plot of the Figure 4.9 examples. 

On Figures 4.9 and 4.10, the three curves are generated for 2 =10 -6, 10 -7 and 10 -8. The 
smaller is 2, the later the start of total system flow. On the pressure curves, the 
transition regime occurs at a higher amplitude and, on the derivative responses, the 
transition valley is displaced towards late times. 

Associated specialized plot straight lines 

Once the match is defined, the different flow regimes are identified, and specialized 
analysis can be carried out on selected time intervals. 

Wellbore storage analysis 

A Cartesian scale is used for wellbore storage analysis (Section 1.2.2): the slope of the 
early time straight line gives, by Equation 1.10, an estimate of the wellbore storage 
coefficient. 

As for homogeneous reservoirs discussed in Chapter 3, wellbore storage analysis in 
fissured formations is in general feasible only on damaged wells, when data points 
match the unit slope log-log straight line. 

Radial flow analysis 

On semi-log scale, the presence of two parallel straight lines has been considered as the 
characteristic feature of double porosity responses (Figure 4.4, example A). In fact, 
experience shows that this configuration is exceptional, the wellbore storage effect 
frequently masks the first semi-log straight line during fissure flow (Figure 4.4, example 
B). When the first line is present, the fissure flow regime lasts a relatively long period, 
and the test often stops before the second radial flow regime is reached. 
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Even when the first semi-log straight line is not present, a semi-log plot exhibits a 
characteristic "S" shape (Figures 4.4, example B and 4.10, high ,g value), indicating a 
heterogeneous response. This characteristic shape is illustrated on Figure 4.11: the 
double porosity curve crosses the semi-log straight line, as opposed to the curve for a 
homogeneous response. 

The semi-log analysis of two parallel straight lines is valid only when both radial flow 
regimes are clearly identified from the log-log analysis. During fissure flow, the first 
line is expressed, from Equation 1.15" 

kp - 162.6 qB/kh [log At + log (~bl," c, k)j/';~ - 3.23 + 0.87S 1 (4.27) 

And the second line, for the total system regime" 

k 323+087  1 (4.28) 

The vertical distance 8/) between the two lines gives o9 (Warren and Root, 1963)' 

Sp 

co=10 m (4.29) 

where m is the semi-log slope. In the definition of 8p, the first straight line should not be 
simply defined as a tangent to the data curve in the early time region, drawn parallel to 
the second line. Such an approximation can give an under estimated value of o). 
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Figure 4.11. Semi-log plot of homogeneous and double porosity examples. 
C# = CDj~_ m = 100, S =0, co =0.01 an d ,r = 10 -6. 
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The interporosity flow coefficient 2 is not accessible with accuracy from semi-log 
analysis. 

When only the first semi-log straight line of fissure regime is present, the double 
porosity nature of the response can be overlooked by mistake. By using the total 
storativity instead of that of the fissure system, the calculation of the skin gives an over 
estimated value S/. From Equations 4.27 and 4.28, 

1 
SU - S + 0.5 ln l (4.30) 

CO 

Build-up analysis 

Drawdown periods are difficult to analyze and, frequently, only build-up data is used 
for interpretation. Build-up analysis in double porosity reservoirs, however, is a lot 
more complicated than for homogeneous formations. The main reason is that the 
behavior changes in the course of the response: for different production times, the shape 
of the build-up curves can show different characteristic features. 

Log-log pressure build-up analysis 

Build-up pressure type-curves for a well with wellbore storage and skin in a double 
porosity reservoir can be constructed as the drawdown type-curve of Figure 4.2" the 
family of CDe 2s component curves is replaced by build-up curves generated for the 
appropriate production history; the 2ce 2s transition curves are not changed (Bourdet and 
Gringarten, 1980). 
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Figure 4.12. Log-log plot of build-up pressure responses for a well with wellbore storage and skin 
in double porosity reservoir, pseudo-steady state interporosity flow. ])D versus tD/CD. 
CD/+m = 0.1, S=0, co = 0.1 and/], =3x10 -4. tpD/C D = 100 (A1), 9000 (A2), 300000 (Aa). 
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Figure 4.13. Semi-log plot of drawdown and build-up pressure responses of Figure 4.12. 

On the log-log plot Figure 4.12, the drawdown double porosity example A of Figure 4.4 
is compared to three build-up responses generated for different production times t v. 
With example A1, (te/C)i)= 100, the drawdown prior to shut-in stopped in fissure flow, 
with example A2 ((tr/C)/)= 9000) it ended during transition, and in example A3 
((tv/C)i)=3xl05) in total system flow. 

For clarity, the same drawdown and build-up curves are presented on semi-log scale in 
Figure 4.13, similar to the build-up discussion of Figure 2.7. However long the three 
build-ups are, only example A3 exhibits a clear double porosity pressure response. On 
example A1, the drawdown stops in fissure flow, before the 2e -zs' transition curve is 
reached. The build-up curve AI appears to show only the build-up response of the 
fissures, and not a double porosity behavior. In example A2, the build-up curve flattens 
at the same At) level as the 2e -:x transition and there is no evidence of total system flow 
regime. 

Figure 4.12 illustrates the lack of definition of log-log pressure analysis. The three 
build-up curves are generated by superposition of drawdown solutions, and all 
characteristic features of the double porosity model are theoretically present in the 
responses. Due to the build-up effect, they cannot always be identified on a log-log 
pressure plot. 

Horner & superposition ana/~'sis 

Figure 4.14 is a Horner plot of the three build-up examples of Figure 4.12. With 
example A1, only one semi-log s traight /me is obtained during shut-in. It represents the 
fissure behavior. The straight line can be used to compute kh and, if the fissure porosity 
is known, the skin factor S. The extrapolation at infinite shut in time gives the correct 
P*=Pi. When the total system storativity is used, the semi-log straight-line analysis 
provides only a maximum value of the skin, S/.of Equation 4.30. In the test sequence of 
example A1, no double porosity effect is apparent from either drawdown or build-up 
when only the pressure data is considered for analysis. 
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Figure 4.14. Homer plot of the three build-up examples of Figure 4.12. 
tpD/CD = 100 (A,), 9000 (A/), 300000 (A3). 

If the drawdown test is stopped during the transition, (example Az), only one semi-log 
straight line develops on the Homer plot. This straight line corresponds to the fissure 
regime. It has the proper slope but does not extrapolate to p,. The intercept at infinite 
shut-in time is between p~ and p; + re.log (1/co), depending upon tp. On Figure 4.14, the 
response leaves the Homer straight line at late time, and flattens to reach p,. As for 
c u r v e  A 1 ,  the use of the total system storativity for the fissure regime semi-log straight- 
line analysis leads to an over estimated skin value, between S and 5'./. 

Finally, in example A3, the total system radial flow regime is reached at shut-in time 
and, provided the build-up period lasts long enough, two parallel straight lines are 
present on the Homer plot. These can be used to estimate kh, S and co (Equation 4.29). 
p, is obtained by extrapolation of the second straight line, the first extrapolates to p~ + m 
log(l/co). 

Figure 4.14 illustrates this: if the heterogeneous response has not been clearly identified, 
Homer or superposition analysis of double porosity build-up responses can be 
misleading. When the double porosity nature of the response is ignored, not only the 
calculation of the skin can be wrong but, more importantly, the extrapolated pressure to 
infinite shut-in time can be over estimated. In addition, the shape of the semi-log 
superposition curve, where the pressure flattens at late time (examples A2 or A3 if the 
build-up stops during the transition), can be interpreted by mistake as the effect of a 
depleted closed system (see Figure 5.25, Section 5.4.7). 

Derivative build-up analysis 

The derivative using the Homer / superposition time corrects the influence of the 
previous production history, except in the case when the drawdown response changes 
during the extrapolation into the build-up period (see Section 2.3.4). In double porosity 
responses, when the well is closed before the total system flow, the drawdown response 
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changes after shut-in from fissure to total system regime, and the derivative method 
does not correct perfectly the build-up curve as illustrated Figure 4.15. 

In Figure 4.15, the derivative responses of the three build-up examples of Figure 4.12 
are compared to the original drawdown derivative curve. Example A3 matches the 
drawdown response but not the two other build-up curves. For example Az the 
transition happens later, and the deviation is more pronounced and even more so during 
the build-up A1, which corresponds to a short production history limited to fissure 
system. 

The derivative curve A1 reveals a double porosity behavior whereas the same data 
plotted in terms of pressure, either on log-log or semi-log scale (Figure 4.12 and 4.14) 
suggests a homogeneous behavior. The significance of the signal is absorbed by the 
compression effect of the build-up correction methods (see Section 2.2.2 Figure 2.6 for 
log-log analysis, and Figure 2.7 for semi-log analysis). 

In practice, build-up derivative data after a short drawdown does not always display a 
full double porosity response as on synthetic example of curve A1. With a small 
production time, the pressure builds up quickly to the initial pressure, and the response 
is barely changing at late times. The derivative then becomes scattered and a clear 
diagnosis is difficult. However, when a late time downwards trend of the derivative is 
observed on test data, the hypothesis of a double porosity response should not be 
neglected. 

Practice of build-up tests in double porosi O, reservoirs 

The previous discussion clearly demonstrates the importance of a careful test design in 
double porosity systems. As discussed with the pressure examples in Figure 4.3, two 
test conditions have to be satisfied in order to display a full double porosity response 
during drawdown: 
1. the early time fissure flow regime should not be masked by wellbore storage, 
2. the ana/yzedperiod has to be long enough to show the late time total system flow. 
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Figure 4.15. Log-log plot of drawdown and build-up derivative responses of Figure 4.12 
examples. Log-log scales, PD versus tD/CD. 



Fissured reservoirs 137 

For build-up responses, not only these two conditions must be met but, as illustrated on 
Figures 4.12 to 4.15, the previous period should ideally have been also long enough to 
reach the final total system regime. 

4.1.3 Double porosity behavior, unrestricted interporosity flow model (Wellbore 
storage and skin) 

In this section, the effect of transient flow from blocks to fissures is considered. As 
opposed to the pseudo steady state interporosity flow model presented in Section 4.1.2, 
there is no skin effect at the surface of the blocks. The transient interporosity flow 
solution is also called unrestricted matrix flow. 

Transient matrix flow has been studied by several authors, and two matrix blocks 
geometries, slab or sphere, are usually considered. Following the theory developed by 
de Swaan in 1976, Bourdet and Gringarten (1980) presented a pressure type-curve for a 
well with wellbore storage and skin in a double porosity reservoir with unrestricted 
interporosity flow. The type curve was later extended to describe derivative responses 
(Bourdet et al., 1984). 

Behavior 

In the case of unrestricted interporosity flow, the matrix blocks react almost 
immediately to any change of pressure in the fissures: the transition starts earlier than in 
case of restricted flow, and the fissure flow regime is generally not seen. Only two flow 
regimes are observed with this double porosity solution: 
1. At early time, both fissure and matrix are producing, but the rate of change of 
pressure is faster in the fissure system than in the matrix blocks. The first response 
observed is in transition regime. 
2. Later, the homogeneous behavior corresponding to the total system is reached. 

Pressure type-curve 

The pressure type-curve of Figure 4.16 describes drawdown responses for a well with 
wellbore storage and skin in a double porosity reservoir with unrestricted interporosity 
flow. As on the type-curve of Figure 4.2 for restricted interporosity flow, the well can 
be damaged or stimulated. The same dimensionless terms are used (Section 4.1.1). 

Independent variables 

On the pressure type-curve of Figure 4.16, the dimensionless pressure PD is expressed 
versus the dimensionless time group tjCD. The dimensionless pressure and time are 
defined with respect to the equivalent permeability (Equations 2.3 and 4.17). 
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Figure 4.16. Pressure type-curve for a well with wellbore storage and skin in a double porosity 
reservoir, transient interporosity floxv. Log-log scales. Pz) versus tyCz_). 

The homogeneous regime is described with a family of (Cj) ,x e- )1-,, curves defined in 
Equations 4.19, and the early time transition regime by a second set of curves, labeled 

/3'. The fl' dimensionless group is expressed as: 

.),, ) 
C i )  e - + m 

/3'= ~' I 
Z e2.~' 

(4.31) 

The constant c~' is related to the matrix system geometry. For slab matrix blocks, 

b ''= 1.89 (4.32) 

and for sphere matrix blocks: 

c~ ' =  1.05 (4.33) 

Description 

On the pressure type-curves of Figure 4.16, two families of  curves are superimposed: the 
fl' curves for transition regime, and the (Cj)e2S)l_,,, curves for the total system 

homogeneous regime. The two families of curves have the same shape: the fl' transition 
curves are equivalent to Cj)e > curves whose pressure and time are divided by a factor 
of two (Bourdet and Gringarten, 1980). 

As shown on Figure 4.17, the match of a double porosity response with transient 
interporosity flow is adjusted on two component curves: at early time, a /5" curve 
describe the transition behavior; at late time, the total system homogeneous regime 
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matches on a (C> 2s e )f+m curve. With example A, the response follows first the transition 
curve on /~'-10 6 and finally reaches the total system homogeneous behavior on 
(CDeZX)#+ m =10. With example B, the pressure response starts on fl '-10 ~~ and reaches 
later (C> eZX)f+ m =6xl 0 3. 

Since the shape of the fl' transition curves is similar to that of the C> e 2s homogeneous 
curves, a semi-log straight line can develop during the transition. The fl' curves are 
equivalent to C> e 2s curves displaced by a factor of two" the first line, in transition, has a 
slope ha l f  of the second. The slope of the second gives the proper estimate of the 
equivalent permeability thickness product kh. 
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Figure 4.17. Examples for a well with wellbore storage and skin in a double porosity reservoir, 
transient interporosity flow, slab matrix blocks. Log-log scales, PD versus tD/CD. 
A'(CDe2S)z = 104 , (Coe2S)f+,, = 10, co= 0.001, fl'= 106, Ze -2s= 1.89x10 -s. 
B'(CDe2s)f = 6x106, (CDe2S)f+,,=6xlO 3, co = 0.001, fl'= 10 ~~ 2e -es= 1.13x10 -6. 

10 
rm 

{3. 

d 
O0 
O0 
�9 

O0 
O0 

t-  
O 
00 
~- 2 r 
E 
n 

mmmmummmm" 

10 -1 1 10 

mmmU 

s~ope m ~  
�9 o 

-o A ~o 
uB ~ 

mlu  I g  
, , , l 

10 2 10 3 104 10 5 

Dimensionless time, tD/C D 
Figure 4.18. Semi-log plot of Figure 4.17 examples. 



140 Reservoir heterogeneities 

On the semi-log plot, Figure 4.18, example A exhibits a semi-log straight line of slope 
m/2 during the transition before the radial flow straight line of slope m. With example 
B, the first semi-log straight line of the transition regime is masked by wellbore storage, 
and only the final straight line of slope m is present. 

Pressure type-curve analysis 

As on the double porosity type-curve of Figure 4.2, pressure match and time match are 
used to estimate the equivalent permeability thickness product kh and the wellbore 
storage coefficient C (Equations 2.9 and 2.10). 

The skin factor is estimated from the late time match, on the total system homogeneous 
curve (C1~ e-" )/_,,, (Equation 4.20). 

2 is estimated from the/5' curve 

(c 2s) Z - ~' D e / +,, 

/~ ' e -  

(4.34) 

The fissure flow regime is not identified on the pressure type-curve of Figure 4.16, co is 
not accessed from the match parameters. 

Derivative type-curve 

The derivative response of examples A and B are presented Figure 4.19. 
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double porosity reservoir, transient interporosity flow. Log-log scales, PD versus tJCl:). 

With example A, two derivative plateaus are evident: the first during transition is at 
0.25 (semi-log straight line of slope m/2 on Figure 4.18) and the second, during the total 
system homogeneous behavior, is on the usual 0.5 line (slope m). With example B, the 
transition is descried by a short derivative valley before the stabilization at 0.5. 

On drawdown responses, the main difference with the restricted matrix flow solution is 
in the transition regime: with the examples Figure 4.19, the derivative does not drop 
below 0.25 but tends to stabilize. It is a flat bottomed valley rather than a deep rounded 
valley 

Description 

Figure 4.20 presents the pressure and derivative type curve for transient interporosity 
flow (Bourdet et al., 1984). The dimensionless pressure and time are the same as on the 
type-curve Figure 4.16. 

Derivative responses are also described by component curves. At late time, the 0.5 line 
defines the infinite acting radial flow regime. Before the total system homogeneous 
regime, two transition curves are used. 

The early transition is described by fl' derivative curves. As on the pressure type-curve 
of Figure 4.16, the derivative fl' curves are obtained by displacing derivative CDe 2s 
curves by a factor of two along the pressure and time axes. During transition, the 0.5 
line plateau of the CD e 2s curves is replaced by a constant derivative 0.25 line. 

During late transition, the derivative is expressed as: 
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p.,, 0.5{ 1 - 0_ o) c, } 
(4.35) 

The late transition curves, labeled (2C1~ )/  (1- 09) 2 , describe the end of transition and 

the start of the total system homogeneous regime. 

Sphere and slab matrix blocks 

Figure 4.21 presents the drawdown response for the same parameters (CDe2X)r =1, 
fl'=104 and co=10 -~- produced by the two types matrix geometry, namely slabs and 
spheres. Though the pressure curves look identical, the derivatives are different: 
�9 The sphere model response hardly reaches the 0.25 straight line but remains above 
it. 
�9 The curve generated for slab matrix is tangential to the 0.25 line, and at late 
transition time, the change from 0.25 to the 0.5 level is steeper. 

Figure 4.21 illustrates that the matrix geometry has only a limited influence on double 
porosity responses. In practice~ when the analysis is made by hand, it is not possible to 
differentiate between the two solutions, and the same type curve is used. When a 
computer is used, and provided the quality of the data is good, one of the two solutions 
is sometimes preferred because the derivative match appears slightly better. The choice 
of the matrix geometry does not influence the numerical results of analysis. 

Matching procedure with the pressure and derivative type curve 

The match point is fixed from the derivative 0.5 line and the early time unit slope line. 
The pressure curve is used to identify the total system curve (CDe2S)f+m, and a 
comparison between the pressure and the derivative matches defines the appropriate/5" 
curve. 
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The permeability thickness and the wellbore storage constant are estimated from the 
pressure match and the time match (Equations 2.9 and 2.10). The skin is obtained from 
(CDeZS)U+,, (Equation 4.20), and 2 from fl' with Equation 4.34. At late transition, the 

group (2C D )//(1- co) 2 of the derivative match is not really sensitive to co. It is not used 

to estimate the storativity ratio. 

Influence of double porosity parameters 

In this section, we discuss the influence of the two heterogeneous parameters co and A 
on double porosity responses with unrestricted matrix flow. 

Influence of co 

The storativity ratio co defines the contrast between the two homogeneous curves 
(CD e2S)/and (CD e2S)f+m. In case of unrestricted interporosity flow, the fissure regime is 
short lived: after the wellbore storage effect, the response is usually already in the 
transition regime and the (CD e2S)/curve is not seen. In such cases, the storativity ratio 
has no influence on the model response. 

The influence of co can only be demonstrated on responses generated with a very low 
wellbore storage coefficient. Figure 4.22 presents three double porosity curves for 
unrestricted flow from slab matrix blocks. All parameters are the same as in Figure 4.7" 
CD/+,n =l, S=0, A=10 .7 and (O=10 -1, 10 -2 and 10 -3. 

Due to the very small wellbore storage, the three derivative curves of Figure 4.22 
exhibit the early time fissure regime: the response follows a (Cz) e2S)/curve, then the fl' 
transition curve and later the (CD e2S)/>m curve. The examples in Figure 4.22 show that, 
when the wellbore storage does not mask the early time response, the influence of co is 
the same as in the restricted interporosity flow response: decreasing co increases the 
fissure curve parameter (CD e2S)/. 
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Figure 4.22. Influence of co on pressure and derivative log-log curves, PD versus tD/CD. 
Slab matrix blocks. CDf+,, =1, S=0, 2=10 -7, co=10 -1, 10 .2 and 10 -3. 
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Figure 4.23. Influence of co on semi-log plot of the Figure 4.22 examples. 

On the semi-log plot Figure 4.23 for the same three examples, the curve generated for 
co=10 .3 first shows the straight line of slope m/2 during transition, and later the usual 
semi-log straight line of slope m. When the storativity ratio is high (co =10-~), a first 
semi-log straight line of slope m may be seen during the fissure regime, before 
transition (Streltsova, 1983). 

The curves on two log-log plots of Figures 4.7 and 4.22 are generated for restricted and 
unrestricted flow with the same parameters. In the case of restricted matrix flow, the 
fissure regime lasts longer (tjC> = 104 for co =10 -2) than in the case of unrestricted 
interporosity flow (tj/Ce~ = 102): the matrix skin delays the start of transition by more 
than two log-cycles. This confirms that with the unrestricted matrix flow solution, when 
the matrix blocks are not damaged, the fissure regime is generally not seen and co 
cannot be accessed from pressure and derivative analysis. 
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Figure 4.24. Influence of  A on pressure and derivative log-log curves, Pt_~ versus tD/CD. 
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10 8 

Figures 4.24 and 4.25 present three double porosity curves generated for unrestricted 
flow with different interporosity flow parameters 2. The curves correspond to slab 
matrix blocks. The parameters are the same as on Figure 4.9: CDU+m = 100, S =0, ,r = 10 -6, 
10 -7 10 -s and co =0.02. 

As in the restricted flow solution, 2 defines the end of transition and the start of the 
total system flow. On derivative curves, a low 2 corresponds to a long transition regime 
on 0.25, before the homogeneous behavior (Equation 4.35). On the semi-log plot of 
Figure 4.25, decreasing 2 moves the transition upwards. 

Associated specialized plot straight lines 

The two usual specialized analyses can be used for interpretation: wellbore storage on 
early time data, and semi-log analysis once the storage effect has subsided. With the 
unrestricted matrix flow solution, three straight lines are in theory possible on a semi- 
log plot. Practically, the first one during fissure flow is short lived, and it is masked by 
wellbore storage. 

Wellbore storage analysis 

The analysis of wellbore storage is carried out on a linear scale (Section 1.2.2). Pure 
wellbore storage regime is generally seen only on damaged wells, when the skin is 
positive. 

Radial flow analysis 

As shown by the example A of Figure 4.18, two straight lines can be observed on a 
semi-log plot of double porosity response, unrestricted flow. The first, during the 



146 Reservoir heterogeneities 

transition regime, has a slope half of the second, corresponding to the total system 
homogeneous behavior (Figure 4.23, example co =10 .3 and Figure 4.25). The curve 
co =10 -1 of Figure 4.23 shows that, at very early time, a first semi-log straight line can, 
in theory, demonstrate the fissure flow. The sequence is then, after wellbore storage, a 
first line of slope m, a second transition straight line of slope m/2 and a third line, slope 
m, parallel to the first. 

In practice, the occurrence of three semi-log straight lines has not been clearly 
demonstrated on actual data, for example with three long stabilizations for confirmation 
on a log-log derivative plot such as on the theoretical example co =10 -~ of Figure 4.22. 
Even the transition half slope semi-log straight line appears to be rather exceptional and, 
as discussed with Figure 4.11 of Section 4.1.2, most semi-log plots of actual field data 
only show the characteristic double porosity "S" shape. 

When the radial flow of the total system has been reached, the last semi-log straight line 
is defined in Equation 4.28. Slope and intercept at At=lhr give the equivalent 
permeability thickness product kh and the skin coefficient S. 

Build-up analysis 

Build-up analysis of double porosity unrestricted interporosity flow is more difficult 
than for a homogeneous reservoir response. The superposition method used to take into 
account the influence of the production prior to shut-in can introduce a distortion on the 
curves (see Section 2.3.4). 

Log-log analysis 

For build-ups, an approximation of the pressure response is obtained by replacing the 
drawdown homogeneous curve (C'j_)e2X)f_,,, by the corresponding build-up curve, and 
keeping the fl' transition unchanged. A build-up response displays the full double 
porosity behavior only when the production time t r has been long enough before shut-in. 

In Section 4.1.2, it was shown that for restricted interporosity flow, the derivative with 
respect to Homer or superposition time does not always correct perfectly the shape of 
the build-up curve during the transition. The same limitation is observed with the 
unrestricted flow models. 

On Figure 4.26, three build-up examples of a double porosity response are compared to 
the original drawdown solution. Unrestricted flow from slab matrix blocks is assumed, 
the parameters are the same as for the restricted flow build-up examples of Figure 4.15, 
the three production times are also the same tpc/CD = 100 (Curve A1), 9000 (Curve A2), 
3 105 (Curve A3). 
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If the homogeneous total system flow was reached during the drawdown (curve A3), the 
derivative of the build-up matches on the original drawdown response. However, if the 
previous drawdown stopped in transition regime, the derivative of the build-up deviates 
as shown in examples A1 and A2 of Figure 4.26: during transition regime, the build-up 
derivative drops below 0.25, down to 0.21 on Figure 4.26. 

When the early time data is affected by wellbore storage, derivative curves can exhibit, 
on build-up data, a valley shape during transition, with a minimum below 0.25. In some 
cases, a match can be obtained with the two matrix flow solutions, unrestricted or 
restricted, the second generally with a high value of storativity ratio co. 

Semi-log analysis 

As discussed in Section 4.1.2 for the restricted flow model, Homer and superposition 
analysis of unrestricted matrix flow double porosity data is used to estimate the kh 
product, the skin and the extrapolated pressure p* provided that the correct total system 
semi-log straight line is used. 

4.1.4 Extension of the double porosity models 

In previous discussions, radial flow is assumed. Double porosity responses can be 
observed during other flow regimes encountered on well responses, due to well 
conditions (Chapter 3) or boundary effects (Chapter 5). In the following, the resulting 
shape of double porosity responses is briefly reviewed. 

Next, several variations in the matrix properties are discussed: in the basic assumptions 
of double porosity models presented in Section 4.1.1, matrix blocks are homogeneous 
and of constant dimension (condition 6). A reduction of permeability at the surface of 
the blocks is introduced with the interporosity skin concept, and changes of block size 
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or fissured matrix blocks are considered with the multiple porosity models. The 
behavior of layered and radial composite fissured reservoirs is discussed in Section 4.4. 

Other flow regimes in case of double porosity behavior 

In their study of horizontal wells in double porosity reservoir, Du and Stewart (1992) 
illustrated that the double porosity transition can occur in any of the three flow regimes 
characteristic of this well configuration (namely vertical radial flow, linear flow and 
horizontal radial flow, see Section 3.6). The derivative double porosity transition is 
simply superimposed onto the derivative trend describing the flow regime acting at the 
same time. Interestingly, they demonstrated that when unrestricted interporosity flow 
transition occurs during the linear flow regime, it is characterized by a quarter slope log- 
log straight line, typical of a bilinear flow response. 

In the case of boundary effects in fissured reservoir, the derivative double porosity 
transition is also superimposed onto the boundary characteristic derivative shape (see 
Section 5.7). Channel reservoirs with layered deposits having a high contrast of 
permeability can also produce a bilinear flow regime, because of linear flow in an 
unrestricted double porosity system (see Figure 5.42). 

Matrix skin 

When the surface of the matrix blocks is damaged, the interporosity skin S,,, is defined, 
in dimensionless terms, as (Moench, 1984)' 

k/, h~t 
S,, = - -  (4.36) 

rm kd 

where hd and k d are  respectively the damaged zone thickness and permeability (Figure 
4.27). As already mentioned, the matrix skin term is not present in the Warren and 
Root's (1963) definition of 2 Equation 4.5. For high S,,, (>10), several authors have 
proposed a correction to the interporosity flow parameter. 

n=3, cubes n= 1, slabs 

Figure 4.27. Matrix skin. Slab and sphere matrix blocks. 
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For slab matrix blocks of  thickness 2rm, Cinco et al. (1985) define the effective 

interporosity flow parameter ,~eff as: 

2 
= 3(1-  o))sm (4.37) 

Stewart and Ascharsobbi (1988) propose an effective interporosity flow parameter as a 
function of  the number n of  families of  fissure planes �9 

2 
2elf (4.38) 

1 + (n + 2'~S m,, 

In Figures 4.28 and 4.30, transient interporosity double porosity responses are presented 
for different values of  the matrix skin Sm of Equation 4.36. Slab and sphere matrix block 
geometries are considered. 

�9 When Sm =0, the responses correspond to the unrestricted interporosity model of  
Section 4.1.3. 
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Figure 4.28. Double porosity reservoir, transient interporosity flow, slab matrix blocks with 
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Figure 4.31. Comparison of Figure 4.30 deri\ative responses \vith the restricted interporosity flow 
model. 2e~ = 1.66x10 -6 (S,,, = 1). 2en -= 1.96x10 -7 (S,,, = 10). ,r162 2.00x10 -a (S,,, = 100). 

�9 When S,,, =1, a first derivative stabilization at 0.5 is observed before the transition. 
The effect of matrix skin is to de lay  the flow from blocks to fissures, and a fissure 
regime is identified at early time. During transition, the derivative drops b e l o w  the usual 
0.25 plateau of the unrestricted interporosity transition (S,,, =0). 

�9 With larger matrix skins (N,,, = 10 or 100), the early time fissure regime lasts longer. 
Later, a va l l ey  s h a p e d  t rans i t ion ,  similar to the restricted interporosity curves of Section 
4.1.2, is observed and the start of the total system equivalent homogeneous behavior is 
delayed. 

On Figures 4.29 and 4.31, the derivative curves of Figures 4.28 and 4.30 are compared 
to restricted interporosity responses generated with the effective interporosity flow 
parameter 2eff of Equation 4.38. When S,,, =1, the equivalent restricted interporosity 
solution describes correctly the fissure and total system flow regimes but, during the 
transition, the valley drops to a deeper level than on the transient interporosity response 
with matrix skin. When the matrix skin is larger (S,,, =10 or more), the two models 
produce equivalent derivative curves. 

Figures 4.29 and 4.31 illustrate that, when the Warren and Root (1963) restricted 
interporosity flow solution is used for analysis, the match provides the effective 
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interporosity flow parameter /~eff, and not 2 of Equation 4.5. When Sm > 10, /~eff of 
Stewart and Ascharsobbi (1988) can be approximated by the modified pseudo steady 
state interporosity flow parameter of Moench (1984): 

2 kd F w 
/~eff = n - -  (4.39) 

r.,h d k 

Interestingly, 2elf of Equation 4.39 is independent of the matrix block permeability kin. 
Moench (1984) showed that when the matrix skin Sm of Equation 4.36 is large, most of 
the pressure change within the blocks occurs across the damaged zone of thickness hj, 
and the pressure gradients in the block become small. This explains Equation 4.39, and 
thus justifies the assumption of the Warren and Root (1963) model where the pressure 
gradients in the matrix are neglected. 

If the average size of the matrix blocks r,, is known, 2elf can be used to estimate the 
permeability thickness ratio kd / ha of the damaged region on the fissure walls. 

The theory of matrix skin unifies the two double porosity models presented in previous 
Sections. For small values of the matrix skin (Sin.=0.1 on Figures 4.28 and 4.30), none 
of the two limiting solutions, for unrestricted and restricted interporosity flow, describes 
the response. A transient interporosity model with matrix skin should then be used for 
the analysis of such data. 

Multiple porosity systems 

Several authors have considered changing block sizes in fissured reservoirs. Abdassah 
and Ershaghi (1986) proposed a triple porosity model assuming two families of matrix 
blocks with different characteristics. Cinco-Ley et al. (1985) and Belani and Yazdi 
(1988) extended the triple porosity model to multiple block size with a frequency 
function defining the probability of blocks of a given size. With these models, the 
matrix blocks are uniformly distributed in the reservoir. A1-Ghamdi and Ershaghi 
(1994) envisaged a different configuration, where matrix blocks are fissured with 
pseudo steady state interporosity flow. In such case, the matrix produces into the micro 
fissures, which feed a network of macro fissures producing to the well. A schematic of 
the two possible triple porosity configurations is presented on Figure 4.32. 

Other configurations have been proposed when the density of the fissure network is not 
uniform. These solutions combine a double porosity response with double permeability 
or radial composite configurations. They are briefly discussed at the end of this chapter 
(Section 4.4). In the following, only the triple porosity solution is presented for 
illustration, and the main conclusions concerning the multiple block size configuration 
are summarized. 

Figure 4.33 presents a triple porosity reservoir response with pseudo steady state 
interporosity flow. The fissure network interacts with two groups of matrix blocks. For 
each group, the interporosity flow is defined with a specific At (i =1, 2). In the storativity 
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ratio co-10 -2, the total storage of Equation 4.4 involves the fissure and the two groups 
of matrix blocks. ~ defines the contribution of the group to the total matrix storage (c~l + 

4 =1)" 

(r (r ~' - (r + (r -- (r (4.40) 

With group 1, the blocks are small and the interporosity flow coefficient is large (A~ 
=10 -5) but the group represents only i0% of the matrix storage (c~1 =0.1). The curve 
Figure 4.33 shows response of the fissure alone with a first derivative stabilization at 
0.5, then a valley transition when the matrix blocks of group 1 start to produce, followed 
by a new stabilization at 0.5. An intermediate homogeneous radial flow behavior is seen 
at times 104 to 105, describing the fissures and group 1 matrix blocks. After t jCD =105, 
the second group enters into production (22 =5x10 7) and a second derivative valley 
develops. During this transition, the storage contrast between (fissures and group 1) and 
the total system is 0.01+10%x0.99=0.109, and the depth of the second valley is about 
the same as the first. The response ends in radial flow for the total system equivalent 
homogeneous behavior. 
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Figure 4.34. Semi-log plot of Figure 4.33 example. 
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The same triple porosity example is presented on semi-log scales in Figure 4.34. Three 
straight lines are present: the first for fissure flow, the second for (fissures + group 1) 
and finally the third for (fissures + group 1 + group 2). This sequence of regimes is 
theoretically possible but, more frequently, a triple porosity response is characterized by 
a non-symmetric transition valley as illustrated on Figure 4.35. 

In this example, the interporosity flow coefficient is the same for the two groups 
(21=22 = 10 -6) and the two transitions start at about the same time. The two dashed curves 
of Figure 4.35 present the individual double porosity responses produced each groups: 
the transition for group 1 (c~1 =0.1) ends earlier than for group 2. The resulting triple 
porosity transition can be described as the sum of the two valley shaped transitions: 
�9 At early transition time, the drop of derivative can be identified earlier than on the 
two individual double porosity response curves. 
�9 At late transition time, an intermediate derivative plateau is observed when the 
group 1 transition is finished but not for the group 2. 
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Figure 4.35. Triple porosity reservoir, pseudo steady state interporosity flow, two sizes of matrix 
blocks, same 2. CDZ+,, =1, S=0, co =0.01, 21 = 22=10 -6, 31=0.1, 62=0.9. The dashed curves describe 
the double porosity responses for only blocks 1 (small valley) and only blocks 2. 
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The three examples of Figure 4.35 are presented on semi-log scale on Figure 4.36. On 
the triple porosity response, only two straight lines are present, for fissure flow and for 
(fissures + group 1 + group 2). The double porosity response for group 1 alone, shown 
as a thin curve, describes the theoretical (fissures + group l) semi-log straight line. 

In the case of unrestricted interporosity flow, triple porosity responses deviate from the 
typical behavior presented in Section 4.1.3 at transition time and the derivative curves 
can exhibit an intermediate plateau between 0.25 and 0.5, or even an oscillation (Cinco- 
Ley et al., 1985). With multiple porosity systems, the authors conclude that the size of 
the matrix blocks r,,, estimated with a double porosity model is the harmonic  weighted  
average of the different blocks sizes. 
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4.1.5 Discussion of double porosity analysis results 

In this section, we present specific features concerning results of analyses with the 
double porosity solutions. We examine the question of the uniqueness of the solution, 
and we discuss the numerical values of the different parameters obtained from analysis. 
Multiple porosity systems and transient interporosity responses with matrix skin are 
seldom used as they require parameters that are usually not accessible. Test 
interpretation with these models is not considered in the following discussion. 

Restricted and unrestricted interporosity flow models 

Figure 4.37 compares the two types of double porosity responses generated for the same 
parameters' (CD e2S)f+m =403, 2e -2s =2.48x10 -7 and co=2xl0 -2. In the case of unrestricted 
interporosity flow with slab or sphere matrix blocks, the derivative is flat during 
transition. With the restricted interporosity flow solution, the transition is characterized 
by a valley in the derivative. 

The choice of the appropriate double porosity solution is in general unique, the two 
models correspond to different sets of data. The rule is to use the model that provides 
the best match: with the restricted interporosity flow solution, the depth of the 
derivative valley during transition is a direct function of the transition duration. With 
long transition regimes, corresponding to small co values, the derivative drops below the 
practical 0.25 limit of the transient interporosity flow solution. 

An ambiguity may occur when the transition regime is of very short duration after the 
wellbore storage effect. In such cases, pseudo steady state curves (generated with a high 
co value) can produce a shape very similar to transient solutions, generated with a co 
value much smaller (of the order of 10 -2 or  less). The two resulting fissure storativity 
values are very different. 

Some wells have been reported to change from a restricted to an unrestricted 
interporosity flow behavior after acid stimulation (see discussion of the radial composite 
double porosity model Section 4.4.2). In most cases, the type of interporosity flow 
regime does not change in the course of the well history. Furthermore, it is in general 
similar for all wells in the same formation. 

Fissured reservo ir  versus  sealing fault  

The shape of the two curves of Figure 4.21 is similar to the response of a well in a 
homogeneous reservoir bounded by one sealing fault (Chapter 5). On the corresponding 
example Figure 5.1, the derivative stabilizes first at 0.5 and later at 1, but the shape of 
this response shows the same characteristic as a double porosity curve with unrestricted 
matrix flow. Using a homogeneous bounded model to interpret such pressure response 
gives a permeability thickness product twice the kh obtained with a double porosity 
match. 
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When the two alternative solutions seem equally appropriate to describe the pressure 
response, the analysis of the results shows frequently that only one is applicable. For 
example, in the hypothesis of boundary effect, the distance of the sealing fault could be 
unrealistic, or the same behavior may be repeated on several wells in the same reservoir 
etc. A double porosity model may then be preferred for interpretation. In the next 
Section, we show that the numerical values of the well parameters (wellbore storage and 
skin) can also be used in the diagnosis of double porosity behavior. 

Results of double-porosity analysis 

In the following, we discuss the significance of the interpretation results obtained with 
the double porosity model. The equivalent permeability thickness product has been 
discussed in Section 4.1.1. The interporosity flow parameter 2, presented in Equation 
4.5 of Section 4.1.1 for the unrestricted interporosity flow condition, has been modified 
into Equation 4.39 of Section 4.1.4 in the case of restricted interporosity flow. In the 
build-up discussion of Section 4.1.2, the concept of extrapolated pressure was shown to 
be in some cases misleading. The next paragraphs present other characteristic features 
of double porosity interpretations. 

Reservoir parameters 

The discussion of double porosity behavior was based so far on the assumption that the 
fluid is single phase, and the compressibility is constant. When free gas is present in the 
formation, the gas saturations can be different in the fissures and in the matrix blocks, 
and they are both changing during the well production history. As the storativity ratio of 
Equation 4.4 depends on the total compressibility of the two phases (c,)1 and (C,)m, co can 
change when the fluid characteristic changes. In the same way, 2 depends on km or S,,, 
which are very sensitive to gas saturation. Some wells, after several tests at different 
times, have shown a change in the double porosity behavior because of the variation in 
co and 2 (Gringarten, 1984). This is in agreement with the Camacho-V. and Raghavan 
(1994) simulation results. 

Well parameters 

In some cases, fissured reservoir responses show a very high value ofwellbore storage 
constant, associated to a negative skin factor, even when the well has not been 
stimulated. 

Common values for the wellbore storage constant in homogeneous reservoirs are in the 
order of 10 -a Bbl/psi or less for an oil well. In the case of fissured reservoirs, it is not 
exceptional to find wellbore storage effects of 0.1 Bbl/psi or more, 10 or 100 times 
greater than the wellbore storage constant calculated from the completion. 
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Double porosity reservoirs can also show negative pseudo-skins. A skin of around -3 
can be encountered in non-stimulated wells, acidized wells may have skins as low as -7, 
and a zero skin can correspond to a slightly damaged well (Gringarten, 1984). 
Following the Stewart and Ascharsobbi (1988) theory, the equivalent bulk fissure 
permeability concept k of Equation 4.1 is not valid for near wellbore description. At 
small scale, the dimension of the matrix blocks is not negligible (condition 1 of Section 
4.1.1) and the flow is not radial in the vicinity of the well. The fluid flows through the 
fissure in direct contact with the well and, as a result, the resistance to flow is less than 
in the homogeneous radial flow based on k. For cubes matrix blocks, they express the 
corresponding negative pseudo-skin as: 

z 2r m 
$2~ = - - - i n  (4.41) 

2 r w 

A high value of wellbore storage, associated with an apparent negative skin, is an 
indication of fissured formation, even when the shape of the data curves does not 
suggest any heterogeneity. This specific influence of natural fissures on the wellbore 
parameters has been observed in many fissured reservoirs but not all. Many double 
porosity reservoirs, such as multiple-layer systems, are also known to have no effect on 
the wellbore parameters (Gringarten, 1984). 

4.1.6 Field examples 

In the following section, two published double porosity examples are presented. The 
manual analysis of the first example (Bourdet et al., 1983 b), with the double porosity 
type-curve of Figure 4.6 for restricted interporosity flow is summarized. For the second 
example (Bourdet et al., 1984), the pressure and derivative responses are briefly 
discussed for a match with the double porosity unrestricted interporosity flow model. A 
possible triple porosity response is described in Section 5.7.5 (Figure 5.45). 

Restricted interporosity f l ow  example 

After one day of production, an oil well is shut in for an 18 hour build-up test. The log- 
log plot of pressure and derivative (Figure 4.38) suggests a heterogeneous behavior: 
after an initial hump at early times, the derivative drops slowly until the third hour of 
shut-in, then it increases during the 15 remaining hours of build-up. The derivative does 
not stabilize on this build-up response, a radial flow semi-log straight-line analysis is 
not justified. 

A first match is attempted on the homogeneous model (type-curve Figure 2.22), 
assuming that the lower part of the derivative plot corresponds to the, 0.5 line of the 
radial flow regime. The later upward trend would then be possibly explained by 
boundary effects. 
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Figure 4.38. Log-log plot of the double porosity' (pseudo steady' state interporosity flow) field 
example. 

No satisfactory solution is found to match the first part of the build-up: after the 
derivative maximum, the downward branches of the homogeneous type curves are 
much steeper than on the data plot. 

A second attempt is made with the double porosity solution, restricted interporosity 
flow. The definition of the flow regimes is as follows: the derivative displays a hump 
corresponding to wellbore storage during the first 10 minutes of shut-in. Then, from 0.2 
hours to the end, a long transition behavior is observed, the radial flow for the total 
system is not reached after 18 hours of shut-in. 

An initial match is performed on the pressure and derivative type-curve of Figure 4.6. 
As radial flow has not been reached, the last derivative points are placed slightly below 
the 0.5 line, and then the early time data is matched on the unit slope straight line. Both 
pressure and derivative data curves appear to match a fissure curve in the region of  
(CDe2S).f = 50. The pressure transition period is matched against ,q,e -2's' = 10 -4, and the 
total system curves seems to be close to (Cj_~ > e )/~,, = 10. 

The match is checked against the derivative transition response. With co-  0.2, the early 

ACj~ 10 -4 xl 0 _ 6xl 0 -3 and 2,C~ -3 and late transition curves are . . . .  02x0s  0 -o , )  =12x1~ 

respectively. 

Pressure and derivative give consistent results. The match can be refined by generating 
the complete double porosity multiple-rate response by computer (Figure 4.39). Results 
are: 

- Pressure match: 
- Time match: 
- Fissure curve: 
- Total system curve" 
- Transition curve: 

pj) / At) = 0.06 psi-1 

(tL/C•)/At - 161 hrs- 1 
(CD e2S)/= 50. 
(CD e2S)/~ ,,, = 8 
2,e -2's = 1.01 X 10 -4 
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Figure 4.39. Log-log match of the field example on double porosity model, restricted 
interporosity f low.  (Cs9 e2S)f+,, = 8, S =-  4.1,  co = 0.16,  2~= 2 . 8 x 1 0  -8. 

Unrestricted interporosity flow example 

The second example is a short three hours build-up test, after two days of production. 
On the log-log plot shown in Figure 4.40, the derivative clearly describes two 
stabilizations, with the second approximately twice above the first. On late time data, 
the pressure is less than one log-cycle above the derivative response: it can be 
concluded that the skin is negative. This is confirmed by the early time response, where 
the wellbore storage effect ends before the first point, recorded 15 seconds after shut-in. 

Two models can be used to match the data: a double porosity model with unrestricted 
interporosity flow, or a homogeneous reservoir with sealing boundaries. Both models 
are equally applicable. With the first hypothesis, the radial flow derivative stabilization 
corresponds to the second plateau, and a slab matrix block geometry is found to provide 
the best match. With the second hypothesis, the radial flow regime is seen during the 
first derivative stabilization, and two intersecting faults with an angle larger than 90 ~ 
have to be used. 
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F i g u r e  4 .40 .  Log-log plot of the double porosity (transient interporosity flow) field example. 
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4.2 LAYERED RESERVOIRS WITH OR WITHOUT CROSSFLOW 

As an extension of the double porosity models presented in Section 4.1, the double 
permeability solution considers also two distinct media in the reservoir. The two 
elements are defined as layers, with a porosity and a permeability. In each layer, the 
flow is radial, and they can both produce directly into the well. In the reservoir, a cross 
flow may be established when one layer flows into the other (Figure 4.41). 

The double permeability behavior is observed in stratified reservoirs, when the 
permeability of the different layers is participating to the response, or in fissured 
reservoirs, when the matrix blocks are connected. In systems with a large number of 
layers, the high permeability layers are grouped by convention into the "Layer 1", and 
the "Layer 2" describes the tight zones (see discussion in multiple-layer Section 4.2.5). 

Figure 4.41. Model for double permeability reservoir 

Layered reservoir have been studied either for the case of commingled systems 
(Lefkovits et al., 1961; Tariq and Ramey, 1978), when the layers, separated by 
impermeable barriers, can only communicate through the well, and also when a 
reservoir cross flow is possible (Jacquard, 1960; Russell and Prats, 1962; Polubarinova- 
Kocina, I962; Gao, 1984; Wijesinghe and Culham, 1984; Bourdet, 1985; Prijambodo et 
al., 1985). In 1984, Wijesinghe and Culham presented an analytical model for transient 
interlayer cross flow. Pseudo steady state cross flow between the layers was envisaged 
for two layers by Bourdet in 1985. This type of reservoir cross flow has also been 
considered by Liu et al. (1987) and Liu and Wang (1993) with similar conclusions. 
Chen et al. (1990) derived a relatively simple transient cross flow solution. The pseudo 
steady state interlayer cross flow solution was extended to any number of layers (Ehlig- 
Economides and Joseph, 1985; Larsen, 1988; Park and Horne, 1989) and to different 
well and boundary conditions (Joseph et al., 1986; Larsen, 1989; Suzuki and Nanba, 
1991; Bidaux et al., 1992: Kuchuk and Habashy, 1996). Limited entry wells in layered 
reservoir with transient cross flow have also been considered (Shah and 
Thambynayagam, 1992; Abbaszadeh et al., 1993). 

The double permeability model described in this section corresponds to the analytical 
solution proposed by Bourdet (1985). It includes the wellbore storage and skin effects, 
and the reservoir cross flow is in pseudo steady state condition. The basic assumptions 
are discussed in Section 4.2.1. Two different types of well configuration are considered. 
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In Section 4.2.2, the model response is presented when the two layers produce into the 
well as in the example Figure 4.41. In Section 4.2.3, the response is examined when 
only one of the two layers is perforated, such as in Figure 4.47. Extensions of the model 
to multiple-layer reservoir, and transient reservoir cross flow are described in Section 
4.2.6. Responses of commingled systems are further discussed in Section 4.2.7 for equal 
or unequal initial pressure. 

4.2.1 Double permeability model 

The basic assumptions of the double permeability solution and the definition of 
dimensionless parameters are based on the same concepts as in the double porosity 
model of Section 4.1. Again, the parameters resulting from interpretation define the 
idealized mathematical model used for description of the layered reservoir. In particular, 
the vertical permeability estimated from a match with the double permeability model 
depends upon the choice of a two layers simplified model to describe a complex 
reservoir configuration. The influence of layer refinement on the results is discussed in 
the multiple-layer Section 4.2.6. 

Double permeability assumptions 

�9 The well, intercepting two homogeneous layers, is affected by wellbore storage. At 
each layer, a skin defines the communication between the well and the formation. 

�9 The initial pressure is the same in the two layers. 

�9 After some production, a difference of pressure is established between the two 
layers and a cross flow takes place in the reservoir. As for the double porosity model, 
two different types of cross flow have been considered. In the case, discussed in the 
following, of pseudo steady state flow between the layers (Bourdet, 1985), the same 
assumption as in the Warren and Root (1963) model is made: the vertical pressure 
gradients in the layers are neglected and the resistance to vertical flow is described with 
the semi-permeable wall model of Gao (1984). With the hypothesis of transient flow 
between the layers (Chert et al., 1990), the cross flow is unsteady because of the vertical 
pressure gradients in the low permeability layer. 

Other multiple-layered reservoir configurations have been considered with any number 
of layers, homogeneous or not. These solutions are discussed in Section 4.4. 

Definitions 

In the following, subscripts 1 and 2 refer respectively to layer 1 and 2 (see Figure 4.41). 
The total permeability thickness product is expressed as: 
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khToTX L - klh 1 + k2h 2 (4.42) 

and the reservoir total storativity" 

- ( r  + (r (4.43) 

The kh contrast between the two layers is expressed by the mobility ratio 

klh~ klhl 
K - = ~ (4.44) 

klh 1 + k2h 2 khTOTAL 

~c defines the contribution of the high permeabili O, layer 1 to the total permeability 
thickness product. When ~,-is close to 1 (0.999 or more), the mobility of layer 2 
becomes negligible. The double permeability model then tends to exhibit the same 
configuration as the double porosity solution defined in Section 4.1 when applied to 
multiple-layer systems: the double porosity model is a limiting form of double 
permeability responses. 

The contrast of storage between the layers is expressed by the storativity ratio co. It 
defines the contribution of the high permeability layer, to the total storativity: 

The definition of the storativity ratio is the same as in the double porosity model: the 
volume ratios V 1 and I~;,, of Equation 4.2 are replaced by the thickness ratios h~/(h~+ h2) 
and h2/(hl + hx) in Equation 4.45. Practical values for co can be in the same range, in the 
order of 10 -1 or less. 

The reservoir cross flow is defined by, the mter/a3'er cross f low coejficient 2' the smaller 
is A, the more difficult is communication between the layers and A=0 corresponds to 
two layers without cross flow, also called commingled system. 

With the semi-permeable wall resistance hypothesis of Gao (1984), A is expressed as: 

-) 

2 -  r,: 2 
h' h 2 (4.46) 

_ h i  klhl + k~h2 2 + - - + - -  
k' z k:l k~2 

As depicted on Figure 4.41, A. is a function of the vertical permeability k' in the low 
permeability "wall" of thickness h' between the layers and, by extension, of vertical 
permeability in the two layers kzl and &2. 

If the vertical resistance is mostly due to the "wall", a simplified )t can be used to 
characterize this interlayer skin: 
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2 k Y 
2c = rw z (4.47) 

k~ h 1 + k 2h 2 h' 

Equation 4.47 is equivalent to the effective interporosity flow parameter 2elf of Equation 
4.39 (Moench, 1984). 

When there is no skin at the interface and the vertical pressure gradients are negligible 
in the high permeability layer 1, 2 is equivalent to the interlayer flow parameter of the 
transient double permeability model of Chen et al. (1990): 

2 kz 2 2 - rw . (4.48) 
klh l + kzh 2 h 2/2 

Dimensionless  variables 

All dimensionless variables are expressed with reference to the total system parameters 
defined in Equations 4.42 and 4.43. The dimensionless pressure is based on the 
permeability thickness product of the total system: 

klh 1 + kzh 2 
PD = Ap (4.49) 

141.2qBct 

and the dimensionless time is: 

tD = 0.000264 kl hi + k2 h2 At (4.50) 

The well condition is defined by two skins $1 and $2, and by the dimensionless wellbore 
storage: 

0.8936C 

- [(r o, + h)2 ] d  
(4.51) 

In the following sections, the double permeability curves are presented with the 
dimensionless pressure pD of Equation 4.49 versus the dimensionless time group t jCD: 

tD - 0.000295 klhl + k2h2 At (4.52) 
C D /~ C 



4.2.2 Double permeability behavior when the two layers are producing in the well 
(Wellbore storage and two skins) 

The response of a well with wellbore storage and skins is defined, in a double 
permeability reservoir, by six dimensionless parameters Cz), S1 and $2 for the well, ~7, co 
and A for the reservoir. No log-log type-curve has been found practical to describe 
double permeability responses, the analysis is performed on computer and the 
parameters are adjusted with pressure and derivative data. 

Behavior 

1 0  2 

( I . )  i::zl 

In a two-layer reservoir with cross flow, three different regimes can be identified in the 
response of a well with wellbore storage and skins : 
1. First, the behavior of two layers without cross flow is seen: with the semi- 
permeable wall assumption, the reservoir cross flow is negligible at early time. 
2. At intermediate times, the response deviates from the "two layer no cross flow" 
behavior and reaches a transition regime, as the fluid transfer between the layers starts 
in the reservoir. 
3. Later, the pressure of the two layers equalizes, the equivalent homogeneous 
behavior of the total system becomes evident. 

A typical double permeability response is presented in Figure 4.42. The example 
corresponds to a well with wellbore storage, the two layers are producing into the well 
and a cross flow is established in the reservoir. The derivative follows the unit slope 
straight line at early time, reaches a maximum, then drops below the 0.5 line in a long 
transition, and finally reaches the 0.5 stabilization when the radial flow in the equivalent 
homogeneous total system is reached. During transition, the shape of the derivative 
valley is a function of the contrast of storativity and permeability between the two 
reservoir elements, as opposed to a double porosity response such as on Figure 4.7, 
where only the storativity ratio influences the response. 
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Dimensionless time, tD/C D 
Figure 4.42. Pressure and derivative response for a well with wellbore storage and skins in double 
permeability reservoir, the two layers are producing into the well. Log-log scales, PD versus tD/CD. 
CD = 1000, $1 = 5'2 = 0, co = 0.02, ~'= 0.8, 2 = 6x10 -8. 
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Figure 4.43. Log-log plot of double permeability responses, the two layers are producing into the 
well. PD versus tz)/CD. CD = 1, $1 = $2 = 0, co = 0.001, 2 = 4x10 -4. ~c = 0 . 6 ,  0 . 9 ,  0.99 and 0.999. 
The two dashed curves correspond to the homogeneous reservoir response (Cz)e 2s= 1) and double 
porosity response (tc = 1). 

Discussion of double permeability parameters 

In the following, it is assumed that the respective layer skins are equal" S 1 -- S 2. The 
number of parameters is reduced to 5, and the influence of the three reservoir 
parameters ~c, co and 2 is demonstrated with several log-log and semi-log examples. 

Influence of tc and co 

Figure 4.43 presents pressure and derivative examples of double permeability responses 
for different values of K (0.6, 0.9, 0.99, 0.999). The curves are generated with co = 10 3, 
and 2, CD, S~ and $2 are the same on all responses. The upper and lower dashed curves 
are the two limiting cases: the homogeneous reservoir (~c =co) and the double porosity 

(tc = 1 ) responses. 

When tc = 1, the maximum value of the mobility ratio, layer 2 has no radial permeability 
and the model corresponds strictly to a double porosity configuration: the derivative 
valley has the characteristic shape of a double porosity transition with restricted 
interporosity flow. When ~c = 0.999, layer 2 provides 0.1% of the mobility, and the 
derivative curve deviates from the double porosity shape. With lower values of tc, the 
depth of the transition valley is reduced and for ~c = 0.6 the derivative hardly drops 
below the 0.5 line. 

The Figure 4.43 double permeability examples are presented on semi-log scales in 
Figure 4.44. The dashed curves describe the equivalent homogeneous behavior 
(CDezS=I) and the double porosity response (tc =1). The thin curves illustrate two 

examples of the "two layers no-crossflow" responses corresponding to ~c = 0.99 and 0.6: 
the interlayer flow parameter is set to 2=0, other parameters are unchanged. When the 
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mobility contrast is large (curve tc = 0.99), the two layer no-cross flow early time 
response is very different from the final total system equivalent homogeneous regime 
CD e2S=l (see discussion of Equation 4.74, Section 4.2.6), and the double permeability 
transition is long and flat. The "S" shape of the semi-log curves is reduced when the 

contrast in layer permeability is smaller, such as with the curve for K -= 0.6. 

On the Figures 4.45 and 4.46, the storage contrast between the layers is reduced: the 

storativity ratio is o) = 10 -1, the other parameters are the same as on the responses 
Figures 4.43 and 4.44. When the storage of layer 1 becomes significant, the two 
characteristic regimes "two layers no-cross flow" and "total system homogeneous" are 
closer, and the double permeability transition is shorter. 

~ 1< =I,/ 0.99_9_ L " "  

EL 
o0 

ec ~ " / ' , , ~ - "  Two layers no crossflow 
E ~ "  , Double permeab, ility ?'5 0 ~ Double permeability 

10 -1 1 10 10 2 10 3 10 4 

Dimensionless time, tD/C D 

Figure 4.44. Semi-log plot of three double permeability examples of Figure 4.43. 
The dashed curves correspond to the homogeneous reservoir response (CDe 2s= 1) and the double 
porosity response (E=I). The thin curves correspond to the two layers responses with no reservoir 
cross flow (~c = 0.6 and 0.99.2 = 0). 
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Figure 4.45. Log-log plot of double permeabilit\' responses, the two layers are producing into the 
well. pu versus tj)/Cip. Cu = 1, S~ = S: = 0, co = 0.1, 2 = 4x10 -4. K = 0.6, 0.9, 0.99 and 0.999. 
The two dashed curves correspond to the homogeneous reservoir response (CDe 2s= 1) and the 
double porosity response (K = 1). 
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Figure 4.46. Semi-log plot of three double permeability examples of Figure 4.45. 
The dashed curves correspond to the homogeneous reservoir response (Cz)e 2s= 1) and the double 
porosity response (I<= 1). The thin curves correspond to the two layers responses with no reservoir 
cross flow (1< = 0.6 and 0.99, 2 = 0 ). 

On a double permeability response, the shape of the transition is a function of the two 
ratios co and 1<. The storativity ratio co defines the duration of the transition, but the 
depth of the derivative valley is also related to the mobility ratio 1<. For example, the 
transition is deeper on the curve i< = 0.99 of Figure 4.45 (co=10 -~) than on the curve 
I< = 0.6 of Figure 4.43 (co=l 03). 

Influence of 2 

The interlayer flow parameter 2 depends upon the ability of the vertical cross flow to be 
established between the layers. When A = 0, the response corresponds to the "two layers 
no-cross flow" solution. In other cases, a cross flow is established between the layers, 
and A defines the time of start of the equivalent homogeneous total system flow regime 
like in double porosity responses. The smaller is A, the later the start of total system 
flow. 

Matching procedure with the pressure and derivative data 

As for all responses affected by wellbore storage effect, the match point is fixed by the 
two derivative straight lines: at early time, the wellbore storage unit slope line, and 
during total system radial flow, the 0.5 line. The khToTAL and C are estimated from the 
pressure and the time matches (Equations 4.49 and 4.52): 

klh ] + k2h: = 141.2qB/a(PM) (4.53) 

C -0.000295 klhl +/1 k2h2 (-~1 ) (4.54) 
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The time of the end of transition and start of the total system homogeneous behavior is 
used to estimate the interlayer cross flow parameter 2. The two other heterogeneous 
parameters are adjusted on the derivative transition data: a long transition valley 
suggests a small storativity ratio co, and the depth below the 0.5 line indicates the range 
of the mobility ratio ~c. 

co and ~-define the storativity and the mobility distribution between the two layers from 
Equations 4.45 and 4.44, 2 is used to provide an estimate of the vertical permeability. If 
the vertical resistance to the flow between the layers is concentrated at the wall 
interface, the vertical permeability of the "wall" k'z is obtained from Equation 4.47: 

k': h, + k2 h2 h' 
r W 

If no semi-permeable wall is present between the layers and the vertical pressure 
gradients are negligible in the high permeability layer 1, kz2 can be expressed from 
Equation 4.48 

2~h2 
k-2 =(klh~ + k2h2)r,7 2 

(4.56) 

When the same vertical permeability kz is assumed in the two layers and there is no skin 
at the interface" 

2 - - ") 2 r~,7 
(4.57) 

In practice, when the storativity ratio co is small, hl<<h2 and Equations 4.56, 4.57 
provide similar results. The estimation of vertical permeability from ,~ is further 
discussed in the Multiple layer Section 4.2.6. 

Once the derivative is matched and the three heterogeneous parameters are defined, the 
pressure response is used to evaluate the skins S1 and $2. If the two skin effects are 
different, the well condition influences the shape of the derivative transition, and it is 
difficult to conclude a unique match. 

In the next Section 4.2.3, only one of the two layers is producing into the well: this 
configuration corresponds to the highest contrast between the two skins. It can be 
applied when a layered system is tested on a selected interval only. 
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4.2.3 Double permeability behavior when only one of the two layers is producing 
in the well (Wellbore storage and skin) 

The well is perforated in one layer only: in the model, a very high skin is given to the 
non-communicating zone. Even though the well configuration corresponds to partial 
penetration, no spherical flow regime is produced. With the semi-permeable wall 
assumption of the double permeability model, the vertical pressure gradient is 
concentrated at the interface between the two layers. 

The response of a partial completion well with wellbore storage and skin in a double 
permeability reservoir is defined by five dimensionless parameters" K, co, 2, CD, and S1 
or $2, depending upon the well configuration. 

Behavior 

Three different regimes are observed in the response of a partially completed well with 
wellbore storage and skin in a layered reservoir: 
1. First, the perforated layer response is seen alone, and the behavior is homogeneous. 
The level of the first derivative stabilization depends upon the permeability of the 
perforated interval. 
2. When the second layer starts producing into the perforated zone, the response 
deviates in a transition regime and the derivative drops. 
3. Later, the pressure of the two layers equalizes, the equivalent homogeneous 
behavior of the total system is seen and the derivative stabilizes at 0.5, as the total kh is 
acting. 

10 2 C3 

rq 
= - 0 . .  
'~ 10 
(1) > 

a .N 

1 f-- 

O " o  

r 

(D 

.E_ 10-1 
D 

layer 2 produces 

1 O-1 1 10 10 2 10 3 10 4 10 2 10 6 

Dimensionless time, tD/C D 

Figure 4.47. Pressure and derivative response for a well with wellbore storage and skin in double 
permeability reservoir, only one layer produces into the well. Log-log scales, PD versus tD/CD. 
CD = 1000,$1 =100,$2=0, co=0.1, K'=0.9, A=6xl0 -s. 
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In Figure 4.47, only layer 2 is producing in the well. After the wellbore storage hump, 
the derivative shows a first plateau corresponding to radial flow in the perforated zone, 
until the curve decreases to reach a second plateau, when the interlayer cross flow is 
established, and the total system produces. The double permeability behavior is then 
similar to the response of a well in partial penetration, such as Figure 3.15. 

Discussion of double permeability parameters 

The shape of the transition between the two homogeneous regimes depends upon the 
permeability ratio between the perforated layer and the second layer. In Figure 4.48, the 
two hypotheses are presented for the same layered system. The reservoir parameters are 

defined as (o = 0.2, 1(- 0.9 and 2 - 10 4. The wellbore storage coefficient is C/) = 1 and, 
for one of the curves S~ - 100, $2 - 0 and for the other S~ = 0, S2 = 100. The thin curve 
describes the double permeability response when both layers are perforated (the two 
skins are set to 0). Figure 4.49 presents the same response curves on semi-log scales. 
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Taking only the low permeability layer producing into the well, we will examine first 
the response shown as "layer 2 produces". During the initial homogeneous regime, the 
derivative tends to show a stabilization at 0.5/(1- K). On the example of Figure 4.48, the 
first radial flow regime is masked by wellbore storage, and the derivative plateau (at 5 
with K=0.9) is not seen. The curve displays a long hump before the drop of derivative in 
transition, and the second stabilization on 0.5 for the total system. During this final 
radial flow regime, the amplitude of the response is large, as illustrated on the semi-log 
plot Figure 4.48. This configuration produces, when the well is perforated on the low 
permeability layer, a large positive geometric skin. 

The response is very similar to the behavior of a well in partial penetration as described 
in Section 3.4; the two models exhibit a different behavior only during the transition. In 
a homogeneous reservoir, partial penetration is characterized by a spherical flow regime 
with a negative half unit slope derivative straight line. In case of double permeability 
response, the vertical pressure gradient is modeled with the semi-permeable wall 
interface, and the transition between the two radial flow regimes is steeper. 

Conversely, when only the high permeability layer 1 is producing to the well, the 
permeability of the first homogeneous regime is, with ~=0.9, 90% of the total system 
permeability, and the two derivative stabilizations are almost at same level: 0.5/~c for 
the first (in the example: 0.55) and 0.5 for the second. At transition time, the derivative 
valley is deeper than on the thin curve, when the two layers produce into the well. 

With this second type of double permeability partial completion, the response tends to 
show the same behavior as a double porosity with restricted interporosity flow: 
introducing a high skin at the low permeability layer produces a similar effect as a 
reduction of permeability of the layer. 

The influence of the double permeability parameters on a partial completion well can be 
summarized as follows: 
�9 When only one layer is communicating with the well, ~c defines the level of the first 
derivative plateau, 0.5/K or 0.5/(1- ~-), thus the type of response. When the perforated 
layer is of high permeability, the first derivative stabilization is close to 0.5, and the 
response tends to a double porosity behavior. Determining whether the reservoir 
behavior is double porosity or double permeability is difficult. In the opposite case, the 
response shows a first derivative plateau above 0.5, and tends to a partial penetration 
response. 
�9 ,L indicates the time of transition between the two homogeneous behaviors. A small 
/1 corresponds to a long early time "one layer" regime, and a late total system regime, co 
can influence the shape of the transition when the derivative drops. 

Matching procedure on the pressure and derivative data 

In the case of a partially completed well, frequently only one derivative stabilization is 
observed on the log-log data plot. When radial flow is reached for the late time total 
system homogeneous behavior, the second stabilization is evident and the match point is 
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fixed by the two usual derivative straight lines: the wellbore storage unit slope line and 
the 0.5 line during total system radial flow. The total permeability thickness product 
khsosAL and the wellbore storage coefficient C are estimated with Equations 4.53 and 
4.54. The curve match defines the other parameters: the skin of the perforated layer, and 
the ratios of diffusivity and mobility. 

When the test stops before total system radial flow, only the first line can be expected 
on the response curve and the total permeability thickness product cannot be accessed. 
In such case, the static parameters used for analysis correspond generally to the open 
interval, as discussed next. 

In the following definition of the dimensionless pressure, time and wellbore storage, the 
open interval is referenced with subscript i (i = 1 or 2)" 

kl/11 
PP = Ap (4.58) 

141.2qB/a 

0.000264k, h, At (4.59) 

t ,) - o, h ), / ,  n; 

0.8936C 
cD - n,2 

(4.60) 

tD = 0.000295 k,h, At (4.61) 
Cz) /,e C 

The 0.5 derivative stabilization corresponds to radial flow in the open interval, shown 
by the first plateau before the drop of derivative response. From the pressure and time 
matches, k,h, and C are estimated: 

kih i = 141.2qB/J(PM) (4.62) 

C=OO00295k'h'( 1 1 / . ~  --~ (4.63) 

The skin S, is estimated from the homogeneous C>e 2x curve matching the early time 
data before the drop of the derivative, with Equation 4.60 and Equation 2.11. 

When the second derivative stabilization is not reached, the parameters of the complete 
system are not well defined. The time of end of the first homogeneous behavior and 
start of the transition is used to estimate the interlayer cross flow parameter A, and 
possibly the vertical permeability from Equations 4.55 to 4.57. Depending on how well 
defined the shape of the derivative curve during transition is, the two other 



Layered reservoirs 173 

heterogeneous parameters ~c and co can be approximated or not. In general, a unique 
match is difficult to obtain. 

4.2.4 Associated specialized plot straight lines 

Wellbore storage effects and radial flow regimes can be identified on double 
permeability responses. The specialized analysis of the wellbore storage period is not 
affected by the layered nature of the reservoir but, for the radial flow regimes, the 
analysis is adapted to the number of producing zones during the selected time interval, 
as diagnosed with the log-log analysis. 

Wellbore storage analysis 

On a Cartesian scale, the slope of the early time straight line provides an estimate of the 
wellbore storage coefficient with the relationship Equation 1.10. 

Radial flow analysis 

When the two layers are producing into the well, as described in Section 4.2.2, the 
sequence of flow regimes is "two layers without cross flow", transition and "total 
system equivalent homogeneous". On a semi-log scale, the first regime is not 
characteristic and only one straight line can be analyzed at late time (Figures 4.44 and 
4.46). 

With the other well configuration presented in Section 4.2.3, only one layer produces 
into the well and a first radial flow regime can be seen before the total system response. 
Two semi-log straight lines are then possible, the mobility during the first radial flow 
being a fraction of the total; the first slope is higher than the second is. Frequently, only 
one of the two lines is observed: the wellbore storage effect can cover the first as in 
Figure 4.49, or the test is not long enough to reach the second. The semi-log analysis of 
the two straight lines is valid only when the log-log analysis confirms the presence of 
two radial flow regimes. 

When one of the two layers (called layer /) starts to produce alone, the first line is 
expressed as (from Equation 1.15): 

(4.64) 

This first line gives kihi and S;. The second line, for the total system regime, gives the 
total mobility: 
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i khToXaL 1 zXp -- 162 6 qB/l log At + log - 3.23 + 0.875' (4.65) 

When only one layer is producing into the well, the global skin S measured on the total 
system semi-log straight line includes a geometrical skin due to the curvature of the 
flow lines. This is equivalent to the geometrical skin of partially penetrating wells. 
When the two layers are producing into the well, the global skin S, measured on the 
total system semi-log straight line of Equation 4.65, is a function of the two layers skins 
S~ and $2, with (Prijambodo et al., 1985; Park and Home, 1989): 

Lq LT 1 (Sq~.T LT) (4.66) S - S  lc71D +S 2c72Z) - ~  1 +$2c72 
ql + q2 

where q[/)x are the late time stabilized fiactional rates of the two layers. When 

production-logging data is not available, q L) can be expressed (Park and Home, 1989) 

as a function of k, N, and 2 (see discussion for multiple layer in next Section). 

4.2.5 Field example 

On the build-up example presented in Figure 4.50 (published in 1985, Bourdet), the 
derivative response shows a long transition valley before a final stabilization, from the 
sixth hour to the end of the test. When the final stabilization is assumed to describe the 
infinite acting radial flow regime, it is possible to match the data with a double porosity 
solution, restricted interporosity flow. The match is slightly improved with the double 
permeability model, when 2.5 % of the permeability thickness product is attributed the 
low permeability layer (w=0.975 with the same negative skin on both layers &=$2=-4). 
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Figure 4.50. Field example build-up test. Log-log scale. 
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Other models, such as a radial composite system (Section 4.3.2) or a homogeneous 
reservoir with intersecting sealing faults (Section 5.3) can be used, but the radial flow 
regime ends before the first hour of shut-in. The derivative stabilization must be located 
a little below the bottom of the valley, the permeability thickness product is almost three 
times larger and the skin is less negative than with previous double porosity or 
permeability matches. 

4.2.6 Extensions of the double permeability model 

In the following, several variations of the double permeability behavior are reviewed. 
First, the extension of the model to multiple layer system is considered. The analysis is 
more complex and the uniqueness of the solution seems frequently to be not clearly 
established. Transient reservoir cross flow is then presented. These two developments 
are not currently used for the time being and they are only briefly discussed. 

Multiple layer 

The double permeability model can be extended to an n-layer system (Ehlig- 
Economides and Joseph, 1985; Larsen, 1988; Bidaux et al., 1992). For layer i, the n- 
permeability parameters are defined as: 

k, hj kjh i 
Kj . . . .  (4.67) 

s k./ hj khToTAL 

j=l 

(co, h), 
co, = = ( 4 . 6 8 )  

s162 (r 
j= l  

A, is a function of the vertical permeability k'~z in the low permeability "wall" of 
thickness h'~ between the layers i and i +1 and, of vertical property of the two layers 
(h/kz)i,j+l. 

2 r w 2 
A~ = (4.69) 

~-" kjhj 2 - -  h'i + + 
./=1 k'iz i " i+1 

If there is no cross flow between layers i and i+ 1, k'~z =0 and 2, =0. 

As for the double permeability configuration, when all layers of an n-layer system are 
communicating in the reservoir, the response is identical to that of the commingled 
system at early time and to that of the equivalent homogeneous total system at late time 
(with the average horizontal permeability of Equation 3.55). 
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Each layer is defined with 4 parameters (Equations 4.67 to 4.69 and the layer skin 5',) 
and, with the wellbore storage coefficient, the total number of parameter required to 
define the response is 4n. In order to reduce the non-uniqueness of the solution, several 
authors suggest to incorporate layer rate measurements into multiple layer analysis. 
Transient layer rate responses can be summarized as follows: during the commingled 
regime, the fractional flow rate of each layer is expressed at very early time as a 
function of the layer skin,factors S, (Ehlig-Economides and Joseph, 1985; Park and 
Home, 1989): 

k,/S, 
lim q , D -  ,, 

tl~ --> o ~ k.: /S: 

./=1 

(4.70) 

When there is no skin at the layers, the fractional flow rate is expressed: 

x~ ,  k, 
lim q , : ) -  ,, 

tD--,o Z @o lk / 

./=1 

(4.71) 

When there is no cross flow in the reservoir, the late time rates of the commingled 
system are independent of the layer skin Si with (Park and Home, 1989)" 

k: ]71 
lim q , : ) -  ,, 

t :~ --,~ ~'~ k/h/ 
/=1 

=~c, (4.72) 

In case of formation cross flow. the laver rates become constant after the transition, 
during the equivalent total system homogeneous behavior, whereas those of the 
commingled system do not stabilize as fast. This stabilized rate after transition is a 
function of the permeability k, and the skin S, of the layers, with several groups such as 
k/& and A, /k,, but also with a term k,(S,- S:) defining the contrast between the skin 
factors (Park and Home, 1989). 
�9 In the high permeability layers, the rate is higher than that of the commingled 
system of Equation 4.70 if the skin is lower than in the low permeability layers. 
�9 Conversely, when the high perineability layers are the most damaged, the rate is 
lower because the reservoir cross flow is established from the layers with large skin to 
the layers with smaller skin. 

With the current down-hole rate measurement technology, transient layer rate is 
frequently noisy and only stabilized rate data is available for the analysis. Caution must 
be exercised in interpreting multiple layer systems. A regression algorithm can be used 
to match pressures and layer rates, but the question of the uniqueness of the solution 
must be examined carefully. Larsen (1994 b) investigated the non-uniqueness question 
versus layers skin and refinement in the discretization of the layered reservoir (see 
following discussion). He concluded that layer flow rates are not strongly influenced by 
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layer refinement but, with large contrast in skin values between the layers, the analysis 
become highly uncertain. 

Interpretation of the interlayer cross flow coefficients 2i is the next step for 
characterizing the multiple layer reservoir. When there is no low permeability "wall" 
separating the layers, Equation 4.69 can be used to express the vertical permeability 
(Boutaud de la Combe et al., 1996). With k';z =0% 

kzj = hj k"i+12i (4.73) 

k~,+~ 2 ~ kjhj - hi+12 i 
/./=1 

The different vertical permeability kiz can be expressed as a function of one of the 
vertical permeability kjz. A graph of the kiz versus kjz defines n branches of hyperbola 
that indicate the different minimum and maximum kz values. 

In his discussion of n permeability model, Larsen (1988) observed that by dividing a 
layer into several smaller layers with similar characteristics, the vertical pressure 
gradients due to transient vertical flow are reproduced. Increasing the number of layers 
tends to produce a transient interlayer flow response (see next Section): the cross flow 
begins earlier and the bottom of the derivative valley is moved upward. Boutaud et al. 
reached similar conclusion for the low permeability interval of a two layers reservoir 
but, in the high permeability layer, the discretization has little effect. When only the 
high permeability layer of a two layers system is perforated (see Section 4.2.3), the 
discretization of the non-perforated interval into several layers tends to exhibit the half 
unit slope derivative straight line characteristic of the spherical flow regime of a well in 
partial penetration presented in Section 3.4 (Larsen, 1988; Boutaud et al., 1996). 

Conversely, the double permeability model can be used for the analysis of multiple 
layer reservoirs. Assuming an n layers system is described as a sequence of alternating 
high and low permeability layers, the response can be approximated by that of one 
element of the series (a two layers reservoir) produced at rate 2q/n. In the analysis of the 
multiple layer reservoir, it is therefore possible to group the n/2 high permeability layers 
into "Layer 1" and the n/2 low permeability layers into "Layer 2". Such approximation 
provides an accurate estimate of the total mobility and storage ratios ~c and co. In the 
interpretation of ,r to estimate the vertical permeability with Equation 4.46, the layer 
thickness h~ and h2 should not be defined as the total thickness of the high and low 
permeability layers. In his discussion of layer refinement, Larsen (1988) illustrated the 
difficulty in the interpretation of the cross flow parameter A with a three layers example. 

Transient reservoir cross f low 

Following Chen et al. model (1990), transient reservoir cross flow is defined, as for the 
unrestricted double porosity model of Section 4.1.3, by introducing vertical pressure 
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gradients in the low permeability layer. The vertical pressure gradients in the high 
permeability layer are neglected. 

With transient reservoir cross flow, the low permeability layer reacts quickly to any 
change of pressure in the high permeability drain. The transition starts earlier than in 
case of the semi-permeable wall model: the two layers no cross flow regime is short 
lived and the transition is longer. During the transition, the derivative tends to stabilize 
at a level between 0.5 (homogeneous system) and 0.25 (unrestricted double porosity 
model, ~c=l). The level of the intermediate stabilization is a function of ~c. 

When a skin is introduced between the layers, the Chen et al. model (1990) reproduces 
the double permeability transition of Section 4.2.2 for the semi-permeable wall. For 
large skin between the layers, the effective interporosity flow parameter "~eff is given by 
Equation 4.47. 

When there is no skin between the layers, the two models are clearly different provided 
the contrast between the two layers is very high (~-> 0.99 and co < 0.01), making the 
transition characteristic. In such case, the unrestricted double porosity model with slab 
matrix block can be used as an approximation. In other cases, Equation 4.48 seems to 
provide acceptable results (Boutaud de la Combe et al., 1996). 

4.2.7 Commingled systems with equal or unequal initial pressure 

Many authors have discussed pressure responses from commingled systems (Lefkovits 
et al., 1961; Tariq and Ramey, 1978; Larsen, 1981; Bourdet, 1985; Ehlig-Economides 
and Joseph, 1985; Joseph et al., 1986; Larsen, 1989; Park and Home, 1989) considering 
infinite or closed system behavior. Different initial pressure between the layers has also 
been envisaged (Larsen, 1981; Agarwal et al., 1992; Aly et al., 1994). In the following, 
transient pressure analysis in an infinite multiple layer reservoir without cross flow is 
briefly reviewed. 

Same initial pressure 

Commingled responses have been illustrated on the semi-log plots Figures 4.44 and 
4.46 for a two layers system with no skin at the wellbore. When there is no reservoir 
cross flow, the amplitude of the response is larger than that of the equivalent 
homogenous system. Furthermore, the semi-log straight line is not accurately defined 
until long elapsed time. 

In multiple layer systems, Larsen (1981) defines the pseudo-skin factor induced by 
layering as: 
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l fi-~ kih, In (kh/qScth)i 
(4.74) 

The layering pseudo-skin factor is relatively small in magnitude. In the case of large 
contrast such as on the example tc = 0.999 and co = 0.001 of Figure 4.44, the pseudo- 
skin is estimated at SL=3.5. For the curve tc = 0.9 and co = 0.1 of Figure 4.46, SL is only 
0.9. 

When in addition the layers have different mechanical skin factors, Larsen shows that 
the semi-log slope is larger at early time, and it decreases slowly with increasing time to 
reach finally the equivalent total system slope of Equation 4.65: 162.6qBlt/khfofA L . For 

a two layers reservoir, the apparent early time semi-log slope is a function of ~c and co, 
but also of the skin contrast (S~- $2). As the reduction of slope is slow, the author 
indicates that the analysis of an approximate semi-log straight line on early time data 
could yield a total kh up to 50% below the correct value. This error can be larger when 
both positive and negative skins are present in systems with more than two layers. 

When the semi-log approximation is valid, the global skin has two components: S,~ of 

Equation 4.74 and the average mechanical skin S ,  resulting from the skin ~ of the 
different layers. When the layer skins ~ are not considerably different, the author 

proposes to approximate S with" 

,:1 khToTAL i:1 
(4.75) 

On build-up responses, the extrapolated semi-log straight line to infinite shut-in time 
can be significantly lower than the true build-up pressure at At = oo. As discussed in 
Section 5.8.3, some layers can show boundary effects when other are still infinite acting 
at time of shut-in. Such configuration produces a late time rise of the build-up pressure 
above the semi-log straight line. 

Unequal initial pressure 

In case of different initial pressure, a cross flow through the wellbore is established as 
soon as the well is perforated. If the well is not opened to surface production, the 
bottom hole pressure tends asymptotically towards the average initial pressure. For an 

infinite system, pj is defined as the kh average of the different initial pressures with 

(Larsen, 1981): 

p---~ _ ~_~ kj hj 
Pij (4.76) 

j=l khTOTAL 
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The author developed a technique to analyze this initial transient regime with a plot of 
the reciprocal of a pressure difference versus the logarithm of time. 

It is interesting to note that, if the non-producing commingled reservoir is closed, the 

final average reservoir pressure p can be greater or smaller than the "infinite" average 

initial pressure p, of Equation 4.76 (Boutaud de la Combe et al., 1996). The average 

reservoir pressure p is defined as the "pore volume" average of the initial pressures 

(Larsen, 1981): 

P = c,: P'/  (4.77) 
./=1 //Ct TOTAL 

where ~ is the pore volume ~ hA of the closed layerj. 

When the well is opened to production, the effect of the initial transient due to unequal 
pressures is inversely proportional to the production rate. Larsen concludes that a high 
flow rate is desirable to reduce this adverse pressure trend. Before the test, a long shut- 
in period allowing cross flow through the well also tends to minimize the effect of 
unequal pressures (Agarwal et al., 1992). 

During shut-in periods, the transient effect of unequal pressures ultimately dominates 
the build-up response. On early time data, the semi-log straight line does not in general 

extrapolate to the average initial pressure p: of Equation 4.76, and analysis of the late 

time data is uncertain. 

4.3 COMPOSITE RESERVOIRS 

The composite reservoir models, like all basic heterogeneous reservoir solutions 
presented in this chapter, consider two distinct media in the reservoir. Each component 
is defined by a porosity and a permeability, and they are located in different reservoir 
regions. Two geometries are considered for the interface between the reservoir areas. 

Radial composite systems have been studied from the early 1960's (Hurst, 1960; Loucks 
and Guerrero, 1961; Carter, 1966; Satman, 1980; Olarewaju, 1989): it is assumed that 
the well is at the center of a circular zone, the outer reservoir structure corresponds to 
the second element (Figure 4.51). This geometry is used to describe a radial change of 
properties, resulting from a change of fluid or formation characteristic. Such change can 
be man-induced in case of injection wells and in some cases of damaged or stimulated 
wells. It can also be observed when oil and gas saturations vary around the wellbore, for 
example when the reservoir produces below bubble point or dew point (see Section 
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8.2.2). Radial composite solutions have also been used in some cases of sparsely 
fractured reservoirs, when the well is in a block. The radial composite model presented 
in this section is an extension of the analytical solution of Satman (1980). 

With the linear composite model, a vertical plane interface is assumed between the two 
reservoir regions (Bixel et al., 1963; Streltsova and McKinley, 1984 b; Ambastha et al., 
1987): the reservoir is divided into two semi-infinite zones, the well is located in one of 
them (Figure 4.51). This composite configuration can be observed for example when a 
linear fault separates two different reservoir elements with different characteristics, or 
when a water drive is active in one direction of the producing zone. The linear 
composite model presented in the following corresponds to the solution of Ambastha et 
al. (1987), completed by the effects of wellbore storage and skin. 

The hypotheses used for the description of composite reservoirs are presented in Section 
4.3.1, the models behaviors are discussed in Section 4.3.2 for the radial model, and in 
Section 4.3.3 when the interface is linear. In Section 4.3.4, extensions of the models to 
multiple composite systems are presented (Barua and Home, 1987; Acosta and 
Ambastha, 1994; Abbaszadeh and Kamal, 1989; Bratvold and Home, 1990; Kamal et 
al., 1992; Bourgeois et al., 1996 b; Kuchuk and Habashy, 1997), and tests in reservoirs 
with complex changes of permeability (Levitan and Crawford, 1995; Oliver, 1990; 
Thompson and Reynolds, 1997; Oliver, 1992; Feitosa et al., 1993; Yeh and Agarwal, 
1989; Kuchuk et al., 1993; Tauzin and Home, 1994). Practical interpretation of 
injection wells has been discussed by several authors (Abbaszadeh and Kamal, 1989; 
Bratvold and Home, 1990; Yeh and Agarwal, 1989), the main conclusions are 
summarized in Section 4.3.5. 

In this chapter, only the response of a well with wellbore storage and skin is envisaged, 
but the radial composite solution has been also extended to the case of a fractured well 
(Chu and Shank, 1993, Chen and Raghavan, 1995). 
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4.3.1 Composite reservoir models 

Composite reservoir assumptions 

A discontinuity defines two distinct homogeneous regions in the infinite reservoir. The 
interface is statiotTat 3, and it has no thickness. The mobility (k/!0 and storativity (~bc,) are 
different on each side, but the reservoir thickness/7 is constant. The change of reservoir 
properties is abrupt, and there is tTo resistance to .flow .between the two reservoir 
regions. 

The well, affected by wellbore storage and skin, is located in the region 1: with the 
radial composite model, it is at the center of a circular zone of radius R, with the linear 
composite, the interface is at a distance k (Figure 4.51). The characteristics parameters 
of the second region are defined with a subscript 2. 

Definition 

The changes of reservoir mobility,' (M/l) and storativitystorativity (0bc,) are expressed 
with the mobility 3I and storativity F ratios, defined as region 1 compared to region 2" 

M -  (k/C<), 
(/<1i,)2 

(4.78) 

(4.79) 

A mobility ratio AI greater than 1 indicates a decrease of mobility from region 1 to 
region 2. A decrease of the storage is expressed with the raiio F greater than 1. 

Dimensionless variables 

All dimensionless variables are expressed with reference to the parameters of the region 
1 around the well. The dimensionless pressure is 

klh 
PD = Ap (4.80) 

141.2qB/.t I 

the dimensionless time: 

0000264kl At (4.81) 
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and the dimensionless wellbore storage" 

0.8936C 
: hd (4.82) 

The composite reservoir response curves are presented with the dimensionless pressure 
p> of Equation 4.80 versus the dimensionless time group tl-/C>: 

tD = 0.000295 klh At (4.83) 
CD ~1 C 

The skin factor expresses a dimensionless pressure change around the wellbore 
(Equation 1.11). As the dimensionless pressure of Equation 4.80, it is defined with 
respect to the inner zone parameters. 

S - klh 
APski n (4.84) 

141.2qB/a 1 

The distance between the well and the interface is expressed in dimensionless terms as 
R> or L>, depending upon the model geometry. For radial and linear systems, the 
distances are respectively: 

R 
R D = ~ (1.21) 

P'w 

L 
L D = ~ (1.34) 

/"w 

4.3.2 Radial  composite  reservoir 

Olarewaju and Lee (1989) presented a pressure and derivative type-curve for a well 
with wellbore storage in a radial composite reservoir. They use a dimensionless time 
group based on the distance R to the interface, and the curves are defined in term of 
CD RD 2. 

In the following, the mechanical skin of Equation 4.84 is included, and the usual tD/CD 
time group is used (Equation 4.83). Five dimensionless parameters are used to define 
the response of a radial composite system: CD, S for the well and RD, M, and F for the 
reservoir. No type-curves are available for this configuration, a log-log match of the 
complete response is made on computer-generated pressure and derivative curves. 
When the analysis is performed by hand, the different regimes of a radial composite 
response can also be described individually, with the homogeneous log-log type-curve 
and the specialized semi-log scale. 



1 8 4  Reservoir heterogeneities 

Behavior 

With the radial symmetry of the system, the two reservoir regions are seen in sequence: 
1. First, the pressure response depends upon the inner zone characteristics, and the 
well behavior corresponds to a homogeneous reservoir response. 
2. When the circular interface is reached, a second homogeneous behavior, 
corresponding to the outer region, is observed. 

Influence o f  M 

In Figure 4.52, derivative responses are presented for different values of  the mobility 
ratio M: the parameters of  the well and of the inner zone are constant, the two reservoir 
regions have the same storativity (F = 1). 

In Equation 4.80, the dimensionless pressure is defined with respect to the inner zone 
parameters, the first derivative plateau corresponds then to 0.5. Before the different 
curves diverge, the early, time data is described by the type-curve for a homogeneous 
reservoir, Figure 2.22. 

For large values of mobility ratio (?~I =2 and 10 on Figure 4.52), the mobility of the 
outer region is reduced, and the second derivative plateau is displaced upwards (to 
0.5M). The dotted derivative curves show the drawdown response of a well in a closed 
circle of same radius Ri): it illustrates the limiting case of a zero mobility in the outer 
zone. 

In the same Figure 4.52,/o~r values of the mobility ratio are shown by a reduction of the 
derivative amplitude (curves M=0.5 and 0.1). The corresponding limiting case, 
illustrated by the second dotted derivative curve, is a circle at constant pressure, when 
the mobility of the outer region is infinite. 
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Figure 4.52. Log-log plot of radial composite responses, changing mobility and constant 
storativity. PD versus tD/CD. CD = 100, S = 3, Ro = 700, M = 10, 2, 0.5, 0.1, F = 1. 
The two dotted curves correspond to the closed and the constant pressure circle solutions. 
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Figure 4.54. Log-log plot of radial composite responses, constant mobility and changing 
storativity, pz) versus tz)/Cz). Cz) = 100, S = 3, Rz) = 700, M = 1, and F = = 10, 2, 0.5, 0.1 
The two pressure curves correspond to F = 10 and F = 0.1. 

On semi-log scale, the radial composite examples of Figure 4.52 exhibit two straight 
lines as illustrated on Figure 4.53. During the initial radial flow in the inner zone, the 
slope is rn (Equation 4.88). The slope of the second line at late time (raM, or Equation 
4.89) defines the mobility of the outer region. For a mobility ratio M higher than 1, the 
semi-log straight line slope is increased, and for M values lower than 1, the second line 
tends to flatten, towards a constant pressure behavior for very low values of M. 

Influence of f  

For the examples chosen in Figure 4.54, it is assumed that the two regions have the 
same mobility: M=I. The well and inner zone parameters of Figure 4.52 examples are 
used, several pressure and derivative responses are presented for different storativity 
ratios F. 

When F=0.1, the storage of the outer zone is 10 times larger than the storage of the 
inner zone (with a constant mobility through the reservoir). The response corresponds to 
an increase ofstorativity. A similar effect is observed in the double porosity model for 
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restricted interporosity flow, when the response moves from the fissures to the total 
system flow regime (see Section 4.1.2). The shape of the curve for F=0.1 is in fact close 
to a double porosity response: the derivative shows a valley between the two plateaus at 
0.5. 

Conversely, when F is greater than unity (and M=I), the storage of the outer zone is 
reduced, and the response shows a decrease of storativity from early time to late time: 
the transition on derivative curves exhibits a hump above the two 0.5 plateaus, as on the 
curve F = 10 of Figure 4.54. 

Figure 4.55 is a semi-log plot of the four radial composite log-log curves of Figure 4.54. 
The mobility is constant in the reservoir: during the two homogeneous behaviors and 
the two semi-log straight lines have the same slope. 
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Figure 4.55. Semi-log plot of Figure 4.54 radial composite examples. 
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When the storativity increases (curve F=0.1 of Figure 4.55), the transition between the 
two parallel semi-log straight lines tends to the horizontal as for a double porosity 
response. By symmetry, when the storativity decreases (curve F=10), the transition 
between the two parallel lines tends to the vertical, suggesting then the opposite 
reservoir configuration. 

Radial composite responses 

The duration of the first homogeneous regime is a function of the inner region radius: 
with a large RD, the transition occurs later. Before the transition, the early time response 
corresponds to the behavior of a well with wellbore storage and skin in a homogeneous 
reservoir. 

The shape of the transition is a function of M and F. When both the mobility and the 
storativity change, the two transitions illustrated on Figure 4.52 and 4.54 examples are 
superimposed on the response. For example, both low mobility and low storage in the 
outer zone tend to increase the rate of change of pressure during transition and, when 
the outer zone storage is very small, the derivative curve can show a hump during 
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transition, before the second plateau. For a given mobility ratio M, the shorter transition 
is obtained for constant storativity. 

Matching procedure with the pressure and derivative log-log data curves 

Pressure and time matches are defined by the 0.5 line and the early time unit slope 
wellbore storage line. The permeability thickness product k~h of the inner region is 
estimated from Equation 4.80: 

k,h- 141.2 qB/2, (PM) (4.85) 

with Equation 4.83, the wellbore storage coefficient is obtained: 

C-O.O00295klhl 1 ) (4.86) 

At early time, the homogeneous CD e2x curve matching the data before the start of 
transition is used, with Equation 2.11 and Equation 4.82, to estimate the skin factor. The 
skin, defined in Equation 4.84 with the inner zone parameters, corresponds to the 
wellbore skin. 

The mobility ratio M is obtained by comparing the level of the two derivative 
stabilizations: 

M - A/~ stab. (4.87) 
@ 1  st stab. 

The storativity ratio F is in general difficult to access. When the match is performed on 
a complete radial composite response generated by computer, F is adjusted from the 
derivative transition. 

Semi-log analysis 

The first semi-log straight line describes the inner zone response. From Equation 1.15, 
the pressure is expressed as: 

Ap = 162.6 qB~lklh Ilog At + log (~/-/Ct)l r2kl w - 3.23 + 0.87S / (4.88) 

The analysis of the first semi-log line provides the mobility of the inner zone, and the 
wellbore skin factor (also called Sw). 
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The second line, for the outer zone, is defined by: 

f 
= 162.6 qBP2 ~logAt An + l o g ~  

k2h 
k2 / 

(~b/'lct )2 r2w - 3.23 + 0.87S7~ (4.89) 

From the second straight line, the outer zone mobility is estimated and, if the first line is 
also present on the response, the mobility ratio M is defined. 

The total skin ST is calculated from the second line and includes two components: the 
wellbore skin factor S and a radial composite apparent skin effect SRc, function of the 
mobility ratio M and the radius Rj~ of the circular interface, as shown in Equation 1.13. 
In Equation 4.89, $7 is defined with respect to the outer zone storativity and mobility. 
The corresponding pressure change Ap.sk,,, j is expressed: 

S T = k2h APskm 7~ (4.90) 
141.2qB/a 2 

The two components of S~ are defined as: 

$7 =-~-1 S+ -1 lnR/~ 
M 

(4.91) 

The second term of Equation 4.91 is the radial composite apparent skin effect SRC 
discussed in Section 1.2.3. It describes the influence of the inner zone during the late 
time homogeneous response. When the near wellbore mobility is higher than in the 
outer zone (M >1), the inner zone appears as a negative skin. In the opposite case 
(M<I) ,  a reduced mobility around the wellbore is equivalent to a well damage, and the 
apparent radial composite skin is positive. Equation 4.91 is further discussed in the 
multiple composite model, Section 4.3.4. 

When the two semi-log straight lines are clearly defined, the analysis provides M, S and, 
if the outer zone storativity is known, $7 can be calculated. The radius Rz2 of the circular 
interface between the two reservoir regions can then be estimated from Equation 4.91. 

When the storativity of the outer zone is not known and (~bc,)2 is used in Equation 4.89 
for the calculation of &, the global skin is wrong by 0.5 ln(f ') .  If (~bc I )l > (~bc,)2, S7. is 

over estimated (as suggested for example by the increased amplitude of the curve F=10 
on Figure 4.55). A similar effect of the storativity on the skin factor calculated from 
semi-log straight line has been already discussed for double porosity reservoir responses 
with Equation 4.30. 
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Build-up analysis 

With the radial composite model, the pressure behavior changes in the course of the 
response. As for other heterogeneous models, the superposition method used in build-up 
analysis can introduce distortions on the derivative response curve (see Section 2.3.4). 

In Figure 4.56, a radial composite build-up curve is compared to the original drawdown 
model response. At the time of shut-in, the production period had just reached the start 
of the transition. During the build-up, the extrapolated drawdown has passed beyond the 
early time behavior of the inner zone: as long as the shut-in period has not reached the 
second regime, the derivative of the build-up curve with respect to the superposition 
time does not follow exactly the original drawdown behavior. It drops slightly below 
the 0.5 line, and the transition towards the second homogeneous regime appears 
delayed. 

The curves of Figure 4.56 shows also that, on a Homer plot of the radial composite 
build-up example, the first semi-log straight line can be distorted and the resulting slope 
is too low (the mobility of the inner zone (k~h//al) would be then over-estimated). The 
extrapolated pressure to infinite shut-in time is taken from the second line to provide the 
correct p*= p;. 

When, such as in some lens type reservoirs, the mobility of the outer reservoir region is 
significantly smaller than in the inner zone, the build-up effect can produce a valley 
shaped response, as illustrated on Figure 4.57. In this example, the mobility of the outer 
reservoir region is reduced by a factor of 100, the dimensionless production time prior 
to shut-in is tpJCD=3200. If the duration of the shut-in period is of the same order of 
magnitude, only the downward trend of the derivative is recorded. Both the drawdown 
and the build-up responses show the characteristic behavior of a closed depleted system 
(See Sections 5.4 and 5.9.2), and the late time contribution of the infinite outer reservoir 
region can be overlooked. 
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Figure 4.56. Log-log plot of  a build-up radial composite response, changing mobi l i ty and constant 
storativity. PD versus tD/CD. CD = 11500, S = 5, RD = 2000, M = 3 and F =1. 
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Figure 4.57. Log-log plot of a build-up radial composite response, changing mobility and constant 
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The dotted pressure and derivative curves correspond to the drawdown solution. 

The build-up data plot Figure 4.50, of the double permeability field example Section 
4.2.5, illustrates a possible radial composite test response. 

4.3.3  L i n e a r  c o m p o s i t e  reservo ir  

For lineal composite responses, the five dimensionless parameters are: Cz), S, and Lz), 
M, and F. As for the radial composite solution, no log-log type curve is available, the 
match is performed on computer-generated pressure and derivative curves. 

Behavior 

Two homogeneous regimes are seen on linear composite reservoirs responses but the 
second homogeneous regime describes an equivalent total system, not the reservoir 
region far from the well as it is in case of radial symmetry: 
1. First, the region around the well is producing alone, and the pressure behavior 
corresponds to a homogeneous reservoir. 
2. When the linear interface is reached, the two regions are producing together. A 
second homogeneous behavior is observed, the corresponding equivalent homogeneous 
system is defined by the average properties of the two regions. 

Influence of M 

During the second homogeneous regime of linear composite reservoirs, the two 
reservoir regions are participating to the production. The two limiting cases are defined 
as an infinite, or a zero mobility in the external region. In Figure 4.58, the two limit 
behaviors, shown as dotted curves, correspond respectively to a constant pressure and a 
sealing linear boundary (see Chapter 5). 
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Figure 4.58. Log-log plot of linear composite responses, changing mobility and constant 
storativity, pD versus tz)/CD.CD = 100, S = 3, LD = 700, M = 10, 2, 0.5, 0.1, F =1. 
The two dotted curves correspond to the sealing and the constant pressure boundary solutions. 

Figure 4.58 presents, between the two limiting cases, several linear composite examples 
generated for different values of the mobility ratio M: the two reservoir regions have the 
same storativity (F =1), the mobility ratio varies from l0 to 0.1. The same well 
parameters as on the radial composite examples of Figure 4.52 are used. 

As for the radial composite responses discussed in Section 4.3.2, the early time data is 
described by the type-curve for a well with storage and skin in a homogeneous 
reservoir, of Figure 2.22. With the dimensionless variables defined in Section 4.3.1 for 
the inner region, the first derivative plateau corresponds to 0.5. 

The level of the second plateau indicates the apparent mobility of the equivalent 
homogeneous regime. This is obtained as the average of the two regions mobility: 

- + - 0 . s  1 + 

APPARENT 2 M- 
(4.92) 

When the mobility of the second region is small, the second derivative plateau is above 
the first. For example, with the curve M=I 0 on Figure 4.58, the apparent mobility of the 
equivalent homogeneous regime is only 55% of (k//)l, and the second plateau 
corresponds to a dimensionless pressure of 0.91. As opposed to radial composite 
responses, the level of the second stabilization is limited to twice the level of the first 
plateau, illustrated by the sealing fault dotted curve. 

With values of the mobility ratio less than 1 (curves M=0.5 and 0.1), the mobility of the 
second region is larger, and the level of the final derivative stabilization is less than 0.5. 

On semi-log scale, as illustrated on Figure 4.59 with the same example responses, linear 
composite systems exhibit two straight lines. The slope of the second line at late time 
defines the apparent mobility of Equation 4.92. 
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Figure 4.59. Semi-log plot of Figure 4.58 linear composite examples. 
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Linear composite responses 

The duration of the first homogeneous regime is a function of the distance between the 
well and the interface: with a large Lz), the transition occurs late. The shape of the 
transition before the second plateau is a function of M and F. The transition is in general 
not well defined with linear composite responses, F is frequently difficult to determine. 
The final derivative stabilization defines the apparent mobility, and therefore M. 

On Figure 4.60, a radial and a linear composite response are compared. The parameters 
have been adjusted so that the two models show the same derivative stabilizations 
during both homogeneous behaviors, the distance of the interface being also the same" 
L])=R])=300. The apparent mobility of the second regime gives, with the linear 
composite solution, a mobility ratio At-5 whereas, on the radial composite curve, it is 
only M = 1.667 (Equation 4.92). 
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Figure 4.60. Pressure and derivative responses for a well with wellbore storage and skin in a 
composite reservoir, comparison of radial and linear interfaces. 
Log-log scales, PD versus tD/CD. Cz) = 200, S = 0. 
Linear composite: M = 5, F =1, LD = 300. Radial composite M = 1.667, F =1, RD = 300 
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Matching procedure with the pressure and derivative log-log data curves 

The matching procedure is the same for both types of composite reservoirs, with a linear 
or radial interface: pressure and time matches are defined by the unit slope and the 0.5 
straight lines. The permeability thickness product klh of the inner region is estimated 
from Equation 4.85, the wellbore storage coefficient from Equation 4.86. The wellbore 
skin is estimated from the early time CDe 2s curve match with Equation 2.11 and 
Equation 4.82. 

The two derivative stabilizations are used to estimate the mobility ratio M. From the 
definition of the apparent mobility Equation 4.92, 

M - A])2nd stab' (4.93) 
2 @ 1  st stab. -- @ 2nd stab. 

The storativity ratio F is in general difficult to access, even when the match is 
performed on a computer generated response. 

4.3.4 Extensions of the composite reservoir models 

In the following section, several variations of the composite reservoir models presented 
above are reviewed. For multiple composite solutions, the radial and linear composite 
models consider n regions with concentric or parallel interfaces. With these models, it is 
possible to refine the abrupt change of properties assumed with the two region models. 
In another approach, the mobility and storativity are not changing step-wise but defined 
as a function of the distance. Finally, the estimation of permeability distribution from 
well test data is discussed. 

Multiple composite systems 

Several authors considered multiple composite radial systems. The extension of the 
radial composite model to three regions was considered by Barua and Horne (1987) and 
an n regions radial composite model has been envisaged for the analysis of falloff tests 
by Acosta and Ambastha (1994), Abbaszadeh and Kamal (1989), and Bratvold and 
Home (1990). The multiple composite model has also been used for the identification of 
reservoir damage in producing wells from a water-flooded field (Kamal et al., 1992) 
(see Section 4.3.5). 

Figure 4.61 presents an example of 4 regions radial composite response. The circular 
interfaces are defined at R~D = 1000, R2D = 2500 and R3D = 5 0 , 0 0 0 ,  the mobility is 
respectively 1.5, 5 and 10 times larger than in the inner region and the storativity is 
constant (Fi=l). The thin curves describe 2 zones radial composite responses with the 
same mobility in the infinite outer reservoir region. The three inner regions are changed 
into one circular zone with respectively R1D, M=0.1; R2D, M=0.15 and R3D, M=0.5. 
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Figure 4.61. Pressure and derivative responses for a well with wellbore storage and skin in a 4 
zones radial composite reservoir. Log-log scales, pz) versus tyCz). 
C:~ = 5440. S = 0. F = 1. RI:~ = 1000. k//l:= 1.5 k//al. R::) = 2500. k//13 = 5 k/yi, RyD = 50,000, 
k//z4 = 10 k//z~. The thin curves correspond to radial composite responses with only' one zone 
(R> = 1000, ~1= 0.1, R> = 2500, ,~I = 0.15, R/) = 50,000, M = 0.5). 

The first and the third radial composite thin derivative curves on Figure 4.61 match 
partially the multiple composite response but, at intermediate time, the curve for the 
second zone does not. At time t l /C/~=250, the approximation of  a homogeneous inner 
region is not applicable to the multiple composite response. When the second interface 
R21~ is reached, the central region of radius R~e~ delays the transition compared to the two 
region radial composite thin curve with M=0.15. 

In terms of pressure behavior, the curve (RI/,=1000, M=0.1) is close to the multiple 
composite response on Figure 4.61. This suggests that the large global skin of  the 
multiple composite curve is mainly produced by the small low permeability region close 
to the well. As suggested by Equation 4.91, the large region with a moderately reduced 
permeability has less effect on the global skin. 

The two regions radial composite configuration is a flexible model that offers a large 
range of  derivative signatures. This flexibility is higher with the multiple composite 
model and, for a realistic match, the distribution of the different radial zones 
characteristics should be supported by geological or petrophysical considerations. 

In a multiple composite system, the radius of  investigation r, can be expressed as a 
function of  the permeability distribution. Assuming a constant storativity, when the 
radius of  investigation r, lies between the interfaces R,, and R,,+I, r, is defined as: 

. . . .  1 -  + o .  

+ . . .  

(4.94) 
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Bourgeois et al. (1996 b) extended the linear composite solution of Ambastha et al. 
(1987) to a three zone composite system with parallel boundaries (see discussion of 
channel reservoir Section 5.9.1). Kuchuk and Habashy (1997) developed a multi-linear- 
composite solution to describe reservoirs with lateral changes of properties, such as in 
deltaic sandstone deposit, or when a network of partially communicating faults 
improves the permeability at some distance away from the well (see Section 5.6). 

Unbroken change of properties in composite systems 

In a different approach, Levitan and Crawford (1995) envisaged gradational changes of 
properties, instead of the piecewise sharp interface models used by other authors. They 
considered both radial and linear geometries, for a symmetric system. The storativity 
(r and transmissibility (kh//) are function of the distance from the well. 

Figure 4.62 presents an example of radial composite response when the permeability 
increases linearly from R> = 1000 to R> = 10,000, the storativity is assumed to be constant 
(F=I). The two thin curves describe the radial composite responses with R>=IO00 and 
RD=10,000. With a linear increase of mobility, the transition between the two derivative 
plateaus is smoother than in the case of a sharp change of properties. 

Discussion of permeability distribution 

Oliver (1990) investigated the perturbation produced by radial changes of permeability. 
He showed that the derivative of the wellbore pressure is a weighted average of the 
inverse permeability inside the drainage radius. The weighting function, expressed as a 
function of time and distance, shows a maximum and drops to 0 beyond the radius of 
investigation. The maximum indicates that the wellbore pressure responds primarily to 
the permeability at a distance very similar to the radius of investigation of Equation 
1.22: 
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Figure 4.62. Pressure and derivative responses for a well with wellbore storage and skin in a 
radial composite reservoir, linear change of transmissivity. Log-log scales, PD versus tD/CD. 
CD =1000, S=O, F=I. From Rlz)=1000 to R2f o = 1 0 , 0 0 0 ,  M decreases linearly from 1 to 0.1. 
The thin curves correspond to radial composite responses (Rz)=1000, RD =10,000). 
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rl) - 0.92.~fi D (4.95) 

Thompson and Reynolds (1997) correlated the weighting function with reservoir rate 
versus the radial distance. In a circular region near the well, the rate is equal to the sand 
face flow rate and this inner region has not effect on the derivative response. Only the 
next circular region where the rate changes until the drainage radius is reached, 
influences the wellbore pressure derivative. 

Oliver's theory has been used in a tentative way to determine the permeability profile 
from wellbore pressure data, assuming radial symmetric systems and constant porosity 
(Oliver, 1992; Feitosa et al., 1993). Algorithms are proposed to construct a radial 
permeability profile, but the solution is non-unique. Levitan and Crawford (1995) 
investigated similar problem and they conclude that a heterogeneity function can be 
defined from the analysis of well test data, but not the true permeability and porosity 
distribution. 

For water injection wells, Yeh and Agarwal (1989) propose a simpler approach to 
convert the derivative curve into a mobility profile versus the radial distance. For each 
point (Ap'= dAp/d ln At, At ), they use Equation 2.24 and the radius of investigation r, 

of Equation 1.23. Such procedure gives a volumetric average mobility profile: 

(k,.<, /%) 
A t - k + - 0 . 5 ~  

\/~<, /aw ,. 

and 

141.2qB 
(4.96) 

r =  0.0241~@~ A t -  0.0241141.2qB. At 
6c, h 2AV' 

(4.97) 

Non-radial geometry has also been considered for arbitrary heterogeneous reservoirs 
(Kuchuk et al., 1993; Tauzin and Home, 1994). The solution of the inverse problem 
becomes problematic. 

4.3.5 Injection wells 

In the following section, the applicability of the radial composite solution to water 
injection wells is discussed. With a two region radial composite system, the change of 
mobility and compressibility is abrupt and stationary (See Section 4.3.1). This is not the 
case with water injection wells : 

�9 The water saturation is constant at Sw=l-Sor only in the region near the well from 
which oil has been flushed. Afterwards, it decreases in a transition zone until the flood 
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front is reached. At the injection front, water saturation drops abruptly to the initial 
water saturation &,; of the outer unflooded region. 

�9 The pressure behavior of an injection well is different during injection and falloff. 
During the injection period, the flooded region expands with the cumulative injection 
volume, and a moving interface model has to be Used. During a falloff, if the injection 
time is large compared to the shut-in period, the stationary interface hypothesis is 
applicable (Abbaszadeh and Kamal, 1989; Bratvold and Home, 1990; Yeh and 
Agarwal, 1989). 

Abbaszadeh and Kamal (1989) presented injection and falloff solutions considering the 
effect of saturation gradient, Bratvold and Home (1990) introduced non-isothermal 
effects due to injection of cold water in a hot oil reservoir. 

In the following, the reservoir is assumed homogeneous. When the injection well 
intercepts several layers, a multiple layer composite reservoir model can be used (see 
Section 4.4.3). 

Injection period 

After enough injection time, when a constant water saturation region is established 
around the well, the injection pressure response follows a semi-log straight line whose 
slope yields the water region mobility. The apparent skin estimated from injection data 
is made of two components: the wellbore skin and a skin effect due to the two phases 
fluid condition when the water displaces the oil. It is defined as a function of the rock 
and fluids characteristics and, in practice, the injection skin is difficult to interpret. 

Falloff 

As for a build-up period after a production, a falloff response depends upon the duration 
of the injection prior to shut-in, and a build-up or multiple-rate analysis method should 
be used. Due to the different behavior during injection and falloff, the superposition 
method is in theory not applicable to generate the shut-in response. In practice, it is 
found that, when a radial composite solution with a stationary front is used to analyze 
the falloff, the superposition described in Section 2.2.2 does not introduce a significant 
error. Falloff responses can be approximated with a standard build-up or multiple-rate 
radial composite type curve (Abbaszadeh and Kamal, 1989). 

On a log-log derivative plot of falloff data, the difference between the first and the final 
derivative stabilizations define in theory the mobility ratio M (Equation 4.87). The skin 
is estimated from the early time homogeneous match for the water zone response, as 
described in Section 4.3.2. Between the two plateaus, the derivative response describes 
the changes of saturation in the transition zone separating the inner water region and the 
original reservoir fluid region. 
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Figure 4.63. Pressure and derivative responses for a falloff. Well with wellbore storage and skin. 
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In practice, the inner region with constant water saturation &,=l-So,. is generally small 
(if not absent), and most of the flooded region is transition, the first derivative 
stabilization is frequently not seen. After wellbore storage, the response shows the 
reduced mobility of the transition, including possible temperature effects (Bratvold and 
Home, 1990). When the mobility ratio M is not significantly greater than unity, the 
transition is described by a hump such as on the synthetic falloff example of Figure 4.63 
(this example has been generated with a multiple composite model, for a given radial 
distribution of the total fluid mobility). If the typical falloff of Figure 4.63 is matched on 
a the radial composite model, the reduction of mobility is ignored and the match is 
frequently poor at transition time. In such case, both the mobility of the inner region and 
the radius Rio of the injection front are underestimated (Abbaszadeh and Kamal, 1989). 

Multiple composite radial models have been developed to describe the saturation 
gradients in the reservoir: the circular interfaces are moving during injection, and 
stationary after shut-in (Abbaszadeh and Kamal, 1989; Bratvold and Home, 1990). 
Such refined models require the relative permeability curves for the reservoir to be 
known, and therefore they, are reservoir dependent. 

When Equations 4.96 and 4.97 are used to estimate the average mobility profile, Yeh 
and Agarwal (1989) conclude that the flood front radius corresponds to the minimum of 
the average mobility curve. 

4.4 C O M B I N E D  RESERVOIR HETEROGENEITIES 

The response of fissured reservoirs with changing block sizes has been presented in 
Section 4.1.4 for a uniform fissure network. In the following, the fissured layered and 
the fissured radial composite models are considered to describe respectively a vertical 
or a radial change of fissure characteristics. Next, radial composite behavior in layered 
formations is presented and several examples of layered radial composite responses are 
discussed. 
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4.4.1 Fissured layered reservoirs 

Several authors have envisaged presence of fissures in layered reservoirs (A1-Ghamdi 
and Ershaghi, 1994; Larsen, 1988). The two different types of heterogeneities are 
combined on the response and several sequences of flow regimes are possible, 
depending which system reacts first. In the following, two examples are briefly 
discussed to illustrate fissured layered reservoir responses. 

On Figure 4.64, the thin curves describe a double permeability response with low 
contrast (co = 0.1, ~7 = 0.7) and an early cross flow (2 =10-3). When the two layers are 
fissured, and assuming restricted interporosity flow from matrix to fissure, the 
derivative exhibits two v a l l e y s .  For each layer, the storativity ratio between the fissure 
and the layer storage (Equation 4.4) is o)1=oo2=0.01 and the interporosity flow 
coefficient are 21=10 .5 and/~2=5X10 7 respectively, as on the triple porosity example of 
Figure 4.33. With this layer configuration, all parameters are equivalent to those of 
Figure 4.33 and the fissured layered response matches the triple porosity example 
(shown with circles on Figure 4.64). When the vertical communication is good in a 
fissured layered reservoir, grouping of matrix size by layers has no effect on the 
response. 

When reservoir cross flow between layers is not allowed, the response is different as 
shown by the second thick curves of Figure 4.64. The first transition is observed earlier 
and, especially during the second transition, the shape of derivative valley is smoother. 
In the absence of vertical cross flow, the time of start of the matrix blocks production is 
different from that of the triple porosity example. 
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Figure 4.64. Fissured layered reservoir, pseudo steady state interporosity flow, two sizes of matrix 
blocks, different 2 in each layer. Log-log scales, PD versus tD/CD. CDf+m = 1, $1 = $2 = O, co = O. 1, 
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The (o) dotted curves correspond to the triple porosity response of Figure 4.33. 
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When the high permeability layer 1 is fissured and not the other, the response depends 
upon which transition, the double porosity or the double permeability transition, is seen 
first. On Figure 4.65, the two layers double permeability system is defined with 
Cq/_,,, =1,  S~=$2=0, a,-=0.1, 1c=0.99, 2=4x10 -4. Layer 1 is fissured with got=0.01 and 
21=10 -3 or 21=10 -s. 

When the intevporosity flow parameter is small (Al=10-s), layer 1 is in fissure regime 
when the double permeability transition starts. The reservoir cross flow is established 
between the layer 2 and the fissure network of layer 1. The storativity ratio between the 
two reservoir components is therefore co x co~ = 10 .3 and the response becomes equivalent 
to the double permeability response w=0.99 of Figure 4.43 (shown with circle on Figure 
4.65). The double porosity transition is not seen on this response, it would show at later 
time, after t J C D  = 104. 

Conversely, if layer 1 is in total system flow (2~=10 -3) at start of the double permeability 
transition, the double porosity transition in layer 1 is first seen during the two layers no 
cross flow regime. Later, the double permeability transition corresponds to a storativity 
ratio of  co = 10 -1 and the second derivative valley tends to be similar to that of  the double 
permeability response w = 0.99 of Figure 4.45 (square symbols on Figure 4.65). 

4.4.2 Radial composite double porosity reservoirs 

In a fissured reservoir, a radial composite behavior is sometimes observed because of  
change of  fissure density in the reservoir. Injection wells, and some acid stimulated 
wells in fissured reservoir also correspond to this geometry. Radial composite double 
porosity responses have been first considered by Poon (1984) for restricted interporosity 
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flow. Satman (1991) studied unrestricted matrix flow and Kikani and Walkup (1991) 
presented a general model, including the effect of matrix skin. 

Figure 4.66 presents two examples of radial composite responses when the inner region 
is fissured but not the outer region. Well and reservoir parameters are the same as on 
curve M=10 of Figure 4.52 (shown with circle on Figure 4.66) with CD=100, S=3, F=I 
and Ro=700. The inner region is double porosity restricted interporosity flow with 
col=0.01, Zl=10 "4 or Al=10 -6. 

With ,~1=10 4, the response shows the double porosity behavior of the inner zone and, 
after the characteristic valley, the derivative follows the 0.5 stabilization for the total 
system matrix + fissure flow, until the radial composite interface is reached at 
tJCD=103. Then, the response becomes equivalent to the radial composite with a 
homogeneous inner region, shown Figure 4.52. 

When 21 = 10 -6, the inner region is still in fissure regime when the interface is seen. Since 
the diffusivity is high during fissure flow, the interface is felt earlier, and the derivative 
deviates from the double porosity transition valley at tJCD=IO 2 (the infinite reservoir 
double porosity response is shown as a dashed curve on Figure 4.66). The transition 
towards the final derivative stabilization for the outer region combines the double 
porosity and the radial composite responses, the derivative increase is delayed 
compared to the radial composite curve. 

When the outer zone is fissured, the double porosity derivative valley transition can be 
observed after the radial composite derivative deviation, provided /I,:RD2< 10 (Kikani 
and Walkup, 1991). When both regions are fissured, the authors conclude that only one 
transition is likely to be observed as a contrast of five order is needed between the two 
interporosity flow parameters ,&1,2 in order to display two double porosity transitions. 
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Figure 4.66. Radial composite reservoir, the inner region is fissured, pseudo steady state 
interporosity flow. Log-log scales. CD =100, S =3, M =10, F =1 RL~ =700, COl =0.01, ,&l = 10 -4 or 
21= 10 -6. The (o) dotted curves correspond to the radial composite response of Figure 4.52 with 
M=10, the thin (') dotted curves describe the double porosity response cog =0.01, 21 = 10 -6. 
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Kikani and Walkup (1991) presented an example of a well response in a fissured 
reservoir before and after acid stimulation. As the acid penetrates mostly the fissures, it 
can travel a long distances from the well, resulting frequently in a radial composite 
behavior (as opposed to homogeneous reservoir where acid stimulation is a near 
wellbore process). More interestingly, the authors observed that the acid treatment not 
only removes the wellbore damage, but also changes the type of interporosity flow. 
Before acid, the response corresponds to restricted matrix to fissure flow whereas after 
acid, it is unrestricted interporosity flow. In such a case, the acid removes the matrix 
skin in the invaded region. 

4.4.3 Radial composite double permeability reservoirs 

Radial composite behavior can be observed in layered formations. Hatzignatiou et al. 
(1987) investigated interference responses in a two-layer composite reservoir with the 
same interface distance Rz) in the layers. Larsen (1988) described the extension of the 
model to an n-layer multiple composite system. Anbarci et al. (1989) used a similar 
solution to investigate the location of the flood fronts for injection wells in a two-layer 
reservoir. Gomes and Ambastha (1993) suggest using an n-layer multiple composite 
model to describe tilted or irregularly - shaped fronts. 

In the following, a two-layer, two-region, radial composite solution is used to illustrate 
several variations of double permeability model presented Section 4.2.1. Extensions to n 
layers or multiple composite configurations are not envisaged here. 

Frequently, layered reservoirs combine homogeneous and lenticular layers, commingled 
or not. The examples shown in Figure 4.67 illustrate the response of a two-layer 
reservoir without cross flow when one layer is radial composite with a strong reduction 
of mobility at R2u=100. Near the well, the two layers have equal mobility (w=0.5) and 
the storativity ratio is co=0.1. After the circular interface, the mobility of layer 2 is 
reduced with M2 =10, 100 and 1000 and the storativity ratio is constant in layer 2 (F2=l). 
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Figure 4.67. Layered reservoir, no cross flow, layer 1 homogeneous, layer 2 radial composite. 
Log-log scales. CD = 30, S1 = $2 =0, ca=0.1, ~'=0.5, 2=0. Rap = 100, M2 = 10, 100, 1000, F2 = 1. 
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After wellbore storage, the response describes the commingled two layers behavior until 
the interface of layer 2 is reached. The derivative increases and, when the mobility of 
the outer region is low (M2=100 or 1000), it tends to follow a unit slope straight line and 
produces a hump. Later, a new two layers commingled infinite reservoir response is 
seen with, in layer 2, the outer region mobility. The derivative tends to stabilize at 
0.5 MJ[I+ (M2-1)K], respectively 0.90, 0.990 and 0.999 on Figure 4.67. 

The hump of the derivative examples M2=100 or 1000 describes the storage effect of the 
inner region of layer 2. Reservoir storage is further discussed in the chapter on boundary 
effects, Section 5.8.3 for closed circle double permeability reservoir. When the 
reduction of mobility is large in the radial composite layer, the responses of Figure 4.67 
tend to be similar to the first part of a closed system layered reservoir response, as 
illustrated on Figure 5.48. 

On the radial composite double permeability examples Figures 4.68 and 4.69, only the 
cross flow parameter 2 changes between the inner regions and the outer regions. The 
two layers have constant properties (M1,2=F~,2=l) and several distances RD are 
considered for the change of cross flow parameter 2. 

When no cross flow is allowed in the inner region and the layers are communicating 
only beyond the radius RD, the valley shaped derivative transition is delayed and it tends 
to be steeper than the double permeability response with a constant interlayer cross flow 
parameter throughout the reservoir. In Figure 4.68, the dotted curve describe the double 
permeability response and the radial composite double permeability curves are 
generated for RD =30, 100 and 300. In the inner region, A~=0, and in the outer region 
d,2=4 10 -4. 
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Figure 4.68. Layered reservoir, no cross flow in the inner region. Log-log scales, p> versus tD/CD. 
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The (o) dotted curves correspond to the double permeability response of Figure 4.45 with ,c =0.9 
and the thin (') dotted curves to the commingled reservoir (2=0). 

The opposite configuration is presented in Figure 4.69 with the same parameters. The 
reservoir cross flow is only possible in the inner region of radius RD, the layers are not 
communicating in the outer region. When the Rz)interface is reached, the responses 
change to the two layers without cross flow behavior and the derivative deviates above 
the 0.5 stabilization (see Section 4.2.7). The introduction of a permeability barrier 
between the layers produces a smooth hump on the derivative response. The dotted 
curve of Figure 4.69 describes the double permeability response (same as on Figure 
4.68), and the dashed curve corresponds to the commingled configuration. 



CHAPTER 5 

E F F E C T  OF R E S E R V O I R S  B O U N D A R I E S  

O N  W E L L  R E S P O N S E S  

The effect of boundaries has been considered from the earlier studies of pressure 
transient analysis. In 1951, when presenting his historic paper, Homer (1951) discussed 
the response due to a single linear sealing fault on a build-up example. Today, complex 
boundary systems are used in well test interpretation, with sealing or constant pressure 
conditions. Partially sealing and conductive linear boundaries can also be identified and 
interpreted on well pressure responses. 

In this chapter, the different boundary conditions used in well test analysis are 
described. First, a homogeneous reservoir is assumed and the identification of sealing 
boundaries is demonstrated for drawdown and build-up responses. When several 
boundaries are present, the effect of the different limits appears as a function of the 
different distances. It is shown that the late time response is influenced by the time 
when the first boundaries are reached. The question of the extrapolated shut-in pressure 
is discussed in detail for semi-infinite and closed systems. The effect of constant 
pressure and communicating boundaries is then described. Boundaries in heterogeneous 
double porosity, double permeability and composite reservoirs are considered in later 
sections of this chapter. A constant formation thickness is assumed except in the final 
section 5.10, where complex boundary configurations are described. 

In the following, the distance from the producing well to the boundary is called L. The 
dimensionless distance L> is defined as" 

L 
L D = ~  (1.34) 

r w 

5.1 SINGLE SEALING FAULT IN A HOMOGENEOUS RESERVOIR 

With the sealing fault model, a linear no-flow boundary closes the reservoir in one 
direction. Such a configuration is encountered in faulted reservoirs but it can also be 
considered, as an extension of the linear composite solution presented in Section 4.3.3, 
when the reservoir flow capacity kh becomes zero. A pinch-out for example is 
sometimes analysed using the sealing fault solution. 
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Figure 5.1 Pressure and derivative responses f o r a  well with wellbore storage near one sealing 
fault in a homogeneous  reservoir. Log-log scales. Pc) versus tz)/Cl). C/) = 104,. S = 0,, LD -- 5000. 

The effect of a sealing fault has been presented in Section 1.2.7 (Figures 1.21 to 1.23) 
and, for shut-in periods, in Sections 2.2.2 and 2.3.4 (Figures 2.10 and 2.20). A typical 
drawdown response is presented on Figure 5.1 for a well with wellbore storage and skin 
in a homogeneous reservoir limited by a sealing fault. 
�9 The early time part of the well response corresponds to the infinite reservoir 
behavior. During radial flow, the pressure response follows the first semi-log straight 
line as illustrated on the semi-log plot Figure 1.23 and, on Figure 5.1, the derivative 
follows the first stabilization. 
�9 When the influence of the sealing fault is felt, the flow becomes hemi-radial, and 
the apparent mobility is reduced by a factor of two. On semi-log scale, the slope of the 
straight line doubles and, with the derivative, the curve follows a second stabilization at 
a level twice the first. In dimensionless terms, the first derivative plateau is at 0.5 and 
the second at 1. 

5.1.1 Sealing fault model 

With analytical well test interpretation models, the image well method is used to 
produce the effect of a no-flow barrier: a imaginary second well, at a distance 2L1~ from 
the active well, is assumed to be produced with the same flow rate history. The 
symmetry condition of the image method requires, in theory, the use of the same 
wellbore condition for the two wells. In most cases, however, the influence of the image 
well can be simplified using a line source response (see Chapter 6.1.1), expressed with 

the exponential integral function of Equation 6.1" -0 .5Ei [ - (2L  D)2 /4 to  J. 

5.1.2 Log-log behavior 

Figure 5.2 presents several examples of the influence of a sealing fault on a well 
pressure response. Different distances Lo are considered: 100, 300, 1000 and 3000. The 
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time Atx at midpoint of transition between the first derivative plateau on 0.5, and the 
second at 1, is given by (Larsen, 1983) �9 

kAt x 
L - 0"01217~ r  , (1.33) 

ZXtx is proportional to the square of the distance: when L> is increased by a factor of ten, 
the end of the early time infinite acting behavior is displaced by two log-cycles along 
the time scale. 

The curve L> = 100 shows a limiting case of the behavior of a well near a sealing fault. 
When the distance L> to the linear fault is small and the wellbore storage coefficient is 
high, the fault influence can start during the wellbore storage dominated regime: after 
the derivative hump, the curve stabilizes directly on 1, and does not show the first 
plateau at 0.5. In such a case, the sealing fault is difficult to identify, and the response 
can be misinterpreted with an infinite reservoir solution (the resulting permeability is 
then half the true reservoir permeability). 

5.1.3 Matching procedure with the pressure and derivative data 

The derivative response curves of Figure 5.2 are characterized by a doubling of the 
derivative plateau. As discussed in Sections 4.1.3 and 4.1.5, the same behavior is 
observed on double porosity responses with transient interporosity flow condition. The 
responses of the two solutions show a similar shape, but the matching procedure is 
different. 
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Figure 5.2. Pressure and derivative responses for a well with wellbore storage and skin near one 
sealing fault in a homogeneous reservoir. Log-log scales, pD versus tD/CD. 
CD = 100, S = 5. Several distances LD = 100, 300, 1000, 3000. 
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For a well with wellbore storage and skin near a sealing fault, a CD e2S curve describes 
the early time response before the start of the boundary influence. The pressure match is 
defined by positioning the 0.5 line on the first derivative stabilization, and the time 
match is fixed by the w'ellbore storage unit slope line, as for the homogeneous type- 
curve of Figure 2.22. The permeability thickness product kh is estimated with Equation 
2.9, the wellbore storage coefficient C with Equation 2.10 and the skin factor with 
Equation 2.11. 

The distance L of the sealing fault can be estimated from the time Atx of transition 
between the two derivative stabilizations with Equation 1.33, or by matching the data on 
a computer generated response. 

5 .1 .4  S e m i - l o g  a n a l y s i s  

On Figure 5.3, the four examples of Figure 5.2 are plotted on a semi-log scale: the 
duration of the infinite acting radial flow regime, described by the first straight line of 
slope m, is a function of L~,. When the distance of the sealing fault is increased, the 
second straight line of slope 2m is displaced towards late times. 

The first semi-log straight line of slope m is used to estimate the reservoir permeability 
thickness product kh, and the skin S: 

kh - 162.6  qB/a (1.16) 
m 

S 1 1 5 1 I A P ~ " - l ~  k -  m ~+~,z,,o,r,~ 3.23/ (1.17) 
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The time of intercept Atx between the two semi-log straight lines, is used to estimate the 
distance between the well and the sealing fault (Gray, 1965) with Equation 1.33. 

On the four examples of Figure 5.3, the transition between the two straight lines is 
smooth and lasts more than one log-cycle on the time scale. Unless the two lines are 
well defined such as on the curve LD = 300, the intercept time Atx is difficult to define 
with accuracy. In practice, when the analysis is made by computer, the distance is 
estimated from the log-log derivative match rather than with Equation 1.33. 

5.1.5 Build-up analysis 

Log-log pressure and derivative build-up analysis 

As discussed in the Section 2.3.4 of the pressure derivative discussion, if the drawdown 
behavior changes when extrapolated in the course of the build-up, the multiple rate 
build-up derivative curve does not match perfectly on the original drawdown response. 

With the sealing fault model, the flow behavior changes from a radial to a hemi-radial 
geometry: a build-up derivative curve can deviate from the drawdown behavior. This is 
illustrated by the build-up curve presented Figure 2.20. The well is near a sealing fault, 
and the drawdown before shut-in has stopped before, or during transition between the 
radial and the hemi-radial regimes (Figure 2.10), when the derivative is between the 0.5 
line and the stabilization on 1. 

At early shut-in time, the drawdown period extrapolated with the superposition 
principle at (tp+At) is under the influence of the fault whereas the shut-in period, 
generated for the elapsed time At, is still in an infinite reservoir regime. The two 
superposed periods are not on the same semi-log straight line and, on Figure 2.20, the 
build-up derivative first drops below the 0.5 line. The curve deviates upwards towards 
the second derivative stabilization at 1 only after the two superposed periods follow the 
same behavior, when At has passed the time of start of the fault influence. On the build- 
up example Figure 2.20, the sealing fault appears to be slightly delayed compared to the 
original drawdown response. The effect of the production history on build-up derivative 
responses has been also illustrated with similar conclusions in Sections 4.1.2 and 4.1.3 
for heterogeneous double porosity reservoirs (Figures 4.15 and 4.26). 

Semi-log build-up analysis 

For semi-log analysis of build-up periods, the Homer or multiple rate superposition time 
is used (Section 2.2.2). The first semi-log straight line gives access to kh and S and, 
provided only one sealing fault is present in the reservoir area investigated during the 
test, the behavior is semi-infinite and the extrapolation of the second line to infinite 
shut-in time gives the initial reservoir pressure. 
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The extrapolated pressure of the first line is not used, except in bounded systems with 
the Matthews-Brons-Hazebroek (1954) method, to predict the average reservoir 
pressure (see Section 5.4.7). The M.B.H. method, designed for closed reservoirs, 
requires the shape of the drainage area to be known. 

5.2 T W O  P A R A L L E L  SEALING FAULTS IN H O M O G E N E O U S  
R E S E R V O I R  

With this boundary solution, the well is located between two parallel sealing faults. 
Even though this type of configuration is encountered in faulted systems, frequently it 
corresponds to long narrow reservoirs such as channel sands. 

Two examples of parallel sealing faults responses are presented on Figures 5.4 and 5.5 
for a well with wellbore storage and skin in a homogeneous reservoir. 

�9 On the log-log plot Figure 5.4, the derivative describes first the wellbore storage 
effect, then it follows the 0.5 line. 
�9 Later, when the two reservoir boundaries have been reached, the flow lines become 
parallel to the reservoirs limits, and a linear flow regime is established (Miller, 1962). 

The pressure changes proportionally to ,JAt,  and the derivative follows a half unit 
slope straight line. 
�9 The shape of the transition between radial and linear flow is a function of the well 
location in the channel. When the well is equidistant from the two boundaries such as 
on curve A of Figure 5.4, the transition between radial and linear flow regimes is short. 
If the well is closer to one of the two boundaries, the characteristic behavior of one 
sealing fault is seen before the linear flow. The derivative stabilizes first at 0.5, then 1 
and finally it reaches the half unit slope straight line (Figure 5.4, B). 
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Figure 5.4. Pressure and derivative responses for a well with wellbore storage in a homogeneous 
reservoir limited by two parallel sealing faults. Log-log scales, p> versus tD/CD. 
CD = 3000, S = 0, LlI) = L2D = 3000 (curve A) and LiD = 1000, L2D = 5000 (curve B). 
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Figure 5.5. Semi-log plot of Figure 5.4 examples. PD versus tD/CD. 

On a semi-log plot of the same example (Figure 5.5), only one straight line is present, 
describing the infinite acting radial flow regime. During linear flow, the pressure 
response deviates in a curve above the semi-log straight line. 

5.2.1 Parallel sealing fault model 

The well is at a dimensionless distance L1D and L2D from the two sealing boundaries. 
The channel, of dimensionless width of L1D+L2D, is of infinite extension on both 
directions. 

The behavior of the pressure derivative response for parallel sealing faults was 
originally considered in 1980 (b) by Tiab and Kumar. They used the image well method 
to generate the response of a well between two parallel sealing faults. Considering a 
graph of the pressure derivative with respect to time, as did van Poollen (1965) for 
intersecting faults, Tiab and Kumar identified a late time straight line with a negative 
slope of 0.5 in case of parallel sealing faults. In 1986, the technique of source and 
Green's function was considered by Wong et al. for long rectangular reservoir systems. 
Using the logarithm derivative, the linear flow regime was evident with a positive 0.5 
slope. 

5.2.2 Linear flow regime 

During the late time linear flow regime, the dimensionless pressure is expressed as 
(Miller, 1962; Nutakki. and Mattar, 1982; Wong et al., 1986): 
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P D = 2x/ztDL + S + Sch (5.1) 

where the dimensionless time tl)z. is defined with respect to the channel width: 

0.000264k 
tDL = At (5.2) 

~,o, (L, +L2): 

S is the wellbore skin coefficient and Sch expresses a geometrical skin component, due 
to the convergence of the linear flow lines towards the well. Larsen and Hovdan (1987) 
related Sch to the offset of the well in the channel" 

= In L1 + L2 - l n r s in  ~ zL1 I Sch 
2zr . ,  ~ L 1 + L 2 ) 

(5.3) 

The geometrical skin S~h of Equation 5.3 has a form very similar to the skin Sz of 
Equation 3.34, for linear flow towards an horizontal well. The dimensional Equation 5.4 
is obtained by combining Equation 5.1 and Equation 5.2. 

,,,, _qB_ j ~At  qB/J S) (5 4) 
Ap - 8.1 ~ ~ h(L, + L ~ ) V *  ~ o, + 14 ~.2 ,h  (Sc,~ + . 

5.2.3 Log-log behavior  
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Figure 5.6. Pressure and derivative responses for a well with wellbore storage near two parallel 
sealing faults in a homogeneous reservoir. The well is located midway between the two 
boundaries, several distances between the two faults are considered. 
Log-log scales, PD versus tD/C>. CD = 300, S = 0, L~D = L2D = 500, 1000, 2500 and 5000. 
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The linear flow regime was discussed earlier in Sections 1.2.4 and 3.2, for high 
conductivity fractured wells. The response is then characterized by linear flow at the 
start of the period, and the derivative response follows a half-unit slope straight line 
before the radial flow stabilization (Figure 3.5). With parallel sealing faults, the 
sequence of flow regimes is inverse and the radial flow regime is observed before linear 
flow. 

On Figure 5.6, four examples of responses for different channel width are presented on 
log-log scale, with the dimensionless pressure pD and derivative p}) versus the 
dimensionless time tJCD. The well is located midway between the two parallel sealing 
boundaries, the curves are generated for Lm = L2D = 500, 1000, 2500 and 5000. 

The time of start of the linear flow regime is proportional to the square of the channel 
width. For large (L~D+L2D), a long infinite acting radial flow regime is needed before the 
boundaries are reached, the 1/2 slope line is displaced towards late times. Conversely, in 
case of a narrow channel, the radial flow regime is short and can be masked by wellbore 
storage. For example, on the curve Llz)=L2z)= 500 the derivative follows the half unit 
slope straight line immediately after the wellbore storage effect. 

On Figure 5.4, the two examples are generated for the same channel width (LID+L2D = 

6000) and the derivative curves merge on the same linear flow half unit slope line. The 
well A is centered and for well B the offset is defined with L~z)/(L1D+L2D)=I/6. The 
geometrical skin Sch of Equation 5.3 is higher on well B response and, after radial flow, 
the pressure curve B is above the curve A. This effect is more evident on the specialized 
scale plots presented in later sections. 

5.2.4 Matching procedure with the pressure and derivative data 

The early time response is analyzed with the infinite reservoir model. For a well with 
wellbore storage and skin, a CD e 2s curve is selected, kh, C and the skin coefficient S are 
evaluated as described in Section 2.2.1. 

When the match is made on a computer generated curve, the derivative half unit slope 
line is used to estimate the channel width (L1D+L2J. The distance of the closest 
boundary, and therefore the well position in the channel, can be estimated from the 
shape of the derivative transition between the 0.5 line of radial flow, and the half unit 
slope line of linear flow. On the pressure curve, the well position is shown when the 
effect of the geometrical skin Sch becomes evident, during the linear flow regime. 

5.2.5 Semi-log analysis 

Figure 5.7 is a semi-log plot of the examples of channel responses presented on log-log 
scales in Figure 5.6: at late time, during linear flow, the responses curve upwards from 
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the semi-log straight line. For small channel width, the deviation occurs early, and the 
radial flow straight line may not be seen. 

Figure 5.5 illustrates on semi-log scale the influence of the geometrical skin effect Sch 
with the two examples of Figure 5.4: the channel width is L~I~§ = 6000, the well is 
centered (A) or close to one of the boundaries with Z,~j~ = 1000 (B). When one of the 
boundaries is seen before the other, the geometrical skin Sch of Equation 5.3 is larger 
and, after the infinite acting radial flow regime, the amplitude of the response is higher 
than when the well is equidistant from the two limits. The influence of the well position 
in multiple boundary systems will be discussed more generally in Section 5.4.6, with 
the shape factor concept. 

For the radial flow analysis of actual data on a Ap versus At semi-log plot, the semi-log 
straight line before linear flow provides the permeability thickness product kh and 
wellbore skin coefficient S (Equations 1.16 and 1.17). 

5.2.6 Linear flow analysis 

Figure 5.8 is a plot of the four examples of parallel sealing fault responses Figures 5.6 
and 5.7, with the dimensionless pressure pj~ versus the square root of the dimensionless 
time tz/Cj~. 

During the late time linear flow regime, the response follows a straight line behavior 
(Equation 5.4) and the slope of the straight line is inversely proportional to the channel 
~'idth (L~I~§ For small distances between the two boundaries, the rate of change of 
pressure is faster during linear flow than when the channel is large, and the straight line 
slope on Figure 5.8 is higher. 
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Figure 5.8. Linear flow analysis of Figure 5.6 examples. Pz) versus (tJCD) 1/2. 

With real data, the specialized analysis of linear flow is made on a plot of the pressure 
change Ap versus the square root of the elapsed time At. The slope rnch and the intercept 
@chint  of the linear flow straight line are used to estimate the channel width and the well 
location. 

qB (/~ (5.5) mch = 8.133 h(Ll + L2 ) k r  t 

Knowing the permeability from radial flow analysis, the channel width is obtained by: 

qB / /l 
L1 +L2 -8.133 

hmch ~kr  
(5.6) 

The straight line intercept at time 0, Z~Pchint , gives the total skin effect (Sch + S), defined 
as the sum of the wellbore skin and the linear flow geometrical skin of Equation 5.3. 
When the permeability and the wellbore skin coefficient are known from radial flow 
analysis, the geometrical skin Sch is estimated with : 

kh 
Sch = Apchint - S (5.7) 

141.2qB/~ 

and it is possible to estimate the well location between the two parallel faults (Larsen 
and Hovdan, 1987). 

L1 l arcsin (LI+L2  -Sch'~] 
L a + L 2 7r 27cr w j 

(5.8) 
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Figure 5.9. Build-up pressure and derivative responses for a well with wellbore storage in a 
homogeneous reservoir limited by' two parallel sealing faults. Log-log scales, Pl) versus tz)/CD. 
Cj) = 3000.5 '= 0. LIj~ = k:j, = 5000 (curxe C) and klj~ = 2000. k:j~ =8000 (curve D). 
The dotted cur\es are drav, doxvn, the build-up responses are generated for (tp/C)i) = 2000. 

5.2.7 Build-up analysis 

Log-log pressure and derivative build-up analysis 

Figure 5.9 presents on log-log scales the build-up response of two wells in a channel 
reservoir. The distance between the two parallel sealing faults is (L1D+L2j9) = 10000, the 
well is centered for example C and off-centered with L~j)/(L~ig+k21)) = 1/5 in example 
D. The dimensionless production time tFz/Cz) prior to shut-in is 2000 on both examples. 
The two dotted curves show the original drawdown responses of wells C and D. 

The wells are closed for build-up just before the start of linear flow: at tpjCD = 2000, 
example C is in infinite acting radial flow and example D in hemi-radial regime. On the 
build-up curves, the pressure flattens at late times (see Section 2.2.2) and the derivative 
responses display a half unit slope straight line. 

For the two build-up curves of Figure 5.9, the drawdown behavior changes after 
extrapolation into shut-in times. The two build-up derivative curves do not match on the 
original drawdown responses: the half unit slope straight line is displaced towards late 
times and, during the transition between radial to linear flow, example C drops below 
0.5 while example D shows an oscillation. For larger production times t~zJCj), the build- 
up derivative curves would be closer to the original drawdown responses. 

As already discussed in Section 5.1.5 for a single sealing fault, build-up derivative 
responses in a bounded reservoir are sensitive to the production history prior to shut-in. 
Drawdown derivative curves are not always applicable, and caution must be exercised 
during the diagnosis of  build-up responses. For example, if a build-up similar to 
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example C of Figure 5.9 stops between the stabilization and the valley bottom, the 
channel response can be interpreted by error with several different models" 

�9 increasing of mobility such as in a composite reservoir (see Section 4.3) 
�9 effect of a constant pressure boundary (see Section 5.5) 
�9 closed depleted reservoir (see Section 5.4.7) 

The choice of the appropriate interpretation model can be frequently concluded when 
the results of the different interpretations are applied to flowing periods, such as on a 
test simulation plot. In particular, any difference between the initial pressure used for 
simulation, and the actual pressure before the test, must be carefully examined (see 
Section 10.2.3). 

Semi-log analysis of  build-up 

The derivative distortion of the build-up curves of Figure 5.9 shows that, on a Homer or 
multiple rate superposition plot, the time of end of the semi-log straight line is 
influenced by the production history before shut-in. On example C, the drawdown 
derivative follows the 0.5 line until tjCD = 2000 but the build-up starts to drop below 
0.5 at tJCr)= 1000, the duration of the radial flow behavior is shorter. 

Figure 5.10 is a Homer plot of the two build-up examples in Figure 5.9. After the radial 
flow straight line, curve C tends to flatten before the late time linear flow regime, and 
curve D shows the opposite behavior, by rising above the semi-log straight line. 

The proper straight line of the Homer plot defines the permeability thickness product kh 
and wellbore skin coefficient S but, as shown on Figure 5.10, the extrapolation of the 
straight line does not correspond to the infinite shut-in time pressure. 
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Linear flow specialized analysis of build-up 

In a two rate test, when both the drawdown and the shut-in periods are in linear flow 

regime, the superposition function is expressed as x/t f, + At -,,/At (Equation 2.19 

Section 2.2.2). Figure 5.11 is a plot of the two build-up examples from Figure 5.9, with 
the dimensionless pressure pz) versus the dimensionless linear flow superposition time 

@vD/CD + to/CD - x/tD/Cl) �9 The two build-up curves exhibit a straight line at late 

times. 

The slope mch of the linear flow straight line is expressed, as for drawdown responses, 
by Equation 5.5. On the examples C and D of Figure 5.11, the channel width is the 
same and the two straight lines are parallel. Well D is off-centered in the channel, the 
geometrical skin Sch is larger than for well C: the two dimensionless responses are 
superimposed until the end of infinite acting radial flow, then they diverge before 
reaching linear flow straight lines. The amplitude of the pressure change is higher on 
curve D than on curve C. For infinite channels, the extrapolation of the linear flow 

straight line to ~/tp + At - q ~  = 0 gives the initial reservoir pressure p,. 

5.3 TWO INTERSECTING SEALING FAULTS IN HOMOGENEOUS 
RESERVOIR 

With the intersecting sealing faults model, two linear no-flow boundaries limit the 
reservoir drainage area, the wedge is otherwise of infinite extension. The angle of 
intersection between the two faults can take any value smaller than 180 ~ 
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Figure 5.12. Pressure and derivative responses for a well with.wellbore storage in a homogeneous 
reservoir limited by two intersecting sealing faults. Log-log scales, PD versus tD/CD. 
CD = 3000, S = 0, LD = 5000, 0=60 ~ , Ow =30 ~ (curve A) and 0~ =10 ~ (curve B). 

The effect of  two intersecting sealing faults is illustrated on Figures 5.12 and 5.13 for a 
well with wellbore storage and skin in a homogeneous reservoir. In these examples, the 
angle between the faults is 60 ~ (7r/3). 

�9 The response first describes the infinite reservoir behavior and later, when the two 
faults are reached, the fraction of radial flow limited by the wedge. 

�9 In the case of one sealing fault, half of the plane is producing at late times and the 
semi-log slope doubles, the dimensionless derivative stabilizes at 1 (see Section 5.1). 
When two intersecting faults limit the drainage area, a smaller fraction of the plane 
produces: on the semi-log scale, the slope of the straight line is increased by a factor of 
360/0 and, with the derivative, the curve follows a second stabilization at a level equal 
to 180/0. On the examples of Figure 5.12, the wedge shaped reservoir is 1/6 of the 
infinite plane (360 ~ and the dimensionless derivative stabilizes at 3, 6 times above the 
first 0.5 line. On semi-log scale (Figure 5.13), the second straight line slope is 6 times 
higher than the first. 
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�9 The shape of the transition between the two derivative plateaus depends upon the 
location of the well in the angle. If the well is located on the bisector, the two 
boundaries are equidistant from the well, and the derivative transition follows a half unit 
slope straight line (Figure 5.12, curve A). If the well is close to one of the two 
boundaries, one sealing fault is seen before the wedge response: the derivative stabilizes 
at 0.5, then 1 and finally the wedge stabilization (Figure 5.12, curve B). The transition 
between the initial and the final derivative plateaus is longer. 

5.3.1 Intersecting sealing fault model 

The wedge geometry is defined on Figure 5.14" 0 is the angle between the faults, 0,,. 
describes the well location in the wedge and Leo is the dimensionless distance between 
the well and the intercept of the two faults. The distances L~ and Lz between the well 
and the sealing faults are expressed as 

L 1 - Ll~ r,,. sin 0 H, (5.9) 

L 2 - Lz_)r ., s in(O-O,, .)  (5.10) 

In 1965, van Poollen used the image well method to generate the effect of intersecting 
sealing faults. He considered pressure and derivative curves and showed that the image 
well method can be used only for a restricted number of configurations: the angle of 
intersection must be er/n (or 2er/n if the well is located on the bisector), where n is an 
integer. The first possible configuration, for n=2, is then a right angle, when the 
reservoir is limited by two perpendicular sealing faults. 

A more general solution, using Green's function, was presented in 1975 by Prassad. It 
allows any angle of intersection, for any location of the producing well. This solution is 
used in the following discussion. 

L2 

Ow .L L1 

Figure 5.14. Two intersecting sealing faults in a homogeneous reservoir. 
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5.3.2 Log-log behavior  

On Figure 5.15, the angle of intersection 0 varies from 10 ~ to 180 ~ the producing well 
is on the bisector. 

The distances L1D and L2D between the well and the two faults are fixed at 1000, the 
distance to the fault's intercept changes with the angle. From Equations 5.9 and 5.10, for 

small angles the intercept is far from the producer, for example with 0 = 10 ~ LD=11473 

but, with 0=135 ~ , it is only 1082. 

The level of the second derivative plateau is defined by the angle O, namely 180/0 in 

dimensionless terms. For a single linear sealing fault (0 = 180 ~ the second plateau is at 

1, for perpendicular faults (0 = 90 ~ at 2, and for the smallest angle presented on Figure 

5.15, 0 = 10 ~ it is at 18. 

The start of the transition above the 0.5 derivative plateau, at the end of the infinite 
reservoir behavior, indicates the distance to the faults. On the examples of Figure 5.15, 
with LiD = L2D = 1000, the initial infinite behavior ends at about tc/Cz) = 300. When the 
well is not centered on the bisector, the shape of the transition is different as shown on 
curve B of Figure 5.12: the initial radial flow regime is shorter, and the transition 
between the two plateaus lasts longer. 

The transition is in general long, even when the well is on the bisector. For small angles, 
the transition can last two log-cycles or more, before the final derivative stabilization. 

On Figure 5.15, with 0 - -  90 ~ the second stabilization is reached at tc/CD = 20,000 

whereas when 0 = 10 ~ it is hardly starting at tJCz) = 106. 
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Figure 5.15. Pressure and derivative responses for a well with wellbore storage near two 
intersecting sealing faults in a homogeneous reservoir. Several angles of intersection O, the well is 
on the bisector 0,~ = 0.50, the distance to the two faults is constant L~D = L2D = 1000, the distance 
LD to the fault intercept changes. Log-log scales, PD versus tD/CD. 
CD= 1000, S =  0, 0=10 ~ LD= 11473; 0=20 ~ , LD= 5759; 0=45 ~ , LD=2613; 0=90 ~ , 
L> = 1414; 0=135 ~ , L> = 1082; 0=180 ~ , LD = 1000. 
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During the transition between the 0.5 and 180/0 plateaus, the response tends to show a 
straight line of slope 1/2. When the angle of intersection 0 is small, the two faults are 
reached a long time before the intercept is seen. Since the characteristic wedge flow 
behavior is not established at transition time, the behavior is similar to the response of a 
well between two parallel sealing faults (Section 5.2). 

5.3.3 Matching procedure with the pressure and derivative data 

The early time response is analyzed as usual with the infinite reservoir model and k/q, C 
and the skin coefficient S are evaluated. 

When the response displays a complete intersecting faults behavior, the ratio between 
the two derivative plateaus, at 0.5 and 180/0, is used to estimate the angle of 
intersection O. With actual data, the angle is expressed, in degrees 

0 = 360 ~ Aplststab (5.1 1) 
@2nd stab 

The distance Z,~ to the closest fault is accessed by the time of deviation from the 0.5 
plateau, as for a single sealing fault. The distance I-,2 to the second fault is then adjusted 
from the shape of the derivative transition. The distance L of the fault intercept and the 
angular position of the well in the wedge 0,, are obtained by solving the Equations 5.9 
and 5.10. 

In many field examples of intersecting faults' responses, the second plateau is not 
completely developed at the end of the data curve, and the response is only partially 
defined. When the derivative increases after the 0.5 line by a factor greater than 2, one 
sealing fault is not sufficient to describe the late time behavior, and the intersecting 
faults model has to considered. Provided the transition starts to show a decreasing 
curvature after the half unit slope line, the level of the second plateau is relatively easy 
to guess, and a good estimate of the angle of intersection 0 between the two faults can 
be obtained. 

5.3.4 Semi-log analysis 

Two semi-log straight lines can be identified when the complete response of a well near 
two intersecting sealing faults is available. The first, of slope m, corresponds to the early 
time infinite regime shown by the 0.5 line of the derivative response. The second, with a 
slope mwoage=(360/~m, defines the fraction of radial flow limited by the wedge, shown 
on the derivative curve by the second plateau. The two semi-log straight lines can be 
analyzed, provided the derivative plot confirms the presence of data points during the 
two characteristic regimes. 
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Figure 5.16. Semi-log plot of Figure 5.15 examples. PD versus tD/CD. 
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Figure 5.16 is a semi-log plot of the six examples of wedge responses presented in 
Figure 5.15. The bottom curve corresponds to one sealing fault (0=180~ the semi-log 
slope doubles at late times. For smaller angles, the curve deviates upwards, for example 
with 0 =10 ~ the second slope is 36 times greater than the first. The semi-log scale 
confirms that the transition between the two straight lines is long, particularly when the 
angle is small. 

The shape of the semi-log curves for intersecting sealing faults such as on Figures 5.13 
and 5.16 is not very different from the semi-log responses of Figures 5.5 and 5.7 for 
channel reservoirs: after the initial infinite acting regime, the curves deviates upwards. 
On the intersecting sealing faults examples of Figures 5.13 and 5.16, the late time 
responses follow a second semi-log straight line, but the channel reservoirs examples of 
Figures 5.5 and 5.7 are curved. In practice, the presence of the second line is difficult to 
ascertain on a semi-log scale, and the choice of the appropriate boundary configuration 
is easier when the derivative log-log data plot is considered. 

With actual data, the time limits of the two semi-log straight lines on a plot of Ap versus 
log(At) must have been previously defined by the identification of the log-log derivative 
plateaus, and not decided after observation of the semi-log plot only. The first semi-log 
straight line of slope m is used for infinite acting radial flow analysis. The permeability 
thickness product kh and the skin S are estimated with Equations 1.16 and 1.17. When 
the two lines are present, the ratio of the first to the second slope gives the angle of 
intersection: 

m 
0 ~ = 3 6 0 ~  (5.12) 

mwedge 

On the semi-log plot Figure 5.13 for two intersecting faults at 0=60 ~ well A is centered 
(0~=30~ Well B is off-centered (Ow=l 0 ~ and one sealing fault is seen before the other. 



224 Reservoir boundaries 

As a result, the final semi-log straight line of well B is parallel to that of well A, but the 
amplitude of the response is higher. A similar geometric skin effect has been observed 
on Figure 5.5 of Section 5.2 for parallel sealing faults. When several boundaries are 
present in a pressure response, the time when the first boundary is reached influences 
the pressure response during all subsequent regimes. 

5.3.5 Build-up analysis 

Log-log pressure and derivative buihl-up analysis 

The limitations of the multiple rate derivative, illustrated with one or two parallel 
sealing faults, are applicable for all boundary solutions. In the case of intersecting 
faults, the transition between the two derivative plateaus is long, and the build-up 
distortion can be significant. The match is preferably made with a computer generated 
build-up model, especially when the second derivative plateau, being not well defined, 
is estimated by extrapolation of the late transition behavior. 

When several solutions are found to provide a good match on build-up data, 
extrapolation of the models at times larger than the shut-in duration helps reducing the 
number of choices. As discussed in Section 5.2.7, this is achieved with the test 
simulation plot. The quality of the match during the flow periods, and the accuracy of 
the initial pressure used for simulation, can indicate an inconsistent model. 

Semi-log analysis of buihl-up 

If only two sealing faults have been reached during the test, the wedge shaped reservoir 
is of infinite extension and the seco~Td stroig/Tt /ine of the Horner or multiple rate 
superposition plot can be extrapolated to infinite shut-in time for an estimate of the 
initial reservoir pressure p,. 

5.3.6 Field examples 

The double porosity example presented in Figure 4.40, and the double permeability 
example of Figure 4.50 can also be analyzed with the interesting sealing fault model in 
a homogeneous reservoir. With these two examples, only the final stabilization is 
accurately defined and the match provides the product Okh. In the case of Figure 4.40, 
good matches are obtained with 0 ranging from 120 ~ to 160 ~ and, with the example of 
Figure 4.50, only the maximum angle can be determined with 0 _< 130 ~ For the two 
tests, the reservoir permeability thickness product is not accurately defined. 
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5.4 CLOSED HOMOGENEOUS RESERVOIR 

A closed system behavior is characteristic of limited reservoirs but it can also be 
encountered in developed fields, when several wells are producing and each well drains 
only a certain volume of the reservoir (Matthews and Russell, 1967). 

The analysis of a closed reservoir has been presented in Section 1.2.8 (Cartesian scale 
for drawdown pseudo-steady state analysis, Figure 1.25) and in Section 2.3.3 
(drawdown pressure derivative Figure 2.19). It is important to note that the responses 
are different for a drawdown and a build up. This is clearly illustrated in figure 5.17. 

�9 During drawdown periods, when all boundaries have been reached after the infinite 
acting behavior, the reservoir starts to deplete. The response follows the pseudo steady 
state flow regime, and the well flowing pressure becomes proportional to time. Pressure 
and derivative log-log curves merge on a straight line of slope unity at late time. 
�9 During build-ups, the shape of the well response is different. After shut-in, the 
pressure starts to build-up during the initial infinite regime but, later, it stabilizes and 

tends towards the average reservoir pressure p .  

On the linear plot Figure 1.25, a characteristic closed system response is illustrated with 
a very simple flow sequence. The well, at initial reservoir pressure pi, is opened until all 
reservoir boundaries are reached and the pseudo steady state regime is established. This 
is shown on Figure 1.25 by a linear drawdown pressure trend. When the well is then 

closed for a shut-in period, the pressure builds up until the average reservoir pressure p 

is reached, and the curve flattens. The depletion, expressed by the difference / P ; - P )  
/ \ 

between the initial pressure and the final stabilized pressure, is proportional to the 
cumulative production. The longer the duration of the drawdown period, the lower is the 

final average reservoir pressure p .  

Typical pressure and derivative log-log curves are presented on Figure 5.17 for a well 
with wellbore storage and skin in a closed square reservoir. Well A is centered whereas 
well B is close to one corner of the bounded system. The dotted curves describe the 
drawdown responses, and the build-ups are shown with lines. 

The pseudo steady state flow regime, characterized by a straight line of slope unity on 
the late time pressure and derivative curves, is seen only during drawdown periods 
(dots). If the well is not centered in the closed area, one or several boundaries can be 
seen during the transition between the initial radial flow and the late time pseudo steady 
state flow. The derivative response of example B shows the behavior of a 90 ~ wedge, 
between the derivative 0.5 plateau and the late time unit slope line. Similarly, the 
pressure response B deviates above the response A, until the two curves finally reach 
the same asymptote. 



226 Reservoir boundaries 

-0 102 
t-- 

o ?  
ID 
t . _  

c~101 m-o_ 
o0 

a.~ 
oo 

~ $  1 c c l  
o 
oo r  
ID 

E 
10 -1 

OB slope 1 . . . 7 . ,  

/ 0 A . . .  . . ' . .  

................... ' B': ' . /  A& 

. i 

10-1 1 10 ~ 102 103 104 105 106 
Dimensionless time, t D/C D 

Figure 5.17. Pressure and derivative responses for a well with wellbore storage in a closed square 
homogeneous reservoir. The dotted curxes are draxvdown, the build-up responses are generated 
for (it, /C)D = 1000. Log-log scales. Pu versus tl/Cj). C1)= 25000. S = 0. Curve A: (the well is 
centered) El/)= L2b = L~u = L4/~ = 30000. Curve B: klz) = k:z)= 6000. k3o = L4I) = 54000. 

As opposed to drawdown responses, the build-up pressure curves of  Figure 5.17 flatten, 
and the derivative drops. This illustrates the particular behavior of  closed systems, 
where drawdown and build-up curves have totally different late time responses. Due to 
the presence of  two boundaries close to the well, the derivative response of  example B 
shows an oscillating shape. 

Figure 5.18 is a semi-log plot of  the two drawdown examples of  Figure 5.17. The two 
well responses are superposed during the infinite acting radial flow regime. During 
pseudo steady state flow, the two responses curve above the semi-log straight line. At 
intermediate time, well B shows the behavior of  two perpendicular sealing faults with 
an increase of  the semi-log straight line slope by a factor of 4. 
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Figure 5.18. Semi-log plot of Figure 5.17 drawdown examples. Pro versus tJCD. 
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5.4.1 Closed reservoir model 

With the analytical solutions used for well test interpretation, several reservoir 
geometries can be envisaged but, for most practical purposes, only circular and 
rectangular reservoir shapes are considered. This last boundary model is presented in 
the following text. It is generated with the image well method as described by Matthews 
et al. (1954), the well can have any position in the bounded rectangular area. 

The reservoir is homogeneous. The well, with wellbore storage and skin, is at 
dimensionless distances L1D, L2D, L3D, and L4D fTOm the four sealing boundaries of the 
rectangle. The actual distances are defined by equation 1.34, and the area of the closed 
reservoir is expressed as" 

(5.~3) 

5.4.2 Drawdown behavior 

During the pseudo steady state flow regime, the drawdown pressure drop is a linear 
function of time (Equation 1.35 of Section 1.2.8). Brons and Miller (1961 b) expressed 
the dimensionless pressure as: 

Pz) =2:rtDA +--2 In + In + S 
r w CA 

(5.14) 

where the dimensionless time tL-)A is defined with respect to the drainage area, 

0.000264k 
t DA = At (5.15) 

6/ac~ A 

and S is the dimensionless wellbore skin coefficient. 

The shape factor CA characterizes the geometry of the reservoir and the well location. 
Brons and Miller (1961), Dietz (1965) and Earlougher (1971) have presented tables of 
shape factors for various drainage configurations. As shown in Table C. 1 of Earlougher, 
Monograph (1977), the term 1/2 ln(2.2458/CA) of the pseudo steady state Equation 5.14 
is as low as -1.31 for a well at the center of a closed square such as in example A of 
Figure 5.17. In long narrow rectangular systems, it can be greater than 1, in particular 
when the well is near one or two reservoir boundaries. On the pressure curves, this 
constant geometrical factor tends to increase the amplitude of the response at late times, 
as shown for example on curve B of Figure 5.18. 
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The two dotted derivative curves of  Figure 5.17 reach the unit slope straight line at least 
one log cycle earlier than the pressure responses. During the pseudo steady state flow 
regime, the log-log pressure curve starts to follow the straight line only when the time 
group 2~>,4 of Equation 5.14 is large compared to the three constant terms. With the 
derivative presentation, all constants are eliminated and the diagnosis of  pseudo steady 
state is easier. 

The location of the late time unit slope straight line is a function of  the reservoir area. 
On Figure 5.19, several drawdown examples are presented on log-log scale, with pj~ and 
p '~ versus the dimensionless time tj/Cj,. Three closed square reservoirs are considered, 
the areas are A/rw 2 = l0 G, 107, l0 s. When the size is increased by a factor of 10, the line 
is displaced by one log-cycle towards late times. 

For each square, the well is either centered, or near one boundary with the distance 
L1D=200. In the latter cases, the derivative shows an intermediate plateau at 1, before 
reaching the closed system straight line of unit slope. In the following Sections 5.4.4 
and 5.4.6, the examples of Figure 5.19 are further used to illustrate the influence of  the 
reservoir geometry and well location on the shape factor C4. 

The two drawdown examples of Figure 5.20 correspond to a long narrow rectangular 
reservoir. With curve C the well is centered and with curve D it is close to one end of 
the channel. In both cases, the derivative responses show a half unit slope straight line at 
intermediate time, before the start of the closed system flow regime. A 1/2 slope is 
characteristic of the linear flow condition, as discussed in Section 5.2 when the well is 
between two parallel sealing faults. For example D, the channel produces in only one 
direction and the flow is in fact hemi-linear. The derivative half unit slope straight line 
of curve D is double that of example C. The analysis of the hemi-linear flow regime is 
discussed in Section 5.4.5. 
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Figure 5.20. Pressure and derivative drawdown responses for a well with wellbore storage in a 
closed channel. Log-log scales, [D v e r s u s  tD/C D. 
C]) = 1000, S = 0. Curve C, the well is centered: Llz) = L3z) = 20000, L2D = L4D = 2000. Curve D, 
the well is close to one end of the channel: Llz)= L2z)= L3z) = 2000, L4D = 38000. 

5.4.3 Matching procedure with pressure and derivative drawdown data  

The early time response is matched on the homogeneous infinite reservoir model. For a 
well with wellbore storage and skin, kh, C and S are estimated from Equations 2.9, 2.10 
and 2.11. 

The late time derivative unit slope straight line defines the reservoir area. When the 
type-curve is generated by computer, the shape of the derivative transition between the 
0.5 line and the unit slope line is used to estimate the distance of the different 
boundaries. Assuming a rectangular geometry, it can be possible to identify one sealing 
fault (as on Figure 5.19), two perpendicular sealing faults (Figure 5.17) and also two 
parallel sealing faults (Figure 5.20). 

In practice, the derivative transition is seldom characteristic of a clear boundary 
configuration, and frequently several solutions are possible for the shape of the 
rectangular reservoir and the well location. The pressure response is also used for 
adjusting the geometry, with the shape factor effect. 

5.4.4 Semi-log analysis 

Figure 5.21 is a semi-log plot of the six examples of closed square responses presented 
on log-log scale Figure 5.19: at late time, during pseudo steady state flow, the curves 
deviate above the semi-log straight line. Before, the three examples generated with the 
well near one of the boundaries show a typical sealing fault behavior at transition time, 
with a doubling semi-log straight line slope. 
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Figure 5.21. Semi-log plot of Figure 5.19 drawdoxvn examples, p/) versus t//C:o. 

On these three examples, the distance to the first boundary is constant with Ll/o=200 and 
the duration of the semi-infinite regime is a function of the reservoir area. The curve 
generated for A/r, 2=10 s shows the longest hemi-radial flow regime" at time of start of 
the pseudo steady' state flow. this curve is significantly higher than the curve generated 
for the well at the center of the square. Conversely, the transition on the example 
,4/r,.2=10 G is short, and the two responses are relatively close. Figure 5.21 illustrates on 
semi-log scale the influence of the geometrical effect of boundaries on pseudo steady 
state pressure responses: the shape factor is high when the hemi-radial regime is long. 

On a Ap versus At semi-log plot of actual data, provided the correct semi-log straight 
line has been identified from log-log analysis, the permeability thickness product kh and 
skin coefficient S are estimated with Equations 1.16 and 1.17. During the transition 
before pseudo steady state flow, if the derivative shows a second stabilization such as 
on the examples Figures 5.17 and 5.19, the intermediate semi infinite regime also 
displays a semi-log straight line (Figures 5.18 and 5.21). It is then possible to estimate 
the distance of one or two boundaries (Section 5.1.4 for one sealing fault and Section 
5.3.4 for two intersecting sealing faults). 

If the log-log analysis shows the behavior of two parallel sealing faults before the 
pseudo steady state regime as on Figures 5.20, the linear flow transition regime can be 
analyzed with a plot of the pressure change versus the square root of time. 

5.4.5 Linear and hemi-linear flow analysis 

Figure 5.22 is a plot of the two examples of closed channel reservoir of Figure 5.20, 
with the dimensionless pressure p:> expressed versus the square root of the 
dimensionless time tc/CD (see Section 5.2.6). With well C, the flow is linear at 
intermediate time but, on the second example, well D is close to one end of the channel 
and the flow is hemi-linear. 
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The two responses show a straight line on the linear flow plot of Figure 5.22. Example 
C corresponds to an infinite channel, the slope inch is expressed in Equation 5.5. In the 
case of semi-linear flow curve D, the slope rr/hc h is double: 

qB I" /a (5.~6) mhc h -- 1 6 . 2 7  h(L1 + L2 ) kr 

If the semi-infinite nature of the linear flow regime is ignored and Equation 5.5 is used 
in place of Equation 5.16, the resulting calculated width is half of the true channel 
width. 

This illustrates the frequent non-uniqueness of the solution when several boundaries are 
acting during a well response. For a closed system, the reservoir area is well defined 
from the pseudo-steady state analysis but, in general, several combinations of shape and 
well position can be used to describe the transition between the infinite radial flow 
regime and the pseudo-steady state flow. 
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5 .4 .6  P s e u d o - s t e a d y  s tate  a n a l y s i s  

Figure 5.23 is a cartesian plot of the six examples of closed reservoir responses 
presented Figure 5.19 and 5.21: three square areas are considered and two well locations 
are assumed, with the well either centered in the square or near one of boundaries. 

On a linear plot, the responses follow a straight line during pseudo steady state regime. 
With the dimensionless variables pj) and te/'Cj), the slope is inversely proportional to the 
reservoir area A and the six straight lines of Figure 5.23 can be grouped into three pairs. 
With the smallest area A/r~,2=106, the two lines are almost superimposed but, as 
discussed in the previous section 5.4.4, when the area is larger and the well is off- 
centered, a long semi-infinite regime is seen before pseudo steady state flow and the 
shape factor Cq becomes large. For A/r,, 2= 108, the two pseudo steady state straight lines 
are clearly different. 

With real data, the pressure is expressed in Equation 1.35 during the pseudo steady state 
flow regime: 

Ap = 0.234 ~bc, hAqB At+162.6qBlaIlog_A__log(C.4)+O.351+O.87Slkh r,, (1.35) 

The slope m* of the pseudo-steady state straight line provides the reservoir connected 
pore volume: 

(~hA = 0.234 qB (1.36) 
ctm * 

When kh and S are known from semi-log analysis of the early time response, the shape 
factor C4 can be estimated from the time zero intercept Ap*,nt of the pseudo-steady state 
straight line with Equation 5.17, or 5.18 (Earlougher, 1971) : 

2.303 Pi-Pint z-log A/r,; -0.87S 
C A = 2.2458e (5.17) 

- 2.303 -/Pint 7 
C 4 5.456 m - e (5.18) 

r/l * 

The reservoir shape is deduced from a table of shape factors such as Table C.1 in 
Earlougher (1977). 



Closed systems 233 

$.4.7 Build-up analysis 

As already shown on Figures 1.25 and 5.17, the pressure behavior of closed systems is 
different during drawdown and build-up periods. At late time, the build-up pressure 

stabilizes at the average reservoir pressure p ,  the difference ( p ; - p  ) defines the 

depletion. 

Log-log pressure and derivative build-up analysis 

Figure 5.24 presents three build-up examples for a well in a closed rectangle. The length 
of the rectangle is twice the width, the distance between the well and one of the small 
sides is 1/8 of the length, the dimensionless rectangle area is  A/rw2=8*lO 6. This 
configuration is described in the Shape Factors Table C.1 of Earlougher (1977): CA is 
0.5813, the start of pseudo steady state tpssD is at tDx=2 and, at tDX=0.6, the error in 
drawdown pseudo-steady state analysis (Section 5.4.6) is less than 1%. 

In the log-log plot Figure 5.24, the dimensionless pressure and derivative are expressed 
versus the dimensionless time tJCD. The dimensionless wellbore storage coefficient is 
Cz) = 292 and the dimensionless time tDA of Equation 5.15 can be evaluated as" 

CD tz) =3.65X10 -5 tD (5.19) 
= A /  2 

Three production times are considered: 
1: The well is closed at start of the pseudo steady state regime (within 1% error: 
tpDx=0.6; tpJCD=l 6,400), 
2 & 3: The well is closed during pure pseudo steady state flow (tpDx=2 (=tpssD) and 10; 
tpjCD=54,600 and 273,000). 
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Figure 5.24. Pressure and derivative build-up responses for a well with wellbore storage in a 
closed rectangle. The well is close to one boundary. Three production times are considered. 
Log-log scales, Pz) versus tD/CD. CD = 292, S = 0, L1D = 500, LZD = 1000,  L3D = 3 5 0 0 ,  L4D = 1000. 
tpJCD (tpDA)= 16400 (0.6), 54600 (2), 273000 (10) 
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In Figure 5.24, the difference between the pressure responses appears negligible and the 
three curves merge into one single build-up response. When all reservoir boundaries 
have been reached during drawdown, the late time dimensionless build-up pressure 
stabilizes at" 

PBuz~- 1.15 lIlog-A-- log 4 7 . q , . , ~  +0.351 + 0.87S 1 (5.20) 

The examples are generated with a skin factor S =0. From Equation 5.20, the 

dimensionless stabilized pressure at late time is PBEz) = 8.62. 

Interestingly, when Equation 5.20 is changed to dimensional data, it has the same form 
as the constant term of the drawdown Equation 1.35. This shows that the amplitude of 

the pressure change during a complete build-up, A p - p - p ( A t = 0 ) ,  is equal to 

APint- P i -  Pint" The intercept APint of the pseudo-steady state straight line of the 

drawdown data (At=0 in Equation 1.35) indicates the amplitude of the subsequent build- 
up period at infinite shut-in time, and the depletion is expressed by the first term of 
Equation 1.35' 

m 

p , - p - 0 . 2 3 4  qB At (5.21) 
~c, hA 

When the pressure stabilizes, the derivative drops towards zero. The three derivative 
curves are estimated with respect to the natural logarithm of the Homer time (see 
Section 2.3.4), and three different dimensionless production times are used: 
tN/CD = 16,400, 54,600 and 273,000. Even though the pressure curves appear similar, the 
late time derivative responses are different on Figure 5.24. 

Before the final derivative drop, the build-up responses show the influence of the 
closest reservoir boundary and the derivative curves deviate above the 0.5 line, 
producing a hump. The examples of Figure 5.24 define the following sequence of flow 
behaviors: after the initial wellbore storage effect, the infinite acting regime is followed 
by a semi-infinite behavior and finally by the closed system stabilized pressure. 

With tpz)~=0.6, the derivative is above the two other build-up curves during the hump, 
and the final drop is delayed. When the pseudo steady state has been reached during 
drawdown (t/,~,q > 2 in the examples Figure 5.24), the shape of the build-up curve 
becomes independent of t/,. 

Other boundary configurations can generate a similar shape, with a derivative response 
curve going up and then down. For example when the reservoir is limited by a constant 
pressure boundary (see Section 5.5), the pressure also stabilizes at late time, and the 
derivative drops. If sealing boundaries are seen before the constant pressure support, the 
derivative increases before falling to zero (Figure 5.31). A semi permeable fault (Figure 
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5.33), and double porosity systems with sealing boundaries (Figure 5.41), can also 
generate a hump on derivative responses. In such cases, the derivative does not drop to 
zero at late time. These different boundary configurations are discussed in later sections. 

Semi-log analysis of  build-up 

The three dimensionless production times tpjCD=16,400, 54,600 and 273,000 used for 
Homer analysis are considerably larger than the time of end of the semi-log regime, 
estimated at tz>/C>=1000 on Figure 5.24. As discussed in Section 2.2.2, when tt,>> At, 
the Homer time can be simplified with Equation 2.16: 

tp + A t  
log ~ log t - log At (2.16) 

At P 

and the semi-log straight line slope m becomes independent of tp. 

When the analysis plots were made by hand, the M.D.H. semi-log scale was sometimes 
used for build-ups after long drawdown periods, since it required less work. With 
computing facilities available today, the Homer or superposition methods are preferred. 

When the production time tp is greater than the time of start of the pseudo-steady state 
tpss, two different definition of Homer time have been proposed (Earlougher, 1977), 
using the true production time tp as on Figure 5.25, or tpss. The build-up pressure 
response being independent of tp, the Homer time should ideally also be independent of 
the production history, and therefore calculated with a fixed tpss. 
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Figure 5.25. Homer plot of Figure 5.24 build-up examples, pD versus (tpD +tD)/tD. 
The Homer production time is tpJCD = 16400, 54600 and 273000 (tpZ)A =0.6, 2 and 10). 
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Figure 5.26. Homer plot of Figure 5.24 build-up examples, p:) versus (t:)/) -~t:))/tz). 
For the three examples, the Homer production time is ::,:):C/) = 16400 (t:,:_~.4 =0.6). 

Figure 5.26 is the Homer plot of the dimensionless log-log curves of Figure 5.24 where 
the Homer dimensionless production time is fixed at t~>A ; 0.6 for the three responses. 
This corresponds to the 1% error criteria of the pseudo steady state drawdown straight 
line and to t:,:/C/> =16400. From Equation 2.16, the choice of the production time, tp or 
tps~, does not change the slope, but only displaces the Homer curve along the time scale. 
The two definitions of Homer time give the same permeability thickness product kh and 
skin coefficient S with Equations 1.16 and 2.15, the only difference is in the 
extrapolation of the straight line to "infinite shut-in time", p* 

With a fixed trss as on Figure 9.26, the same semi-log straight line describes the three 
examples during radial flow. When pseudo steady state has been reached during 
drawdown (curves t::o.q=2 and 10), the two Homer curves are superimposed whereas 

with tpDA = 0.6, the curve deviates and flattens at P D = 8.50, slightly below the 

theoretical dimensionless stabilized pressure p:) = 8.62. For the three curves, the semi- 

log straight line extrapolated pressure pz)*=8.1 is lower than the final stabilized 
pressure. 

The Homer curve in Fi~ure~, 5._'~6 beino~ independent of t•, the relative position of the 

extrapolated pressure p* compared to the stabilized pressure p is only a function of the 

well location in the rectangle. The final stabilized build-up pressure is higher than p* 
when a long semi-infinite regime is seen after the radial flow straight line, due to one or 
several boundaries close to the well. In addition to the build-up example Figure 5.24, 
the different drawdown examples Figures 5.17, 5.19 and 5.20 with a high shape factor 
CA correspond to this type of behavior. Conversely, when the well is centered in the 
reservoir, the radial flow regime is not interrupted by early boundary effects, and the 
Homer curve stabilizes below the extrapolated pressure p* 

In practice, the Homer time is naturally expressed with reference to the true production 
time tp as shown on Figure 5.25. When compared with Figure 5.26, the Homer curves 
are simply displaced by Log[tp/tpss] along the time scale (from Equation 2.16), and 
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therefore the straight line extrapolated pressure changes with tp. For example, the curve 
generated for tploA=2 is displaced by log(2/0.6) to the right, the dimensionless 
extrapolated pressure p>* is then 1.151x0.52=0.60 higher than on Figure 5.26, and 

p>*=8.7 is almost the same as the dimensionless stabilized pressure PD = 8.62. With 

tpDA=lO, the semi-log straight line has to be extrapolated more than one log cycle 
further, the new p>* is 1.40 higher, and p>*-9.5 is above the constant stabilized 

pressure pD �9 

In producing fields, routine shut-in periods are made to monitor the depletion. On a 
Horner/superposition plot of real data, both the extrapolated pressure p* and the average 

pressure p decrease when tp increases. When the same production time, such as on 

Figure 5.26, is used for Homer analysis of the different build-up tests, the change of 
extrapolated pressure p* from one build-up to the next defines the drop of average 

pressure p between the tests. If the actual multiple rate sequence, or the total 

production time as on Figure 5.25, are used, the difference ( p - p * ) i s  not a constant, 

and p* is difficult to interpret. 

The M.B.H. method 

In 1954, Matthews-Brons-Hazebroek presented a method for estimating the average 
reservoir pressure when build-up surveys in bounded reservoirs are terminated before 
the final pressure stabilization. The M.B.H. method has been thoroughly discussed and 
illustrated in the petroleum literature. In the following, the technique is only 
summarized in relation to the previous discussion of semi-log build-up analysis. 

The M.B.H. method uses results of the Homer analysis based on the production time tp 
such as on Figure 9.25. In addition to the straight line slope m and extrapolated pressure 
p*, the technique requires the reservoir area A and the geometry of the well location to 
be known. A set of semi-log curves is presented for various reservoir shapes and well 
locations. The x axis expresses, in term of tpDA of Equation 5.15, the production time 
prior to shut-in and the y scale provides the M.B.H. dimensionless pressure, defined as: 

PD,MBH = 2.303 p * - p  = 2 pD -- 
m 

(5.22) 

From the Homer analysis, m and p* are estimated, the permeability is calculated with 
Equation 1.16 and, knowing the reservoir area A, the dimensionless production time tpDA 
is evaluated from Equation 5.15. Then, by selecting the proper curve for reservoir and 
well location, a direct reading provides the dimensionless M.B.H. pressure and the 

theoretical average reservoir pressure p can be evaluated from Equation 5.22. 

The M.B.H. curve corresponding to the examples in Figure 9.24 is presented in Figure 
6.4 of Earlougher (1977). For the three production times tpDA=0.6, 2 and 10, the 
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dimensionless M.B.H. pressures are respectively pe~,~.lBH=-0.8, 0.1 and 1.8. Using the 
Figure 9.25 previous calculations of extrapolated pressures for the Hornet plot defined 
with tp (v>*=8.1, 8.7 and 9.5), the expected dimensionless average pressures are 

obtained: PD =8.5 for tp>,~ = 0.6, and Pb =8.6 on the two other examples. 

It is assumed with the M.B.H. method that the production is relatively constant during 
the complete flowing time. In case of multiple rate production history, since the M.B.H. 
pressure is not available with the superposition method (Larsen, 1983), the equivalent 
Homer time is used. In practice, analytical simulations are preferred today rather than 
the M.B.H. method for estimation of the average reservoir pressure. No simplification 
of the rate history has to be made, the range of reservoir systems is not limited to a 
defined catalog of shapes, and curve matching by simulation is less prone to error than 
the straight line methods. 

5.5 CONSTANT PRESSURE BOUNDARY 

Sealing and constant pressure linear boundaries express the two limiting cases of the 
linear composite solution presented in Section 4.3.3, with a zero and an infinite mobility 
in the outer reservoir region. A constant pressure boundary is used to describe the 
influence of a linear change of fluid properties, such as the presence of a gas or a water 
contact some distance away from an oil well (Figure 5.27). Strictly speaking, the 
mobility of the outer zone is not infinite but it must be very large compared to the 
mobility of the oil region. In the following Section 5.6 on communicating faults, it is 
shown that an infinite conductivity fault also acts as a constant pressure boundary, even 
though the reservoir properties can be constant on both sides of the fault. 

Vertical changes of fluid properties, such as the influence of a gas cap or a bottom water 
drive for example, correspond to a different boundary system. These configurations 
have been introduced for partially penetrating wells in Section 3.4.7 and for horizontal 
wells in Section 3.6.11 (Figure 3.43). The effect of a gas cap or bottom water drive is 
further discussed at the end of the chapter, in Section 5.10.3. 

- ~ water  

Figure 5.27. Physical model for a linear constant pressure boundary: gas or a water drive pressure 
support. 
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Figure 5.28. Pressure and derivative responses for a well with wellbore storage near one constant 
pressure linear boundary in a homogeneous reservoir. Log-log scales, PD versus tD/CD. 
CD = 104, S = 0, LD = 5000. 

A typical influence of a linear constant pressure boundary is illustrated in Figure 5.28 
for a well with wellbore storage and skin in a homogeneou.s reservoir. 
�9 During drawdown and shut-in periods, the pressure stabilizes and the derivative 
tends to zero when the influence of the constant pressure boundaries is felt. 
�9 The rate of decline of the derivative response gives an indication of the geometry of 
the constant pressure boundaries. 

In Figure 5.28, the same dimensionless parameters as on the example of a sealing fault 
response presented Figure 5.1 are used, only the boundary condition is changed. With 
the two solutions, a common infinite acting regime is seen at early time but the models 
diverge when the boundary effect starts to be felt, at tJCD = 1000. In the case of a unique 
linear constant pressure boundary, when the pressure stabilizes, the derivative follows a 
straight line with a negative unit slope (Abbaszadeh and Cinco-Ley, 1995). 

When several constant pressure boundaries are reached, the shape of the response 
becomes close to that of a build-up curve in a bounded (closed) system such as in 
Figure 5.17 but, with a constant pressure boundary, the same stabilized pressure 
behavior is seen during drawdown and build-up periods. 

All the configurations of linear sealing boundaries presented in previous sections can be 
considered with constant pressure boundaries. When several boundaries are considered, 
a combination of the two conditions can be also envisaged:. 

5.5.1 Single linear constant pressure boundary model 

The constant pressure model is identical to the sealing fault analytical solution 
presented in Section 5.1.1, except that the producing image well at distance 2LD is 
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changed into an injection well, thus introducing the linear constant pressure condition at 
a distance L/) from the producing well. 

When the producing well has reached the radial flow regime, the influence of the image 
well, described by a line source injector, is introduced as 

[ >2] 
P:7 - 0.5(ln t u + 0.80907 + 2S)+ 0.5 Ei - (2L:) 

4t/) 
(5.22) 

When the radial flow condition also becomes valid for the image well response, the 

[- )2/4t ] c a n  be approximated by the semi-log exponential-integral solution Ei (2Leo :> 

function - ln[t  D/(2L:) ): ] -0 .80907 ,and Equation 5.23 reduces t o  

Pz) - In 2Leo + S (5.23) 

In the absence of any skin factor N, the amplitude of the stabilized dimensionless 
pressure is only function of the distance L/) between the well and the constant pressure 
boundary.'. On the example Figure 5.28, with a distance L:)= 5000 and a skin S =0, the 

stabilized pressure is p/) - 9.21. 

5.5.2 Behavior 

Figure 5.29 presents four constant pressure boundary responses, for the same well 
configuration and boundary distances as on the sealing faults examples in Figure 5.2' 
L:> = 100, 300, 1000 and 3000. 
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Figure 5.29. Pressure and derivative responses for a well with wellbore storage and skin near one 
constant pressure boundary in a homogeneous reservoir. Log-log scales, PD versus tD/CD. 
Cz) = 100, S = 5. Several distances Lz) = 100, 300, 1000, 3000. 
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At late time, when the constant pressure is felt, the four responses become parallel in 
Figure 5.29: the pressure curves reach the different stabilized pressures pD of  Equation 
5.24, and the derivative negative unit slope lines are displaced along the time scale 
proportionally to LD 2, the square of  the distance. As for the sealing fault model, the 
response for LD =100 does not show any radial flow behavior. 

The same examples are presented on a semi-log scales in Figure 5.30" when the constant 
pressure is reached, the curves deviate from the radial flow straight line and stabilize. 

An example of  mixed sealing and constant pressure boundaries is given in Figure 5.31: 
the well is near a sealing fault at Lm=340, and the reservoir is under the influence of  a 
linear constant pressure boundary perpendicular to the fault at a distance L2D=940 from 
the well. The derivative first shows the influence of  the no-flow barrier and the response 
deviates above the 0.5 plateau, but later the constant pressure is seen and the derivative 
drops. This combination of  mixed boundaries produces a hump, very similar to the first 
part of  a finite conductivity fault response as described in Section 5.6.2. 
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Figure 5.30. Semi-log plot of Figure 5.29 examples. PD versus tD/CD. 
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Figure 5.31. Pressure and derivative responses for a well with wellbore storage near two 
perpendicular intersecting boundaries in a homogeneous reservoir. Log-log scales, Pz) versus 
tD/CD. CD = 100, S = 0. The closest boundary is sealing, the second at constant pressure. The 
angle of intersection is 0 = 90 ~ the well location is 0,~ = 20 ~ the distance to the intercept is LD = 
1000. 
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When several constant pressure boundaries are present, or in the case of a circular 
constant pressure boundary, the shape of the derivative decline is steeper. 

5.5.3 Drawdown and build-up analysis 

Like other boundary conditions, a response influenced by constant pressure is analyzed 
in two steps. The early time response corresponds to the infinite reservoir solution. On 
log-log scales, a Cj)e 2x curve describes the first part of the response in the case of 
wellbore storage and skin effects. On semi-log or Horner/superposition scales, the usual 
straight-line methods are applicable. This first analysis provides the wellbore storage 
coefficient C, the permeability thickness product k/7 and the skin factor S. 

When the constant pressure influence is seen, the distance L to the pressure support 
boundary can be estimated. On a log-log scale, the time of the drop of the derivative 
curve indicates L, in the same way as the increase of the derivative response gives the 
distance to a no flow barrier. With mixed boundaries, a match on a computer-generated 
response describes the influence of the sealing boundaries reached before the constant 
pressure one. 

In the hypothesis of a single constant pressure boundary, the time of intercept Atx 
between the semi-log straight line and the constant pressure is used on semi-log and 
superposition plots. The Equation 1.33 for a sealing fault is applicable to the constant 
pressure boundary. The difference between the pressure at the start of the period and the 

stabilized pressure kp = p - / ) ( A t  = 0) can also be used to estimate L. From Equation 

5.24, 

As the derivative follows a straight line with a negative unit slope when a constant 
pressure boundary is reached, Abbaszadeh and Cinco (1995) propose to estimate the 
distance from a Cartesian plot of the pressure derivative group kp '  of Equation 2.23, 
versus the inverse of the elapsed time 1~At. The derivative follows a straight line of 
slope mcp, giving the distance to the linear constant pressure with: 

I mcph 
L - 0.0193 qB~bcf (5.25) 

For shut-in periods, the extrapolated pressure of the semi-log straight line is not used; 
the pressure at infinite shut-in time corresponds to the stabilized pressure. 

Frequently, on build-up data, the derivative becomes noisy when the pressure stabilizes 
at late time and it can be difficult to differentiate a constant pressure influence from a 
closed system response, as illustrated in Figure 5.24 for example. The analysis of the 
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previous drawdown and the test simulation plot are used to decide between the two 
alternative solutions. The comparison of the initial reservoir pressure p~ with the build- 

up extrapolated or stabilized pressures, p*or p ,  also shows if depletion has to be 

considered. 

5.6 COMMUNICATING FAULT 

In hydrocarbon bearing formations, faults are frequently non-sealing and allow 
communication between two reservoir regions. If the fault shows an infinite 
conductivity behavior, a flux parallel to the fault plane is established, improving the 
drainage in the reservoir region. By providing pressure support, this configuration 
shows the behavior of a constant pressure boundary (Abbaszadeh and Cinco-Ley, 1995; 
Kuchuk and Habashy, 1997). 

Between the two limiting cases, namely the sealing and the infinite conductivity fault, 
intermediate behaviors can be encountered: 
1. A partially communicating fault (also called semi-permeable fault) describes a 
reduction of permeability in the vertical plane fault. 
2. With the finite conductivity fault model, the fault permeability is larger than the 
formation permeability. 

In the following, partially communicating and finite conductivity fault models are 
presented. It is assumed that the fault, of infinite extension, is unique. For clarity of the 
presentation, the two reservoir regions separated by the fault are supposed to have the 
same characteristic. It is shown that the fault influence is expressed by a temporary 
deviation from the 0.5 plateau. The derivative shows a hump above the stabilization 
with the semi-permeable fault, and a valley below the stabilization in the case of a finite 
conductivity fault. 

If high conductivity faults are connected and form a network in the reservoir, the 
behavior corresponds to the double porosity model described in Section 4.1 

Cinco et al. (1976) investigated the behavior of a well near a single infinite conductivity 
fault of limited extension. The shape of the response is close to that of a finite 
conductivity fault of infinite extension. They describe the effect of the fault with a 
negative pseudo-skin. The fault is acting like a drain, and the pseudo-skin is more 
negative when the orientation of the fault is radial. 

5.6.1 Semi-permeable linear boundary 

The semi-permeable linear boundary is designed to describe the presence of a partially 
communicating fault: a flow is possible between the two reservoir regions through the 
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fault plane, no flow is allowed along the fault. On the example of Figure 5.32, the throw 
of the fault plane is insufficient to cause a complete separation between the two 
permeable regions and a leak is possible, depending upon transmissibility in the vertical 
plane interface. The reservoir properties are the same on both sides; the linear interface 
is only acting like a restriction. 

The typical influence of a semi-permeable fault is shown in Figure 5.33, the same 
dimensionless parameters as on the sealing fault example of Figure 5.1 are used. 
�9 The response starts to follow the usual infinite acting regime and, at t])/C])= 1000, 
the derivative deviates above the 0.5 plateau and ten&" to 1, like for the no-flow barrier 
of Figure 5.1. 
�9 When the communication starts through the fault, the derivative slowly decreases 
until a second infinite radial flow regime is established, and finally the response returns 
to the 0.5 stabilization line. 

The influence of the semi-permeable fault is expressed by a temporary deviation above 
the 0.5 plateau. The duration of this hump is a function of the fault transmissibility" a 
long derivative transition at 1 suggests that the fault is almost sealing. 

+ii;i~+;!;i~i 
Figure 5.32. Physical model for a semi-permeable boundary. 
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Figure 5.33. Pressure and derivative responses for a well with wellbore storage near a semi- 
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Figure 5.34. Pressure and derivative responses for a well with wellbore storage and skin near a 
semi-permeable linear boundary. Log-log scales, PD versus tD/CD. CD = 100, S = 5, LD = 300. 
Several transmissibility ratios c~ = 1, 0.1, 0.01, 0.001. 

Semi-permeable fault model 

The partially communicating fault solution presented in the following corresponds to 
the model of Yaxley (1985): the reservoir is homogeneous and the two regions have the 
same characteristics. The fault is at distance L from the well, its thickness wf is small 
and the fault permeability is called kj (Figure 5.32). Yaxley defines the dimensionless 
transmissibility ratio cz as the reciprocal of a skin: 

kf  /w f  
a - ~ (5.26) k/L 

With the linear composite solution presented in Section 4.3.3, Ambastha et al. (1987) 
have considered also the transmissibility in the interface between the two reservoir 
regions but they use the concept of an infinitesimal skin. When the reservoir properties 
are the same on both sides of the fault, their linear composite solution is equivalent to 
the semi-permeable fault model presented in this section. 

Kuchuk and Habashy (1997) extended the model of Yaxley (1985) to a series of parallel 
partially communicating faults. In their examples of multiple communicating faults, the 
maximum of the hump above the 0.5 derivative stabilization can exceed the limit of 1 
for a single fault. They also investigated a high permeability fault, allowing flow along 
the fault plane. They obtained results similar to Abbaszadeh and Cinco (1995) for a 
finite conductivity fault with no skin. 

Behavior 

In Figure 5.34, several transmissibility ratios c~ are considered for a semi-permeable 
fault located at LD=300 from the well. With a = l ,  the linear discontinuity is hardly 



246 Reservoir boundaries 

visible and the derivative response does not deviate much above the 0.5 line whereas 
with c~ =0.001 the fault appears almost impermeable, and the response is similar to the 
sealing boundary response LD=300 of Figure 5.2 (the well parameters are the same with 
Cj> =100 and S=5). The two intermediate values of transmissibility ratio, c~ =0.1 and 
0.01, show the characteristic response of a leaky fault: a second radial flow regime is 
established at late time, and the derivative stabilizes twice on the 0.5 line. 

On a semi-log scale, the two limit cases of Figure 5.34 both appear homogeneous with a 
single semi-log straight line of slope n7 for c~=l and, for c~=0.001, a sealing fault 
response with a second line of slope 2m (Figure 5.35). With the two other examples, the 
semi-log curves show t~'o para//e/straight lines, but the second one is above thefirst. 
During the transition between the two parallel straight lines, the response follows the 
behavior of a sealing fault, and a temporary semi-log straight line of slope 2m is 
observed. 

When the second radial flow regime is reached, the presence of a leaky fault in the 
reservoir simply produces an additional pressure drop, like a damage effect on the late 
time response. A similar semi-log response, with parallel straight lines separated by a 
vertical transition, can also be observed in radial composite systems (see Section 4.3.2, 
Figure 4.55), when the storativity decreases in the outer reservoir region. With the two 
solutions, the ability to flow is reduced at late time, even though the permeability is 
constant throughout the reservoir. 

Drawdown and buihl-up analysis 

A preliminary analysis of a semi-permeable fault response can be made with the sealing 
fault solution (Sections 5.1). The first infinite acting radial flow regime is analyzed on 
log-log and semi-log scales to provide the wellbore storage coefficient C, the 
permeability thickness product kh and the skin factor S. The time of the deviation at the 
end of the first semi-log regime is used to estimate the distance L to the semi-permeable 
fault, as for a no-flow barrier. 
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Figure 5.36. Pressure and derivative responses for a well with wellbore storage near a finite 
conductivity fault. No fault skin. Log-log scales, Pz) v e r s u s  tD/C D. CD = 103, S = 0, L D = 1000, 
F~:  100, as: 0. 

The transmissibility ratio c~ is obtained from the transition between the two radial flow 
regimes. When the communication between the two reservoir regions is poor, the 
transition is long. On a log-log scale, the derivative hump can last more than two log- 
cycles, and frequently the second radial flow regime is not completely established at the 
end of the test period. If a complete response is available, the vertical distance between 
the two parallel straight lines of the semi-log plot increases as the transmissibility ratio 
is reduced. 

For build-up responses, the extrapolated pressure of the first semi-log straight line is not 
used, p* is evaluated by extrapolation of the second line to infinite shut-in time. 

5.6.2 Finite conductivity fault 

With the finite conductivity fault model, the permeability of the fault is larger than the 
reservoir permeability. Flow is allowed across and along the fault plane, and the fault 
enhances the drainage in the reservoir. In their original solution, Abbaszadeh and Cinco 
(1995) allow a change of mobility and storativity in the two reservoir regions. It is 
assumed in the following that the reservoir properties are the same on both sides of the 
fault. 

The typical influence of a semi-permeable fault is shown in Figure 5.36 (with no fault 
skin Sj). 
�9 The response starts to follow the usual infinite acting regime. 
�9 When the finite conductivity fault is seen, the derivative drops along a straight line 
of slope -1. First, the fault provides a pressure support similar to a constant pressure 
linear boundary. 
�9 Later, as the pressure drops in the fault, a flow is established in the thickness of the 
fault plane. As depicted Figure 5.37, this results in a bi-linear flow regime: one linear 
flow takes place in the reservoir when the fluid enters and exits the fault, the second 
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linear flow describes the flux in the fault thickness. In Figure 5.36, the derivative leaves 
the constant pressure negative unit slope straight line, and starts to increases along a 1/4 
slope straight line. 
�9 Finally, the derivative response returns to the 0.5 stabilization describing the 
infinite acting radial Jlou' regime. At late time, the fault has no effect on the derivative 
response. 

The bi-linear flow regime has been already discussed for well intercepting a finite 
conductivity vertical fracture (Sections 1.2.5 and 3.3). With the fractured well model, 
the reservoir flows into the fracture from the two sides of the vertical fracture plane, as 
opposed to the finite conductivity fault where flow both enter and exit the interface. 

The effect of a finite conductivity fault is shown by a valley on the derivative curve. 
This shape appears similar to a double porosity response, but the two reservoir models 
describe different flow behavior. With the double porosity model, fluid flow through the 
fissure network and the derivative valley defines an increase of storativity from fissures 
to the total system. With finite conductivity fault model, radial flow is established in the 
matrix, before the conductive fault enhance the drainage in the reservoir. With the two 
solutions, the ability to flow is improved at late time, even though the permeability is 
constant throughout the reservoir. 

Finite conductivity fault model 

The fault thickness wf is small, the fault permeability is called kf and the distance from 
the well is L (Figure 5.37). Two dimensionless parameters are used to define the fault 
properties. The fault dimensionless conductivity F~I) describes the ability of flow in the 
fault plane: 

k / w l  
Fc1_) = (5.27) 
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Figure 5.37. Fault diagram. 
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Figure 5.38. Pressure and derivative responses for a well with wellbore storage and skin near a 
finite conductivity fault. Log-log scales, PD versus tD/CD. CD = 100, S = 5, LD = 300. 
No fault skin and several conductivity: Sf = O, FcD = 1, 10, 100, 1000, 10000. 

The skin factor Sf describes the resistance to flow across the fault plane. In their model, 
Abbaszadeh and Cinco (1995) introduced a region of altered permeability ka with an 
extension w, around the fault. The dimensionless skin Sfis expressed as: 

2erk(w a w f )  
- - -  + (5.28) 

S /  L-- k. 2k k 

A zero fault conductivity FcD corresponds to the semi-permeable fault solution of 
previous Section 5.6.1. The skin factor Sf is related to the transmissibility ratio a of 
Yaxley (1985) with: 

7r 

Sr 

Behavior 

In Figure 5.38, the fault has no skin S/and several dimensionless conductivities FcD are 
considered. When FcD <0.1, the pressure derivative stays on the 0.5 line and the fault 
has no effect on the well pressure response. With a low conductivity fault, there is no 
flow along the fault plane and the fluid transfer occurs only across the interface. The 
fault does not improve the drainage but, since no skin is assumed, the response is 
similar to the semi-permeable fault of Yaxley (1985) with o~ > 1 (Figure 5.34). 

For larger fault conductivity, the fault is acting like a drain and the derivative drops 
along a straight line of slope -1. The time of start of the apparent constant pressure 
behavior is a function of the fault distance L. The depth of the valley, and the location of 
the subsequent 1/4 slope straight line, defines the fault conductivity Fc> For example 



250 Reservoir boundaries 

with Fc> = 103, the valley lasts 6 log cycles in Figure 5.38. This shows that, if the fault is 
reached after 1 hour, the second radial flow regime only starts after several years. In 
practice, during a standard test, the response is expected to end before the second radial 
flow regime. 

On a plot of the pressure versus the fourth root of time, a straight line is present during 
the bi-linear flow regime, as shown by the dimensionless equation of Abbaszadeh and 
Cinco (1995): 

2.45 ,1 /4  (5  3 0 )  
PD - C + t/~)t 

,/M 

Equation 5.31 is general; a change of mobility is possible on the two sides of the fault. 
When the reservoir properties are constant, the mobility ratio M, defined in Equation 
4.78, is set to 1 in Equation 5.31. The constant C describes the flow restriction between 
the fault and the well, corresponding to the early time radial flow regime. 

When a skin factor Sj reduces the ability to flow across the fault plane, the resistance to 
flow changes the response to that of a sealing boundary at the beginning of the fault 
influence. In Figure 5.39, the finite conductivity fault is affected by a skin S/of  10, 100 
and 1000. When the fault is reached, the derivative changes from the 0.5 stabilization to 
a plateau at 1, then it drops along a straight line of slope -1, reaches a minimum, follows 
the 1/4 slope straight line until the final radial flow regime is seen. The presence of a 
skin across the fault delays the time of the start of the apparent constant pressure 
behavior, with an intermediate sealing fault response. The straight line of slope -1 is 
delayed along the time scale, but the 1/4 slope straight line is the same for all skin 
factors. 
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Figure 5.39. Pressure and derivative responses for a well with wellbore storage and skin near a 
finite conductivity fault. Log-log scales, pz) versus tD/CD. Up = 100, S = 5, Lj_~ = 300. 
Several fault skin and conductivity" FeD = 10, 1000, @= 10, 100, 1000. 
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Figure 5.40. Semi-log plot for a well with wellbore storage near a finite conductivity fault. 
PD versus tD/CD. CD = 103, S = 0, LD = 1000, Fcz) = 100, Sf = 0 or 100. 

On the semi-log plot Figure 5.40, the finite conductivity fault responses of Figure 5.36 
with a skin Sfof 0 is compared to a similar fault configuration with a skin @= 102. When 
there is no fracture skin, the response follows the usual semi-log straight line of slope m 
(1.151 in dimensionless terms), flattens during the constant pressure behavior, increases 
during the bi-linear flow regime and, finally follows another line parallel to the first 
straight line. The degree of deviation below the semi-log straight line is more 
pronounced when the fault conductivity FcD is large. When a fracture skin SU is present, 
the semi-log straight line doubles (slope 2m) before the sequence occurs of constant 
pressure, bi-linear flow and final radial flow regimes. The apparent flattening is delayed 
and the corresponding pressure change is larger than when there is no fault skin. The 
semi-log curves of Figure 5.40 shows that the effect of a fault skin increases the 
amplitude of the pressure response at late times. 

Drawdown and build-up analysis 

As for the semi-permeable fault, a preliminary analysis of a finite conductivity fault 
response can be made with a single fault solution. The analysis of the early time infinite 
acting regime provides the wellbore storage coefficient C, the permeability thickness 
product kh and the wellbore skin factor S. The time of the deviation at the end of the 
first semi-log regime is used to estimate the distance L to the finite conductivity fault. If 
the derivative drops immediately after the 0.5 stabilization, the fault has no skin Sf and a 
linear constant pressure boundary (Sections 5.5) is used. When the derivative increases 
to 1 before falling, the sealing fault solution (Sections 5.1) is used to estimate the 
distance L. A constant pressure boundary can then be used to match the drop of 
derivative. The resulting distance Lcp of the apparent constant pressure boundary can be 
used to evaluate the fault skin @: 

(s.31) 
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When the bi-linear flow regime is present on the data, a plot of the pressure versus the 
fourth root of time exhibits a straight line whose slope, defined in Equation 5.31, is 
related to the fault conductivity and the mobility ratio. In field units, 

Ap - C + 44.1 ClB/a 4~At (5.32) 

I 4M +1 
,/v 

Equation 5.33 means that the finite conductivity fault shows the same behavior as a well 
intercepting a finite conductivity fracture with a flow restriction near the wellbore 
(Abbaszadeh and Cinco-Ley, 1995). By comparing with Equation 1.27, if the mobility 
ratio is assumed to be M = 1, the fault behaves like a fracture of conductivity 4kjw 1. 

As mentioned previously, the shape of the transition valley of a finite conductivity fault 
response is very long and actual test data generally end during the transition. The 
possibility' to identify a change of mobility across the fault plane appears hypothetical, 
unless the fault skin and conductivity, are low, and the system becomes equivalent to the 
linear composite solution of Section 4.3.3. 

For build-up responses, the extrapolated pressure of the first semi-log straight line is not 
used. When a bi-linear flow regime has been reached during the flow and shut-in 
periods, the corresponding Homer or superposition times (see Equation 2.20) can be 
used to estimate the fracture conductivity (with the same slope as in the drawdown 
Equation 5.33) and p*, by' extrapolation of the bi-linearJlow straight line to infinite 
shut-in time. 

5.7 EFFECT OF BOUNDARIES IN DOUBLE POROSITY RESERVOIRS 

When boundary effects are encountered in a double porosity reservoir, two types of 
transitions are present on the response. One describes the changes of flow geometry due 
to the boundaries, and tile other corresponds to the double porosity transition (see 
Sections 4.1 to 4.4). Depending upon which transitions are seen first, boundary effects 
can be identified during the fissure flow, the double porosity transition, or during the 
total system flow. The number of possible pressure behaviors is large. 

If the reservoir limits appear after the double porosity transition, the response is 
homogeneous during the total system flow regime and the effects of boundaries are the 
same as in a homogeneous reservoir, the different boundary models presented in the 
previous sections are directly applicable. Conversely, when the limits are reached 
during fissure flow or in transition regime, the double porosity nature of the system 
changes the response of boundaries. During the fissure flow regime, the storativity is 
only a fraction of the reservoir total storativity (see Section 4.1) and the diffusivity is 
high. The presence of limits appears earlier than in the case of homogeneous systems. 
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In the following sections, several examples are presented to illustrate the effect of 
boundaries during the fissure flow and the transition regimes of double porosity 
responses. 

5.7.1 One sealing fault in double porosity reservoir, pseudo-steady state 
interporosity flow 

In Figure 5.41 a double porosity response, pseudo-steady state interporosity flow, is 
influenced by a sealing fault during the fissure flow. The fault, at a distance LD = 5000, 
is seen immediately after the wellbore storage effect and the derivative starts to increase 
as soon as the 0.5 line is reached at tJCo = 102. The double porosity transition is then 
observed during the hemi-radial flow regime, and finally the response stabilizes at 1. 
The derivative curve presents two valleys: the first corresponds to the end of wellbore 
storage effect and the start of the fault influence; the second is the double porosity 
transition during the semi-infinite regime. 

On this example, there is no infinite acting radial flow regime. The fault is seen at 
tJCo=l 02 but, due to the double porosity transition, the semi-log straight line of slope 
2m characteristic of the sealing fault starts after tJCo = 105. A semi-log analysis of the 
hemi-radial flow regime can be performed only when the pressure data is available for 
more than three log-cycles after the end of wellbore storage. 

In their study of the influence of a sealing fault in double porosity reservoir, 
Khachatoorian et al. (1995) indicate that a linear no-flow barrier shows during the 
fissure flow regime of the restricted interporosity flow model if the distance is less than 
a critical distance Lcz), defined as a function of 2. They propose: 

<,) -0.54/,/7 (5.33) 
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Figure 5.41. Pressure and derivative responses for a well with wellbore storage in a double 
porosity reservoir with a sealing fault, pseudo steady state interporosity flow. 
Log-log scales, PD versus tD/CD. Co = 104, S = 0, LD = 5000, o)= 0.2, Z = 10 -9. 
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The critical distance LeD is related to the radius of influence r,D of the fissures, presented 
in the discussion of interference tests Section 6.4.2, Equation 6.12. 

5.7.2 Parallel sealing faults in double porosity reservoir, unrestricted 
interporosity flow 

Fluvial deposit sandstone reservoirs frequently provide examples of heterogeneous 
behavior with boundary effect. In river channels, the sediments are often sorted in 
strata, with the high permeability elements accumulated at the base of the deposit body. 
Depending upon the permeability contrast between the strata, channel reservoirs can 
show a double porosity, or a double permeability behavior. In the following, an example 
of double porosity channel response is presented for the unrestricted interporosity flow 
hypothesis. Double permeability channels are discussed in Section 5.8.2 and, in the 
Section 5.9.1 for composite reservoirs, a different configuration is considered: the 
sediments are sorted in strips parallel or perpendicular to the riverbed. Additional 
features, specific to channel deposits, are further reviewed in Section 5.10.1. 

When the permeability of the deposit at the base of the channel sand is larger than in the 
higher tight sediment zone, Stewart (1997) reports that this two layers configuration can 
produce a bi - / inearJ low regime during the channel response. A horizontal linear flow 
occurs along the channel base, and a vertical linear flow is supported from the tight 
overlaying formation. In such a case; a quarter slope derivative straight line is observed 
on the log-log plot of the response, such as illustrated in Figure 5.42. A similar bi-linear 
flow behavior has been reported in the case of a horizontal well in a double porosity 
reservoir, if the unrestricted interporosity transition is seen when the flow is linear 
towards the well (Du and Stewart, 1992: see discussion Section 4.1.4). 
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Figure 5.42. Pressure and derivative responses for a \veil with wellbore storage in a double 
porosity' channel reservoir, transient interporosit) t'loxv, slab matrix blocks. The dotted curves 
correspond to the equivalent infinite double porosity reservoir. 
Log-log scales, pD versus tD/CD. CD = IO, S=O, LID=L2D = 300, co = 103,2 = 10 -6. 
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Figure 5.43. Pressure and derivative drawdown responses for a well with wellbore storage at the 
center of closed square double porosity reservoir, pseudo steady state interporosity flow. The thin 
dotted curves correspond to the equivalent homogeneous closed square reservoir. The infinite 
reservoir double porosity derivative response is presented by the thick dotted curve. 
Log-log scales, Pz) versus tD/CD. CD = 100, S = 0, LiD = 1000, co = 0.1, ,,t, = 10 -6. 

5.7.3 Closed square double porosity reservoir, pseudo-steady state interporosity 
flow 

On the drawdown example of Figure 5.43, the well is at the center of a closed square 
double porosity reservoir, pseudo-steady state interporosity flow. The thick dotted 
derivative curve describes the infinite double porosity reservoir response and the two 
thin dotted curves the equivalent homogeneous closed square reservoir. 

No fissure radial flow regime can be identified on the response. After wellbore storage 
effects, the transition starts and the derivative drops below the 0.5 line but, quickly the 
boundaries are seen. As the derivative tends to increase with sealing boundaries, two 
opposite trends are superimposed during the double porosity transition, producing an 
oscillation on the derivative curve until the total system homogeneous behavior is 
reached. The response is then in a pseudo-steady state regime, and the derivative 
follows the characteristic unit slope straight line. 

When the two transitions are superimposed on the response such as on the example of 
Figure 5.43, the diagnosis becomes difficult and frequently, if the data curve does not 
display the full response but stops during the transition, the match is not unique. 

5.7.4 Square double porosity reservoir with composite boundaries, pseudo-steady 
state interporosity flow 

In Figure 5.44, the well is near a corner of a square double porosity reservoir, pseudo- 
steady state interporosity flow. One of the farthest sides of the square is at a constant 
pressure, the three other ones are sealing. The two dotted curves describe the infinite 
double porosity reservoir response. 
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Figure 5.44. Pressure and derix'atixe draxvdoxvn responses for a well with wellbore storage in a 
square double porosity reser\oir with composite boundaries, pseudo steady' state interporosity 
flow. The dotted curves correspond to the equivalent infinite double porosity reservoir. 
Log-log scales, p:) versus t:/C:). C:)= 100. f = 0. co = 0.1, 2 = 10 -6, Llz) = L2z~ = 500 (sealing), 
Ls:o = 1500 (constant pressure) and k41) = 1500 (sealing). 

On this example, the distance of the two first perpendicular sealing boundaries has been 
adjusted in order to produce a typical intersecting sealing fault behavior as soon as the 
0.5 line is reached. The derivative increases, but the double porosity transition appears 
before the plateau at 2, and a second valley is observed on the response. Later, the 
derivative reaches the plateau at 2 and finally the constant pressure boundary produces 
the final drop of the derivative. 

The theoretical example of Figure 5.44 is designed specifically to exhibit three 
consecutive humps  on the derivative response. No radial flow is present, even though 
the complete curve is displayed over six log-cycles. The example is not representative 
of usual well pressure responses but it illustrates how the individual behaviors of the 
different components of the model are superimposed in the derivative response curve. 
As discussed in Section 5.11, by knowing the sequence of flow regimes, it is possible to 
predict the shape of a response such as Figure 5.44 and, reciprocally, from the 
observation of the shape it is possible to propose one (or several) sequence of flow 
regimes. 

On complex heterogeneous responses, only the derivative presentation is appropriate for 
interpretation. Log-log derivative analysis allows the identification of the complete 
sequence of typical behaviors, whereas the straight-line methods are of no use. 

5.7.5 Field example 

On the two-day build-up test in a fissured reservoir shown in Figure 5.45, the derivative 
describes two humps. Several models can be used to match this data, considering that 
no constant pressure boundary effect is expected on the well response. 
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Figure 5.45. Build-up test for a well in a fissured reservoir. Log-log scales. 

A triple porosity solution, similar to that in Figure 4.33, is applicable to describe the test 
response. A first transition valley is observed at 0.5 hours, and the test stops during the 
second transition, before the bottom of the valley has been reached. The derivative 
stabilization for radial flow is located on the top of the second hump, at 5 hours. 

A double porosity model with a sealing fault can also be envisaged. The sequence of 
regimes is the same as in Figure 5.41, the test is too short to completely describe the 
double porosity transition valley. The permeability is estimated by locating the 
derivative stabilization on the bottom of the first valley at 0.5 hours. Since the 
storativity ratio co is not defined from the truncated transition valley, the hydraulic 
diffusivity during the fissure flow is not known, and therefore the fault distance cannot 
be evaluated accurately. 

5.8 EFFECT OF B O U N D A R I E S  IN DOUBLE P E R M E A B I L I T Y  
R E S E R V O I R S  

With double permeability responses, two layers, each with different flow capacity are 
producing, first independently and later, when the reservoir cross-flow is established, as 
a single equivalent homogeneous layer (see Sections 4.2.2). If boundaries are reached 
before the final homogeneous behavior, they show first in the high diffusivity layer. 

In the following sections, three examples of boundary effects in double permeability 
reservoir are presented. One sealing fault, two parallel sealing faults and a closed 
system are considered when the boundaries are seen during the two layer no cross flow 
regime. The sealing fault solutions are generated with a modified image well method for 
multi-layers reservoirs, as described by Larsen (1989). 
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Figure 5.46. Pressure and derivative responses for a well with wellbore storage in a double 
permeability reservoir \vith a sealing fault. The dotted curves describe the sealing fault response 
in the equi\alent homogeneous reser\oir. Log-log scales, p/o versus t//C/~. 
()~-- 100. SI=S: = 0, L:9 = 500, co- 0.15. tc = 0.7.2 = 10 -1~ 

5.8.1 One sealing fault in double permeability reservoir 

Figure 5.46 presents the effect of a sealing fault in a double permeability reservoir. The 
sealing fault is at distance L:~=500 from the well, the interlayer cross flow parameter is 

low Z -  10 ~~ and the reservoir cross flow is not established when the fault is seen. The 
diffusivity of Layer 1 (o)=0.15, ~,~-0.7) is higher than in layer 2, the fault is first reached 
in this layer 1 and the derivative response starts to deviate shortly after tJCz~=lO 2. As 
long as the second layer has not reached tile fault influence, the derivative tends to show 
an intermediate p/ateau between 0.5 and 1, describing the transition period where one 
layer is in a hemi-infinite regime and the other still has an infinite behavior. The plateau 
at 1 is reached when the two layers are influenced by the fault. On the equivalent 
homogeneous response described by the dotted curve, the start of the fault influence is 
seen almost ten times later, at t:/C/> = 103. 

The sealing fault example of Figure 5.46 shows that the analysis of a boundary effect in 
a layered reservoir is difficult: 
�9 On a log-log scale, if the layered nature of the system is ignored and the start of the 
fault influence is analyzed with the homogeneous solution, the resulting calculated 
distance is under-estimated (one third of the true fault distance on the example in Figure 
5.46). 
�9 If a layered reservoir model is used, the time of start of the fault influence, and the 
shape of the transition between the derivative plateaus at 0.5 and 1, are dependent upon 
the refinement used for the layers description (Larsen, 1989). Increasing the number of 
layers delays the onset of boundary effect in the high permeability layer. 
�9 On semi-log scales, the point of intersection between the early and late semi-log 
straight lines is a function not only of the fault distance, but also of the layered reservoir 
behavior. If the first semi-log straight line for the infinite reservoir response is drawn 
during the commingled regime and the second line, after the sealing fault has been 
reached, during the equivalent homogeneous total system response, the distance 
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between the well and the sealing fault can be over-estimated when the Equation 1.33 for 
a homogeneous reservoir is used. During the commingled regime, the apparent semi-log 
straight line is affected by the layer pseudo-skin factor of Equation 4.74 (Section 4.2.6), 
and the time of intercept Atx between the two straight lines is delayed compared to the 
homogeneous reservoir response. 

5.8.2 Two parallel sealing faults in double permeabili ty reservoir 

Figure 5.47 presents the effect of parallel sealing faults in the same double permeability 
reservoir as that presented in the previous example Figure 5.46 (o)=0.15, w=0.7 and 
2=10-1~ The well is centered in the channel with L~D=L2>=IO00. The equivalent 
homogeneous channel response is described by the dotted curve. 

At late time, the double permeability curve apparently follows a half unit slope straight- 
line characteristic of linear flow, but it is earlier than the equivalent homogeneous 
response. When channel sand reservoirs are made of several layers of different flow 
capacity, the width can be under-estimated if a homogeneous model is used for analysis 
(Larsen, 1989). 

5.8.3 Closed circle double permeabili ty reservoir 

Figure 5.48 presents a double permeability drawdown response for a well at the center 
of a closed circle. The solution for circular layered reservoir without cross flow was 
presented in 1978 by Tariq and Ramey, (1978). In 1986, Joseph et al. discussed the two 
layer double permeability closed circle solution. 
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Figure 5.47. Pressure and derivative responses for a well with wellbore storage in a double 
permeability reservoir with two parallel sealing faults. The dotted curves describe to the channel 
response of the equivalent homogeneous reservoir. Log-log scales, PD versus tD/C>. 
C# = 100, $1=$2 = O, Llz) = L2]_~ = 1000, co-- 0.15, K = 0.7, 2 = 10 -1~ 
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As on the previous example, the interlayer cross flow parameter is 2=10 -~~ and the 
double permeability response is still in the "two layers no-cross flow" regime when the 
closed boundary is reached at rl)=5000. After the early time wellbore storage hump, the 
derivative tends to stabilize on 0.5 as for an infinite commingled system but, after 
tD/CD=IO x, the closed boundary starts to be seen. A second unit slope straight line is 
observed, followed also by a hump and a new derivative plateau. Finally, a third unit 
slope line defines the pseudo steady state regime later. The dotted curve in Figure 5.48 
describes the response of the equivalent homogeneous reservoir with the same 
boundary. 

The shape of the second derivative hump is similar to a storage response, such as a 
wellbore storage displaced towards late time, or a pseudo steady state regime displaced 
towards early time. When the closed circular boundary is reached in layer 1 (o>=0.002, 
K'=0.7), this high diffusivity layer starts to be depleted while layer 2 is still in the infinite 
acting regime. The response then shows a storage behavior at intermediate time, but this 
storage corresponds to the layer 1 pore volume, a fraction of the total system volume 
defined by the storativity ratio co. At the end of the layer 1 storage effect, the radial flow 
in layer 2 is seen (Joseph et al., 1986; Gao et al., 1994), and the derivative stabilizes at 
0.5/(1 - t<), before the third unit slope straight line for the pseudo steady state regime. 
The location of the last unit slope straight line is a function of the reservoir storage 
~GhA (A/r,. 2 in dimensionless terms, see Section 5.4.2), that of the intermediate line to 
the layer 1 storage (co A/r,,: in dimensionless terms). 

For shut in periods, build-up curves show the same pattern as in Figure 5.48 until the 
start of the pseudo-steady state regime. As discussed in Section 5.4.7, drawdown and 
build-up responses diverge at late time, the build-up pressure stabilizes at the average 
pressure, and the derivative curve drops towards zero. The prediction of the average 
reservoir pressure from build-up analysis is a difficult question, in particular when non- 
communicating layers have different skin factors (Chen et al., 1993). If the recorded 
shut-in data curve is not complete and stops during the intermediate unit slope straight 
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line, the build-up response can suggest an inexplicable pseudo-steady state behavior, 
when it is merely a reservoir storage effect (Joseph et al., 1986). 

In Figure 5.48, the first and the last unit slope straight lines, corresponding respectively 
to wellbore storage and to pseudo-steady state, are separated by more than five log- 
cycles on the time scale. In such a reservoir configuration, a complete drawdown or 
build-up response requires unpractical long tests, and the analysis therefore can only be 
made on part of the total response. 

A similar behavior has been discussed by Anisur Rahman and Ambastha (1997) for 
reservoirs compartmentalized in both vertical, and horizontal directions. In their 
example, the well penetrates only one closed body but, at some distance, a 
communication is established with another closed compartment. Even though the flow 
geometry is different from that of the double permeability example of Figure 5.48, the 
same two pseudo-steady state straight lines can be seen on the response (see Section 
5.10.1). 

Layered reservoirs can also combine infinite and closed intervals. When the 
permeability of the closed body is large enough, the derivative response can show a 
hump as in Figure 5.48 but, afterwards, it stabilizes at 0.5/(1 - to) when the radial flow 
regime in the infinite layer dominates. This configuration, producing a unit slope 
straight line at intermediate time, is a limiting case of the radial composite double 
permeability behavior illustrated in Figure 4.67 of Section 4.4.3. More generally, a unit 
slope straight line on drawdown and build-up responses is characteristic of commingled 
layered bounded reservoirs or radial composite systems (see Section 4.3.2 and 
discussion Section 5.9.2). 
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Figure 5.49. Build-up test in a multi layer reservoir. Log-log scales. 
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The build-up test of Figure 5.49 has been recorded in a well intercepting several layers. 
Some layers are small lenses of limited extension, while others show an infinite acting 
behavior. The resulting derivative response is very characteristic of a bounded layered 
system. 

5.9 EFFECT OF BOUNDARIES IN COMPOSITE RESERVOIRS 

In composite reservoirs with boundaries, two types of transitions are also superposed on 
the response. One describes the heterogeneous reservoir behavior (radial or linear 
composite, see Section 4.3), and the other the change from the radial to a limited flow 
geometry. Multiple combinations are possible, depending upon the distance of the 
composite reservoir interfaces, and that of the boundaries. 

In the following sections, a composite channel configuration is considered for 
illustration of boundary effects in reservoir with changing properties. The two 
geometries considered by Bourgeois et al. (1996) are envisaged. The interfaces are 
parallel to the riverbed when the sediment properties change in the vicinity of the 
shorelines, producing a change of mobility from the center to the edge of the channel. 
With perpendicular interfaces, the properties change along the channel extension. 

5.9.1 Linear composite channel 

In Figures 5.50 and 5.51, the well is centered in a channel defined with L ID=L2D=1000 
as in Figures 5.47. The mobility is not constant, the interfaces of the composite channel 
are parallel to the boundaries in Figure 5.50 and perpendicular in Figure 5.51. The 
mobility k//a of the outer region is either reduced (M=5) or increased (M=0.2) by a 
factor of 5, the curve M=I describes the homogeneous channel. The mobility ratio M is 
defined in Equation 4.78, and the distance of the two interfaces d~l~ and d:z) are defined 
by Equation 1.34. 

In Figure 5.50, the mobility' changes near the edges of the channel. The distance to the 
interfaces is diD=d21)=500: a central channel region of width 1000 is surrounded by two 
border channels of width 500. The three curves exhibit a half unit slope straight line at 
late time, but they are not superposed. When the mobility is reduced (M=5), the 
response is equivalent to a channel of smaller width. Conversely, when the mobility is 
increased (M=0.2), the derivative drops below the 0.5 stabilization and finally reaches a 
half unit slope straight line corresponding to a larger channel. 

In the specialized plot of Ap versus ~/At, Bourgeois et al. (1996) found that, in the 
Equation 5.5 for the slope of the channel flow straight-line mch, the permeability must 
be weighted with the widths of each zone. 
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Figure 5.50. Pressure and derivative responses for a well with wellbore storage in a composite 
channel. The interfaces are parallel to the boundaries. Log-log scales, PD versus tD/CD. 
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Figure 5.51. Pressure and derivative responses for a well with wellbore storage in a composite 
channel. The interfaces are perpendicular to the boundaries. Log-log scales, PD versus tD/CD. 
Cz) = 100, S = 0, L lD = LaD = 1000, dm = dzD = 2000, Ml = M2 =0.2, 1 and 5. 

When the width of the border channels become large compared to that of  a center 
channel region of high mobility, the behavior is equivalent to a linear composite model 
(see Section 4.3.3) before the sealing boundaries are reached. The derivative follows 
two stabilizations before the late time half unit slope straight line and, at transition time, 
it can show an increasing trend with a slope smaller than 1/2 (Bourgeois et al., 1996). 

In Figure 5.51, the mobility changes along the channel length in both directions. The 
distance of  the interfaces are dlD=dzD=2000. The responses first show the typical 
channel behavior corresponding to the well region and, when the two interfaces are 
reached during the linear flow regime, the derivative curves deviate to follow a second 
half unit slope straight line. As in the previous example of  Figure 5.50, when the 
mobility is reduced (M=5), the response becomes equivalent to a channel of  smaller 
width and the second linear flow straight line is displaced upwards. This configuration 
can be compared to curve D of Figure 5.20, when the channel is limited in one direction 
(see Section 5.4.5), or to the double permeability channel response of Figure 5.47. 
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When the mobility is increased (M=0.2), the derivative flattens and then reaches a half 
unit slope straight line corresponding to a larger channel. 

When the contrast of mobility is large, the composite channel response tends towards 
one of the two limiting cases of composite reservoirs, namely the closed channel and the 
channel with constant pressure boundaries. In Figure 5.52, the mobility changes by a 
factor of 50 along the channel length (M=0.02 and M=50). When the mobility is 
reduced (M=50), the transition between the two linear flow straight lines follows a unit 
slope straight line. As shown by the dotted derivative curve, this unit slope straight line 
corresponds to a pseudo steady state regime in a channel closed on the two interfaces at 
d~z) and d2jg. After the initial derivative stabilization, the response can be described with 
three straight-line segments, of slopes respectively 1/2, 1 and 1/2. Conversely, with a 
large increase of mobility (M=0.02), the behavior tends towards that of constant 
pressure boundaries during the transition. In the corresponding dotted derivative curve, 
the interfaces are changed into constant pressure boundaries. With build-up data, the 
effect of the time superposition can introduce a distortion on the response. Build-up 
analysis in composite reservoirs is discussed in the next section with the curve M=50 of 
Figure 5.52. 

If a semi-permeable boundary closes the channel, the derivative response can exhibit a 
hump above the half unit slope straight line. When the reservoir properties are not 
changed on both sides of the fault, the same linear flow straight line describes the 
response before and after the fault influence. If the transmissibility ratio a is small and 

the fault appears to be sealing (c~ =0.001 or less), the hump can describe the response of 
a channel closed at one end (such as curve D of Figure 5.20), before returning to the 
half unit slope straight line. 
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Figure 5.52. Derivative drawdown responses for a well with wellbore storage in composite 
channel. The interlaces are perpendicular to the boundaries. On the dotted curves, the interfaces 
are changed into sealing and constant pressure boundaries. Log-log scales, PD versus tD/CD. 
CD = 100, S-- 0, LID = L2D = 5 0 0 ,  diD = d2D = 1 5 0 0 ,  M 1 = M 2 =0.02, 1 and 50. 
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In the examples Figures 5.50 to 5.52, a simple symmetric geometry is assumed. With 
practical field configurations, the geometry is in general complex and, even when the 
match is made by computer, the results of analysis are frequently not unique. Composite 
channel responses are further discussed in Section 5.10.1. 

5.9.2 Apparent boundary effects in composite reservoirs 

Composite reservoirs with a reduction of mobility some distance away from the well 
can be interpreted by mistake with sealing boundary models. A no flow approximation 
may be acceptable to describe the response during the duration of a test but, when the 
sealing boundary model is used to predict longer well behavior, the result could lead to 
a pessimistic forecast. 

For example, in the discussion of the radial composite model, it is shown in Section 
4.3.2, Figure 4.57, that when the mobility of the outer region is greatly reduced, a build- 
up period can exhibit the characteristic response of a depleted closed reservoir under 
certain circumstances. After radial flow, the derivative starts falling similar to the 
example of Figure 5.17. Later, the infinite outer region re-compresses the depleted 
region, and the derivative increases to finally reach a stabilization corresponding to the 
reduced external mobility. 

Chen et al. (1996) report similar behavior in gas reservoirs with edge-water drive. They 
state that, because of the large mobility contrast between gas and water, the water 
behaves first like an impermeable medium. Drawdown responses exhibit a unit slope 
straight line after the initial radial flow regime. During shut-in periods, the pressure 
derivative, such as in the radial composite example of Figure 4.57,demonstrates the 
sequence of stabilization, valley and final unit slope straight line. 

The apparent closed reservoir behavior is illustrated as follows with a build-up example 
in a limited composite reservoir. In Figure 5.53, a build-up response of the example 
M=50 of Figure 5.52 is compared to the original drawdown response (presented with 
dotted curves). The well is closed at tpJCD = 650, before the start of the two parallel 
boundaries influence. The derivative response shows several oscillations: after the radial 
flow stabilization, the build-up derivative follows a first valley, similar to curve C of 
Figure 5.9 and the 1/2 slope channel response is delayed. Later, the two composite 
interfaces are reached and the derivative shows a second decreasing trend, until the 
influence of the outer channel regions is seen and the derivative starts increasing again, 
to ultimately reach a 1/2 slope straight line. With such response, if the build-up data 
stops at tJCD =104 when the derivative is dropping, a log-log analysis with a depleted 
closed reservoir model would be possible. If the model can be checked over a longer 
time, such as in a test simulation plot with a long production history prior to shut-in, the 
hypothesis of a closed reservoir model will be inconsistent with the data (see Section 
10.2.3). 
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Figure 5.53. Pressure and derivative responses of curve M =50 of Figure 5.52. The two dotted 
derivative curves are drawdoxvn, the build-up response (thick line) is generated for (tt,/C)D = 650. 
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5 . 1 0  O T H E R  B O U N D A R Y  C O N F I G U R A T I O N S  

5.10.1 Channel reservoirs 

In the previous sections, several extensions of the basic two parallel sealing fault model 
of Section 5.2 have been proposed for the analysis of channel reservoir responses. The 
behavior of a closed channel has been discussed in Section 5.4.5, double porosity, 
double permeability and linear composite channel models have been presented in 
Sections 5.7.2, 5.8.2 and 5.9. Yet, the geological description of fluvial reservoirs can be 
more complex than the simple assumptions used with these models. In the following 
sections, specific features encountered channel reservoirs are discussed in relation to 
transient test interpretation. 

The constant thickness hypothesis is not always valid for fluvial reservoir. Frequently, 
the channel section is not rectangular but the shape of the sand body is parabolic 
(Stewart, 1997). The resulting response tends towards the linear composite channel 
behavior described in Figure 5.50. When the well is located in the maximum thickness 
region, the response corresponds to a reduction of mobility M>I. Conversely, when the 
well is close to one of the boundary, the thickness increases before the start of the linear 
flow regime and the channel response can show a drop of derivative before the linear 
flow regime, as in the curve M<I of Figure 5.50. 

Larsen (1993, 1996 b) investigated intersecting channel reservoirs. When two 
independent channels intersect, the response describes first the channel corresponding to 
the well location and, when the intersection is reached, a larger area contributes to the 
flow. By using an equivalent linear channel model, the response can be described as a 
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stepwise increase of the channel section. The derivative curve shows two half unit slope 
straight lines, similar to the curve M<I of the linear composite channel example of 
Figure 5.51. 

When more than two independent channels intersect, the response shows an increase of 
flow area each time a new channel is reached. When a large number of channels make a 
connected network, the response tends to a pseudo radial flow regime and the derivative 
ultimately stabilizes. This flow configuration becomes similar to the fissure regime of a 
double porosity reservoir. Assuming the infinite channel network can be described with 
a regular square grid network, the pseudo radial flow regime in the channel network can 
be approximated by the response of a reservoir with two intersecting sealing faults. The 
author concludes that the angle is determined by the ratio of sand volume to bulk 
volume of the pattern involved. 

With self-intersecting linear reservoirs, the infinite channel makes a loop. The well can 
be located in one of the two infinite segments, or in the loop. The loop influence can be 
described as an increase of the channel section, some distance away from the well and 
on a limited extension along an equivalent rectilinear channel. The derivative curve 
deviates temporarily below the half unit slope straight line corresponding to linear flow. 
The amplitude and the duration of this valley shaped transition is a function of the 
distance from the well to the channel intersection point, and to the length of the loop. At 
late time, the derivative returns on the early time half unit slope straight line and the 
loop has no effect any more on the derivative response. 

The case of stacked channels has been discussed by Anisur Rahman and Ambastha 
(1997). They considered two intersecting closed channels when the well is located in 
the smallest channel sand body. A skin factor is Used to define the communication at the 
interface between the two channels. When the flow restriction at the interface is large, a 
response similar to the double permeability closed reservoir example of Figure 5.48 is 
obtained. "A first pseudo steady state regime is seen for the small volume 
communicating with the well and, later, a second pseudo steady state regime describes 
the depletion of the complete system. 

5.10.2 Complex boundary systems 

The identification of complex boundary systems has been the subject of many recent 
publications. Two examples of new approaches are briefly discussed in the following 
section. One aims at automatic imaging of the boundary system, the other discuss the 
use and limitations of numerical simulations for boundary interpretation. 

Slevinsky (1997) proposes an original method for the identification of an arbitrary 
reservoir boundary system. The increase of radius of investigation in the reservoir is 
viewed as a transient wave phenomenon. In the case of a single sealing fault for 
example, after the circular front has reached the fault, it is reflected back towards the 
well (as shown in Figure 1.22). Since the radius of investigation is a function of the 
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square root of the elapsed time, the reflected wave reaches the well four times later than 
when the first contact with the boundary occurred (see Section 10.3.3). With this 
description of the wave expansion, Slevinsky defines an "angle of view" of the 
boundary, which asymptotically approaches 180 degrees as radius expands. 

By analyzing the "angle of view", the distance and shape of any system of boundaries 
can be determined. A first match of the early time test data is used to define the infinite 
acting reservoir model. A "boundary ratio type curve", built by dividing the actual test 
response by the non-boundary predicted response, defines the variation of "angle of 
view" as a function of time. This is used to build a diagnostic image, similar to a sonar 
display, of the boundary system. Indeed, the results of analysis are dependent upon the 
accuracy of the initial match. 

For complex geological shapes, Rahon et al. (1997) proposed to use an optimization 
algorithm with a classical numerical simulation to match pressure data. Using a 
synthetic channel example with a parabolic section, they demonstrate that the algorithm 
converges towards the correct section shape. The sensitivity of the method to the 
assumed parameters used for numerical simulation, and to noise of real data is not 
documented. 

With a numerical approach, a high degree of refinement in the results is reached to the 
detriment of the uniqueness of the inverse problem solution. The introduction of 
geostatic techniques can reduce the range of uncertainty. Schildberg et al. (1997) 
propose to integrate the numerical simulation of well test data as a constraint for 
geostatic modeling. In their study of a heterogeneous reservoir example, they use 
analytical simulations for a quick test of different hypothesis, and numerical simulations 
associated to an optimization algorithm. They conclude that, even though the results are 
not unique, the approach provides new information in terms of size of the reservoir 
bodies. 

5.10.3 Effect  of  a gas cap or bottom water  drive 

In this section, a different type of boundary is considered. When the upper or lower 
limit of the reservoir is not sealing but at a constant pressure, such as in the case of a gas 
cap or a strong lower water drive, the effect of boundary is a function of the vertical 
permeability, not the radial permeability. The effect of a constant pressure upper or 
lower limit has been presented in Chapter 3 for wells in partial penetration and 
horizontal wells. Results are summarized in the following section for completeness of 
the boundary discussion. 

When the well intercepts a gas cap or an aquifer, limited-entry completion or horizontal 
well techniques are used to prevent gas or water production. The well is opened in the 
oil interval away from the supporting gas or water zone and, as long as coning is not 
established, the high mobility of the adjacent zone maintains a fairly constant pressure 
at the interface with the oil-bearing interval. The resulting pressure behavior then 
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becomes similar to a constant pressure boundary in the horizontal plane (see Section 
5.5): the pressure stabilizes and the derivative drops. 

A solution for limited entry wells influenced by a gas cap has been presented by 
Streltsova (1981) and Kuchuk derived in 1990 a solution for horizontal wells with gas a 
cap or aquifer. Abbaszadeh and Hegeman (1988) presented a general study of pressure 
and derivative responses for different well configurations under the influence of a 
constant pressure support, comparing the responses to the usual no-flow upper and 
lower limits. 

In the case of a limited entry well, after a first radial flow corresponding to the opened 
interval hw, a spherical flow regime is established until the upper and lower limits are 
reached (see Section 3.4.7, Figure 3.21). When the two limits are impermeable, a 
second radial flow develops in the complete reservoir thickness but, if one limit is at 
constant pressure, the pressure response stabilizes and the derivative drops towards zero 
at the end of the spherical flow regime. 

For horizontal wells, the first reservoir flow regime is a vertical radial flow, followed by 
a linear flow when the upper and lower limits are sealing. If one of the two limits is at 
constant pressure, as soon as this boundary is reached the pressure becomes constant 
and the derivative drops (see Section 3.6.11, Figure 3.43). No linear flow regime is 
seen, and no horizontal radial flow. 

5.11 CONCLUSION 

The effect of reservoir boundaries is in general easy to identify in homogeneous 
systems. The different types of boundary configurations are characterized by a specific 
pressure behavior, well evidenced with the derivative presentation. When several 
boundaries are seen, the effect of the different limits is synchronized with the different 
distances. 

Figure 5.55 illustrates, with the example of closed reservoir depicted in Figure 5.54, 
how it is possible to predict a derivative response from the geometry of the flow barrier 
and the well location. In this example, the well is in the comer of an elongated trapezoid 
reservoir, close to one of the system boundaries. 

/ 
Figure 5.54. Well and reservoir geometry of Figure 5.55 example. 
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Figure 5.55. Pressure and derivative drawdoxvn responses for a well with wellbore storage and 
skill in a closed trapezoid reservoir. Log-log scales./)j) versus h>/Cj). 

On this drawdown example, six characteristic flow regimes can be identified: 
1. Wellbore storage with a unit s/oNe straight line at early time. 
2. Infinite acting radial flow with a derivative stabilization at 0.5. 
3. Hemi-radial flow when the first sealing boundary is reached. The derivative 
stabilizes at 1. 
4. After the second fault is reached, the derivative describes the wedge response with 
a stabilization at 180/0. 
5. The third boundary, parallel to the first, produces a semi-linear flow regime with a 
derivative ha/fzmit  slope straight line. 
6. Finally, the reservoir is closed with a fourth boundary, and the derivative follows 
the unit slope straight-line characteristic of the late time pseudo steady sate regime. 

In heterogeneous systems, the characteristic derivative shapes are additive and the 
influence of boundaries is simply superimposed on the derivative heterogeneous 
behaviors. The effect of boundaries can appear on the early time response, even when 
the boundaries are far from the producing well. In some cases, boundary effects are 
identified before the heterogeneous reservoir response. With some practice, it is 
possible to predict derivative responses for heterogeneous bounded systems, or 
conversely to define the sequence of flow regimes in order to explain unusual well 
pressure responses. 

For shut-in periods in bounded systems, the time superposition used for build-up 
analysis can introduce distortions on the derivative curve. Several examples have been 
presented where sealing boundaries produce a decrease of the derivative response, 
before a final upwards trend similar to that of the drawdown response. Heterogeneous 
reservoir with boundaries can show an oscillating derivative shape. 

When several solutions are found to be applicable to match build-up data, consistency 
of the models during the drawdown periods, and examination of the test simulation plot, 
are used for reducing the number of choices. An accurate measurement of the initial 
pressure before the test can be the key point for the selection the appropriate boundary 
configuration (see discussion in Section 10.2.3). 
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The question of extrapolated pressure p* from straight line analysis has been the subject 
of much attention in the specialized literature. In partially bounded systems, p* gives an 
estimate of the initial reservoir pressure pi, provided the correct straight line is used 

(versus log(At), ~ or ~ ). In practice, the test period frequently stops in transition 
before the proper straight line, and p* is difficult to estimate accurately. When the 
match is made using a build-up or multiple rate type-curve generated by a computer, the 
initial pressure p; is implicitly defined by the match. For example in the case of a build- 
up type-curve, once the pressure match [PM] is defined: 

Pi = p ( A t  = O) + ~  (5.34) 
PM 

This method is more general and more accurate than straight-line extrapolation. In the 

case of a closed system, the average pressure p is also estimated directly from the 

computer model. 
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CHAPTER 6 

M U L T I P L E  W E L L  T E S T I N G  

With multiple well tests, the pressure response is measured in an observation well some 
distance away from the active well, which may be a producing or an injection well. The 
purpose is to establish communication, and to de{ermine average reservoir properties in 
the area separating the wells. The analysis of the observation well response provides, in 
addition to the permeability thickness product kh, an estimate of the apparent storage 
capacity (~b cl h), which cannot be accessed from tests of active wells. When several 
observation wells are located in different directions, any permeability anisotropy can 
also be evaluated. 

For interference tests, the response of the observation well corresponds either to a 
production period, or to a shut-in of the active well. When the interference has reached 
the observation well, the change of pressure can be analyzed on log-log scales and on 
specialized plots. In the case of a homogeneous reservoir, the log-log pressure type- 
curve of Figure 6.1, presented by Theis in 1935, is used. This type-curve, called the 
exponential integral solution, expresses the dimensionless pressure pD versus the 
dimensionless time-distance group tD/rD 2 on a unique response curve. In the case of 
heterogeneous systems, the log-log analysis of the response provides a diagnosis of the 
reservoir behavior, and defines the choice of the appropriate interpretation model. 

In 1966, Johnson et al. proposed the pulse testing method as an alternative multi-well 
testing procedure. A series of relatively short flow and shut-in periods is applied at the 
active well, and the resulting pressure oscillations in the observation well are analyzed 
in terms of amplitude and time lag. The measured parameters are compared to 
theoretical simulated responses, and the permeability and storativity are estimated. 

The amplitudes of interference or pulse tests responses are small, frequently less than 10 
psi and sometimes less than 1 psi, but the test duration can be as long as 2 or 3 months. 
Interference tests require great skill, particularly in producing fields where the general 
pressure trend is decreasing and operational requirements may take precedence over 
reservoir studies. Even though they are more difficult to interpret, pulse tests are often 
preferred because the oscillating response is easier to identify in a noisy reservoir 
environment, and it is less affected by a poss]ble drift of the pressure gauge. 

In this chapter, the interpretation of interference tests is presented first. After a review 
of the homogeneous reservoir behavior, the following well and reservoir configurations 
are considered: 
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�9 Influence of wellbore storage and skin at the two wells, 
�9 Effects of boundaries and reservoir directional anisotropy, 
�9 Interference tests in composite, double porosity and double permeability systems. 

The interpretation and optimization of pulse tests have been explained in detail in the 
petroleum engineering literature (Earlougher, 1977; Bourdarot, 1998), only the recent 
developments in the pulse testing methods are presented in this Chapter. 

6.1 I N T E R F E R E N C E  T E S T S  IN R E S E R V O I R S  W I T H  H O M O G E N E O U S  
B E H A V I O R  

6.1.1 P r e s s u r e  and der ivat ive  l ine -source  so lut ion 

The exponential integral solution of Figure 6.1 is also called the line source response. 
The effect of wellbore storage and skin are considered as negligible at the two wells: the 
wellbore of the active well has no volume and the well is described as a simple line 
intersecting the formation, the observation well has no influence on the reservoir 
pressure. 

In dimensionless terms, the exponential integral of Equation 1.18 is expressed" 

1 - rl5 
PD =-2EiQ 4re_ ) ) 

(6.1) 

PD, tD, and rD are defined respectively in Equations 2.3, 2.4 and 1.21. The time group 
tD/rD 2 is" 

tj~) _- 0 . 0 0 0 2 6 4 k A t  (6.2) 

The interference pressure drop of Equation 1.18 is expressed versus the elapsed time by 
combining the dimensionless Equations 6.1, 2.3 and 6.2. 

The exponential integral pressure type-curve of Theis (1935) is now associated to the 
pressure derivative for practical interference test analysis, as shown in Figure 6.1. (In 
1980-a, Tiab and Kumar proposed an interference derivative type curve using the rate of 
pressure change versus time, and not the logarithm derivative. Their type curve is 
equivalent to the curve presented in Figure 6.1 by multiplying the time derivative by 
At). The type-curve of Figure 6.1 exhibits two important characteristics: 
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1. The two curves intersect. At the start of the response, the amplitude of the 
derivative curve is higher than the pressure change but, later, the two curves intersect 
and the derivative stabilizes on the 0.5 line while the pressure continues to increase. 
Provided the interference test data also demonstrates a cross-over of pressure and 
derivative response curves, the match point is uniquely defined. In dimensionless terms, 
the intersection point is defined at tD/rD2=0.57 and pD =P'D=0.32. 
2. The start of the semi-log straight line is late. The semi-log radial flow behavior, 
characterized by the derivative stabilization, starts at approximately tD/rD2=5 (Ramey, 
1975 b). When the distance r between the two wells is in the order of a few hundred 
feet, the corresponding time At to reach the radial flow regime can be as long as several 
weeks and many interference tests are stopped before data suitable for semi-log analysis 
is obtained. Only the log-log matching technique can be used to interpret such 
interference tests. 

With interference test data, the log-log match is adjusted on a unique theoretical 
response and not a family of curves as for producing wells. The interpretation would 
appear to be very simple and to allow the reservoir parameters to be defined without 
difficulty but, in the next sections, it is shown that practical type-curve analysis of 
interference test is frequently difficult. 

6.1.2 Typical interference responses 

Figure 6.2 compares on a linear scale the response of a producing well to the response 
of an observation well some distance away. The test sequence is a 200 hours drawdown 
followed by a 300 hours build-up period. The two wells have the same wellbore storage 
and skin damage. The reservoir is homogeneous and infinite. 
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Figure 6.2. Response of a producing and an observation xvell. Linear scale, p versus t. On the 
second graph, the observation v,ell pressure is presented on enlarged scale at time of shut-in. 

At the start of the Flow period, the pressure drop is instantaneous at the active well but, 
at the observation well, the drawdown response is only established very slowly. At the 
end of the 200 hrs of production, the pressure change is 1000 psi at the producer and 
less than 100 psi at the observation well. At shut-in time, the pressure at the active well 
increases immediately but not at the observation well. As shown on the expanded scale 
of Figure 6.2, the pressure continues to fall for several hours, until the influence of the 
shut-in has traveled the distance separating the two wells. Then it starts to turn upwards. 

Figure 6.3 is the log-log pressure and derivative plot of the two build-up responses. For 
each well, the pressure difference Ap=p .... - p,,/is calculated with respect to the flowino 
pressure P,,l defined at the time of shut-in, At = 200hr. At the observation well, the 
pressure is still decreasing at the shut-in time (see Figure 6.2) and the pressure change 
Ap is negative. This first part of the response cannot be plotted on the log-log scales. 

Figure 6.3 illustrates that the analysis of interference tests is more difficult than for 
producing wells 
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Figure 6.3. Build-up response of the producing and observation wells. 
Log-log scales, Ap versus At. 
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�9 at the observation well, the build-up response starts to be identified after 5 or 10 
hours, the intersection of the pressure and derivative curves is seen at At =33 hours 
when Ap =25 psi, and the 300 hour long build-up period covers less than two log-cycles 
on the log-log plot. The semi-log approximation is reached only at the end of the 300 
hours shut-in. 
�9 In the producer, the build-up response curve extends over more than four log- 
cycles, and the semi-log approximation is reached after 5 hours of shut-in. 

A 10 hour build-up response is interpretable for the producing well but, in the 
observation well, a period 10 times longer is needed in order to define the match 
uniquely. If the reservoir is affected by a general pressure trend or if the pressure gauge 
is drifting, the error of pressure and derivative log-log curves can frequently be 
neglected during the first 10 hours of shut-in but it becomes significant at later times, 
when the interference response is seen. 

For the same reason, when the test period is long enough to reach the semi-log 
approximation, the straight line analysis is seldom very accurate. At large elapsed time 
At, the interference pressure is barely changing and the response must be strongly 
compressed on the logarithm scale in order to display the straight line of slope m (see 
discussion Figure 2.7 in Section 2.2.2). The noise in the pressure signal can become 
dominant compared to the transient reservoir response. 

As an alternative, when the rate history of the producer is a simple drawdown and build- 
up sequence such as in the example of Figure 6.2, Ramey (1982) suggests matching the 
complete observation well response on the drawdown and build-up interference type- 
curve. 

6.1.3 Influence of wellbore storage and skin effects at both wells 

During the wellbore storage dominated regime, the sand-face flow rate at the active well 
is not fully established, and the reservoir pressure drop is smaller than for a well with no 
storage (Section 1.2.2). When the influence of the active well reaches the observation 
well, the early time pressure response may not follow the exponential integral curve of 
Figure 6.1. 

As discussed in Section 3.1.3, the duration of the wellbore storage regime is a function 
of both the wellbore storage coefficient and the skin. For damaged wells, the effect of 
wellbore storage lasts longer. In interference responses, the influence of wellbore 
storage and skin at the active well was first investigated by Jargon in 1975. Later, Ogbe 
and Brigham (1984 b) considered the effect of wellbore storage and skin at the 
observation well. They concluded that the two well conditions have a similar influence 
on interference response and, when wellbore storage and skin are present in both wells, 
the early time deviation from the exponential integral solution can be doubled. 
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In Figure 6.4, three interference pressure curves, generated with wellbore storage and 
skin at the active well, are compared to the original Theis solution of Figure 6.1 (shown 
by a dotted curve). At early time, the three responses are delayed until the influence of 
the wellbore effect becomes negligible and the constant sand face rate condition is 
established. The interference responses then follow the line-source type-curve. The 
responses A and B are generated with rD =1000. The active well is defined with 
CD=3000, S =0 for curve A, and CD =104, ,5' =10 for curve B. For larger inter-well 
distances rD, the difference with the Theis solution would quickly become negligible. 
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Conversely, when the distance is very small such as on curve C (rD =300) and, if the 
producer is strongly damaged (CD =3000, S =30), the interference response shows a 
large deviation from the exponential integral curve. The same responses are presented 
with the derivative of pressure in Figure 6.5: with example C, the influence of wellbore 
storage starts to produce a hump above the 0.5 stabilization line. 

In Figure 6.6, the two examples generated for rD =1000 are presented with the pressure 
and derivative responses (derivative = thick curve, pressure = thin curve). 
1. Example A (CD =3000 and S =0), the influence of wellbore storage is finished at 
tD/rD2=0.57, when the line source pressure and derivative curves intersect. This 
characteristic intersection point defines the match, independently of the deviation of the 
response earlier. In such a case, the line-source curve can be used to analyze the 
interference response accurately. 
2. Example B (CD=10000 and S=10), the wellbore effect is still acting at tD/rD2--0.57 
and the intersection between pressure and derivative is delayed. The match is not 
possible with the exponential integral solution, and an interference type-curve with 
wellbore storage and skin effect has to be used. The need for an interference model with 
wellbore storage is clear when the shapes of the two derivative curves are compared at 
early time: on curve B of Figure 6.5, the transition from the initial response to the 0.5 
stabilization is short and a good match can not be obtained with the line source type- 
curve. 

In 1972, Gringarten and Witherspoon envisaged the interference response of a vertically 
fractured active well, and Jargon (1976) considered in his study the effect of a negative 
skin at the producer, using a radial composite model. They showed that, with a 
stimulated well condition, the response reaches the observation well earlier than for a 
line source active well, and tends to produce a deviation above the exponential integral 
curve at early time. This conclusion is consistent with the discussion of interference 
tests in radial composite reservoirs presented in Section 6.3. The degree of deviation is 
related to the degree of stimulation of the well, but it decreases for a large distance r. 

1 
s 

Q. 

E3 E 3  
O0 {3. 
09 ~>~ 
o_.~ 
U3 0_ 1 

cs  o 
C 

E .-- 

c~ 

Intersections 

Line source well ]'4h~Z_Z,/___ A 

I w 

Figure 6.6. Influence of wellbore storage and skin effects. Log-log scale, pressure and derivative 
responses of Figure 6.4 examples A and B versus tD/rD 2. 

10-2 ] 
10 -2 10 1 1 101 

Dimensionless time, tD/rO 2 



280 Multiple well testing 

In 1989, Meehan and Horne investigated the effect of the well orientation in 
interference tests between two wells intercepting a finite conductivity fracture. They 
concluded that the deviation above the exponential integral curve is larger when the 
path between the wells is parallel to the fracture orientation. Malekzadeh and Tiab 
considered interference tests between horizontalwells (1991). They reached a similar 
conclusion. 

When the wellbore storage is also considered on the stimulated active well, the two well 
conditions have an opposite influence on the response. The result seems to be in most 
cases a delayed response (Jargon, 1976), similar to the examples of Figures 6.4 to 6.6. 

Several correlating groups have been proposed to define the effect of wellbore storage 
and skin of one well. Jargon suggested to group the curves in terms of C1)/rz) 2 and Ogbe 

/ -) 

and Brigham (1984 b) preferred i)e :x . The different groups have been 

established from interference response data, they have not been theoretically 
demonstrated and no group has been proposed when both wells are affected by storage 
effect. 

In conclusion, wellbore conditions can be neglected in most interference tests. Wellbore 
storage has to be considered only when the distance between the wells is relatively 
small and the wellbore effect large. The response then is delayed at early time compared 
to the original exponential integral response and the match becomes uncertain in 
particular if the radial flow regime is not reached at the end of the test period. When the 
wellbore storage effect is ignored and the line-source solution is used, the time match 
can be significantly underestimated and the resulting (~b c, h) product is then too large. 

6.1.4 Semi-log analysis of interference responses 

When tJrD2=5, the infinite acting radial flow regime is reached (Ramey, 1975 b) and 
the semi-log approximation is expressed, from Equation 1.19, as: 

k -3.2275) (6.3) 162.6 qB/a logkt + log 
P' - P'"/ = kh ~b~c~r 

The slope of the semi-log straight line provides the kh product and the intercept of the 
line with At = l hr is used to estimate the storativity product ~b c, h. 
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Figure 6.7. Interference in a reservoir with a sealing fault. 
Location of the active well A and the two observation wells O1 and 02. 

6.2 FACTORS COMPLICATING INTERFERENCE TESTS IN 
R E S E R V O I R S  W I T H  H O M O G E N E O U S  B E H A V I O R  

6.2.1 Influence of  reservoir  boundaries 

As long as there is no flow barrier between the producing and the observation wells, the 
effect of outer reservoir boundaries has a similar influence on active and observation 
well responses. The different characteristic derivative behaviors presented in Chapter 5 
can be observed on interference test data. In the case of one sealing fault, the derivative 
stabilizes at p'D=l at late time. When two parallel sealing faults are present, the pressure 
and derivative curves follow a straight line of slope 1/2. With a closed system, the 
pseudo steady state flow regime is described by a unit slope log-log straight line. 

When an analytical model is used to generate interference responses with boundary 
effects, the relative location of the wells in the boundary geometry must be known. This 
is illustrated on the following interference test example: 

In Figure 6.7, the reservoir is limited by one single sealing fault. The observation well 
"O1" is located between the sealing boundary and the active well "A", and the 
observation well "O2" is located in the opposite direction. It is assumed that the two 
observation wells are at the same distance r from the producer A. The boundary is 
observed at a different time on the three well responses. The sequence of regimes can be 
summarized as follows: 
1. The interference has not reached the observation wells. "A" shows the infinite 
acting reservoir behavior, "O1" and "05" are at initial pressure. 
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Figure 6.8. Interference in a reservoir with a sealing fault. Log-log scales, Ap versus At. 
Pressure and derivative curves of the two observation wells. 

2. The interference has reached the two observation wells but not the sealing fault. 
The behavior of three wells "A .... O " and "O," show the infinite reservoir response (the 1 

inner circle in Figure 6.7 describes the radius of investigation reached at time of period 
#2). 
3. The sealing fault influence is seen on "Ol" but not on "A" and "O2", which are still 
in an infinite acting regime (period #3 corresponds to the outer circle). 
4. The influence of the sealing fault reaches "A ..... O1" and "A" change to the hemi- 
radial flow behavior but "02" shows the infinite acting regime. 
5 The influence of the sealino fault reaches "O," and the three wells show the hemi- 
radial flow condition. 

In the example of Figure 6.8, the sealing fault is located at 3r from A (the fault is 
therefore at 2r from O1 and 4r from 02). The derivative interference response of O1 
shows the fault influence before that of 02. The derivative of the active well A (dotted 
line) describes the fault response at an intermediate time. 

The analysis of interference test responses influenced by boundaries requires the use of 
a model generated for the specific reservoir geometry. The solution is frequently not 
unique, and the quality of the results depends upon the choice of the appropriate 
reservoir boundary system. 

6.2.2 Interference tests in reservoirs with permeability anisotropy 

On producing well responses, it is shown in Section 3.1.5 that the effect of permeability 
anisotropy can frequently be neglected. The resulting apparent negative skin Sani is, for 
most practical cases, smaller than unity (Table 3.1). For interference tests, the time to 
reach the observation well is very dependent upon the directional permeability towards 
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the active well, and results of interpretation are more sensitive to a small anisotropy of 
permeability. 

It is assumed that the permeability anisotropy can be described by a tensor. According 
to Papadopulos (1965), the pressure distribution created by a line source well is changed 
from Equation 1.18 to Equation 6.4: 

,412  , 
@(At, x,y) = 0.5 ~/kmaxkmin h 

(6.4) 

As for producing well responses, the apparent permeability is defined as the geometric 
mean of the major and minor reservoir permeability (Equation 3.3), which is the same 
whatever the direction of the observation well. In Equation 6.4, the effect of the 
reservoir anisotropy is only present in the definition of the dimensionless time group 

(tD/rD 2 )x,y. In other terms, the apparent distance rD,~.y is a function of the orientation 

of the observation well (Ma and Tiab, 1995). 

With a coordinate system centered on the active well, the observation well location is 
defined as (x,y) shown in Figure 6.9. We call kx, ky and k~y the components of the 
permeability tensor corresponding to the coordinate system. From Equation 3.3, the 
apparent permeability is defined as: 

k-  ~/km.xkm~. -X/k~ky-]+2 (6.5) 

Ma and Tiab (1995) express the apparent distance rD,x.y as" 

r D , x , y  - - -  
1 I kxy2 + kyx2- -2kxyxy 

r., k 

(6.6) 
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Figure 6.9. Interference in an anisotropic reservoir. 
Location of the active well and the observation well. 
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and the dimensionless time corresponding to well (x,y) is: 

oooo26  , I  max m'n 1 
\ D Jx,y ~b~ ct kxY  2 + k y x  2 - 2kxyxy  

(6.7) 

Ramey (1975 b) shows that observation wells are needed in three directions in order to 
estimate the reservoir anisotropy. When the three observation well responses are 
matched against the exponential integral type curve of Figure 6.1, the pressure match is 
the same for the three responses and only the time match changes. The product k,,axk,,,,,, 
is estimated from the pressure match. 

Solving Equation 6.7 with the time match for three observation wells yields kx, k). and 
k,-~ as a function of ~blz c,. Equation 6.5 is then used with the pressure mach permeability 

x/ki~axkmin to estimate{b/, c,. Finally, the major and minor reservoir permeabilities kmax 

and k,,,,, can be defined with: 

*ma, -- 0 +*,  + [(*, _ , , )2 + t (6.8) 

(6.9) 

The angle between the major permeability axis and the x axis of the coordinate system 
is expressed with (Ramey, 1975 b): 

(km~ x - k,. 1 O- arctan ' " 
kx~' 

(6.10) 

In practice, the solution of the system of the three Equations 6.7 is valid only when the 
two permeability terms k,,,~,,, and k,,,,,,, and the ~b/z c, product are constant over the 
reservoir region involved by the test. This condition, difficult to verify, is not always 
satisfied. 

When the interference pressure is monitored in one observation well only, the reservoir 
anisotropy cannot be estimated. As the radial homogeneous reservoir solution is used 

for analysis, the average permeability ~kma x kmi n . is estimated from the pressure match 

but the ~/~ ct product obtained from the time match with the radial Equation 6.2 can be 
wrong by a factor of two or even more. 
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6.3 INTERFERENCE TESTS IN COMPOSITE RESERVOIRS 

The practical analysis of interference tests in composite reservoirs has not been fully 
discussed yet. In 1985, Satman presented an analytical solution for a radial composite 
reservoir with changing mobility and diffusivity from inner to outer zone. In 1985, 
Yaxley derived a linear composite solution with a variation of mobility between two 
reservoir regions separated by a partially communicating interface. Two years later, 
Ambastha et al. (1987) completed the linear composite reservoir description by 
introducing a change of diffusivity through the linear interface. In 1991, Chu and 
Grader presented an analytical three composite reservoir model with any location for 
the active and observation wells. 

The interference pressure responses have been very briefly discussed with the different 
models, but the derivative behavior has not been presented in detail. Yet composite 
reservoir behavior must frequently be present during interference tests, for example 
when the active and the observation wells are in different fluid systems (change of 
viscosity, compressibility and temperature with water injection wells or wells in the 
aquifer). A more complete description of interference responses in radial composite 
reservoirs is given below. 

The same definitions for mobility and storativity ratios M and F are used for 
interference models and for the active well solutions (see Section 4.3.1). By definition, 
the active well is in region 1, and the observer can be in region 1 or in region 2. 
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Figure 6.10. Interference in a radial composite reservoir. 
Location of the active well A and the observation wells O1 and Oz. 
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The distance from the active well to the radial and linear interface are given respectively 
by Equations 1.21 and 1.34. 

6.3.1 Radial composite reservoirs 

Influence of 34 

On the interference responses of Figure 6.11 and 6.12, the active well A is centered in a 
radial composite reservoir of radius R. As described in Figure 6.10, the observer O1 is at 
R/2 from A (in region 1), and the observer 02 at 2R (in region 2). It is assumed that the 
storativity r is constant (F =1), but the mobility of the inner region is 4 times larger 
(Figure 6.11) or smaller (Figure 6.12). On the log-log plots, the interference responses 
of the two observation wells are shown with lines (derivative = thick, pressure - thin), 
the derivative of the active well A and the exponential integral derivative corresponding 
to O2 (homogeneous reservoir with region 2 parameters) are shown with dotted curves. 

If the mobility of the inner zone is larger than the mobility in region 2 [(k// ,L/)l~>(](/ /] /)2 , 

i.e. M>I, Figure 6.11], the interference signal reaches the region 2 (observation well 02) 
faster than the equivalent homogeneous reservoir of mobility (k//02 (the dotted 
derivative curve). 

When the observation well is in the high permeability region 1 (well O1), the 
interference response tends to follow the line source response corresponding to region 1 
parameters at early time, with possibly a first derivative stabilization defining (k//01. 
Later, when the radial interface is reached, the derivative increases to follow the (k//l)2 
stabilization. 
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Figure 6.11. Interference responses in a radial, composite reservoir. Log-log scales, Ap versus At. 
The mobility of the inner zone is 4 times larger (M=4). 
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Figure 6.12. Interference responses in a radial composite reservoir. Log-log scales, Ap versus At. 
The mobility of the inner zone is 4 times smaller (M=l/4). 

Conversely, when the mobility of the inner zone is smaller than the mobility of region 2 
[(k/ht)l<(k//a)2, i.e. M<I, Figure 6.12] the interference signal in the outer reservoir region 
is delayed at early time (well 02). In region 1, the derivative response of well O1 
describes a hump, with a first stabilization corresponding to (k//a)l before the final (k//a)2 
stabilization. 

In Figure 6.13, the pressure curves of the two observation wells are compared in the 
hypothesis M> 1 and M< 1" 
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Figure 6.13. Interference responses in a radial composite reservoir. Log-log scales, Ap versus At. 
Pressure curves of examples Figures 6.11 and 6.12. 
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�9 In region 2, the pressure of well 02 is not affected after the early time deviation by 
the change of mobility near the active well. The curves merge at late time with the line 
source corresponding to region 2 parameters (dotted curve). When M>I, the early 
response deviates above the exponential integral response, as mentioned in Section 
6. l.3 for a stimulated active well. (In 1976, Jargon evaluated the effect of a negative 
skin on the active well with a radial composite model). 
�9 In region 1, the amplitude of the interference response describes the mobility 
hypothesis. When M<I, the observation well O~ shows a larger interference signal than 
when M>I. This reservoir configuration produces a geometrical positive skin on the 
active well A (Equationl.13). 

Influence of F 

It is now assumed that the mobility (k//z) is constant in the reservoir (M=I), and only the 
storativity r changes (in the inner zone. it is 4 times smaller in Figure 6.14 and 4 times 
larger in Figure 6.15). The derivative response of the observer Oz in region 2 (thick 
line) is compared to the derivative curves of well A, and to the exponential integral 
curve defined for region 2 parameters (shown with dotted curves). The pressure 
response of the observer 02 is shown with a thin line. 

With low storativi O, in the inner zone [(~b/l c,)~<(~b/a c,)2] the diffusivity is increased, and 
the interference signal reaches the observation well faster than for a homogeneous 
reservoir with region 2 properties (Figure 6.14). The response deviates above the 
exponential integral curve at early time. 

If the inner zone has a high storativiO: [(~b/a c,)l>(r c,)2] and the reservoir mobility is 
constant, the early time response is delayed compared to the exponential integral 
homogeneous curve (Figure 6.15). 
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Figure 6.14. Interference responses in a radial composite reservoir. Well Oz. 
Log-log scales, Ap versus At. The storativity of the inner zone is 4 times smaller (M=I, F=l/4). 
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Change of mobility and s t o r a t i v i t y  

When both the mobility and the storativity change, it is difficult to summarize the 
different types of response illustrated by Satman (1985). It is noteworthy that when both 
the mobility ratio and the storativity ratio are high (M>10 and F>__l), the interference 
response tends to follow a unit slope straight line at early time. Satman describes this 
effect of the inner zone as similar to an equivalent wellbore storage behavior. As 
discussed in Chapter 4 for producing well responses (Figures 4.52 and 4.57), this 45 ~ 
line could be also interpreted as a closed system response as illustrated in Figure 6.16. 

In this example, the observation well is in region 1, (k/~)l= 10(k//./)2 and (~b c~)l=10(r CI) 2 
(M-10 and F=10). Since the diffusivity is constant, the radial composite interference 
response is seen at the same time as the exponential integral curve for region 2 
parameters (when Ap<l psi in Figure 6.16)Later,  the derivative flattens and goes under 
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the homogeneous response of the outer zone, then it increases along the unit slope line 
and merges with the derivative curve corresponding to the active well. Before the 
influence of the outer region is felt, the radial composite reservoir behaves like a closed 
circle of radius R and the response describes the pseudo steady state regime 
characterized by, a unit slope pressure and derivative straight line. 

In the case of a radial model such as in the examples of Figures 6.11 to 6.16, the 
derivative behavior of the observation wells tends to merge with that of the active well 
after the early time interference response. This demonstrates that, at any point in the 
drainage area, the rate of pressure change is the same. 

6.3.2 Linear composite reservoirs 

With the linear composite model, the interference model responses have not yet been 
addressed. The information available today can be summarized as follows (Yaxley, 
1985; Ambastha et al., 1987): 
�9 The late time equivalent homogeneous behavior provides an estimate of the average 
permeability thickness product, defined as kh=O.5(kl+k2)h (see Section 4.3.3). 
�9 The effect of changing storativitv (r c,) between the two regions and the effect of 
the distance L:)between the interface and the producer have not been evaluated on 
interference responses. 
�9 When the linear interface is partially sealing between the active and observation 
wells, the early time response observed before the equivalent homogeneous behavior is 
delayed. 

6.4 INTERFERENCE TESTS IN DOUBLE POROSITY RESERVOIRS 

In the following section, the pressure behavior of observation wells in double porosity 
reservoirs is discussed. It is shown that the presence of fissures affects the propagation 
of the interference signal around the producing well: 
�9 During the fissure flow regime, the interference response travels very fast up to a 
certain distance to the producing well. 
�9 When the distance between the active and the observation wells is large, the 
heterogeneous nature of the response disappears (Kazemi et al, 1969 b). 

The two double porosity models introduced in Chapter 4, with restricted and transient 
interporosity flow, are used for interference test interpretation. The models are not 
described in the present Chapter, only their application to observation well responses is 
presented. 
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6.4.1 Pressure type-curve for restricted (pseudo-steady state) interporosity flow 

In Figures 6.17, the pressure type-curve for an observation well in a double porosity 
reservoir with restricted interporosity flow is presented (Bourdet and Gringarten, 1980; 
Deruyck et al., 1982). The dimensionless time group ID/rD 2 is defined with reference to 
the fissure system storativity (r Vc,)f (the double porosity nomenclature has been 
presented in section 4.1.1)" 

tDj 0.000264k 

4 
At (6.11) 

The type-curve is plotted with a set of exponential integral solutions labeled in terms of 
co values for the two homogeneous flow regimes, and a family of transition curves, with 
typical values of)vrD 2 for the transition period. 

The f irst exponential integral curve corresponds to co = 1 and it describes the fissure flow 
regime. When the transition starts, the response deviates from the fissure curve and 
follows a ,&rD a transition curve. Later, the total system equivalent homogeneous regime 
is reached. A second exponential integral curve, displaced by the reservoir storativity 
ratio co, is seen at late time. 
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Figure 6.17. Pressure type-curve for double porosity reservoirs with restricted (pseudo-steady 
state) interporosity flow. Log-log scales, PD versus tql/rD 2. 
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6.4.2 Pressure behavior in double porosity reservoirs with restricted interporosity 
flow 

The three typical regimes of the double porosity model are not always present on an 
observation well response. The level of the pressure change Ap during the transition 
between fissure and total system flow is defined by a 2rz) 2 transition curve of Figure 
6.17. For a large distance rj) the transition curve stabilization corresponds to a low Ap 
value on the pressure scale and, beyond a certain distance r,j), Ap becomes less than the 
pressure gauge resolution. This distance r,j)represents the radius o f  influence of the 
fissures around the active well. It can be approximated from the minimum APmin 
measurable at test conditions (Deruyck et al., 1982): 

-) 
In "" = (AP,nin)z) (6.12) 

1 . 7 8 ~  

If the observation well is at a distance greater than r,/), the interference signal is 
measurable only after the transition regime, when the response is in total system flow. 
In such a case, even though the active well response is clearly double porosity, the 
observation well shows the behavior of a homogeneous reservoir (Kazemi et al, 1969 
b). The interpretation of the interference test provides the permeability and the total 
system storativity (~ Vc,)l,,, but the heterogeneous parameters co and 2 cannot be 
estimated. 

If however the observation well is located inside the radius of influence r,>, the fissure 
flow regime is observed before the equivalent homogeneous total system flow. On the 
log-log type-curve of Figure 6.17, the distance between the early time and the late time 
exponential integral curves defines the storativity ratio co. For example with co =10 ~, the 
fissure curve is seen on the logarithm time scale one cycle before the total system 
homogeneous response, and the time needed to observe the start of the interference 
signal is 10 times smaller than for the equivalent homogeneous reservoir. With co =10 -2, 
the time ratio is 100. 

Interference responses in fissured reservoirs can be relatively fast, and frequently they 
can be observed after only a few minutes, even when the observation well is several 
hundreds of feet away from the producer. This does not mean that the test duration can 
be reduced. In the next section, it is shown that the early time response does not define 
the match and a complete response of the total system radial flow regime is needed for 
interpretation. The time to reach the total system equivalent homogeneous behavior is as 
long as for interference tests in standard homogeneous reservoir. 
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6.4.3 Pressure and derivative analysis of interference tests in double porosity 
reservoirs with restricted interporosity flow 

In Figures 6.18 and 6.19, the responses of two observation wells in a fissured reservoir 
are compared. Well A is at rD =1000 from the producer and well B is farther away 
(r>=5000). The interporosity flow parameter is 2=5x10 s and the storativity ratio is 
o9-10 -1 

In Figure 6.18, the pressure and derivative curves are presented versus the 
dimensionless time tD/and, in Figure 6.19, the usual tD/r> 2 group of the type-curve 
Figure 6.17 is used (Equation 6.11). On tDftime scale of Figure 6.18, the response of the 
well B at rD =5000 is delayed by a factor of 25 compared to the response of the well A 
at rD =1000. With the dimensionless time scale tD/r> 2 of Figure 6.19, the two well 
responses are superposed at early time during the fissure flow regime. 

As already mentioned in Section 6.3, the rate of pressure change in the reservoir is not 
space dependent, and it is the same at any point in the drainage area. In Figure 6.18, the 
derivative response at the active well is also presented. The time of  the transition is the 
same for the three wells (the derivative curve of well B does not match exactly the 
derivative response of two other wells because, at this well, the radial flow regime has 
not been reached before the start of the transition). 

When the interference is measured at rD =1000 (well A), a long homogeneous fissure 
regime is seen at early time and the derivative stabilizes at 0.5 during the fissure radial 
flow. The point of intersection between the pressure and derivative curves can be used 
to define the match point. The permeability thickness product is estimated from the 
pressure match (Equation 2.9) and the fissure system storativity (r Vc,)l from the time 
match with Equation 6.11. 
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After the fissure radial flow, the valley shape of the derivative curve during transition is 
characteristic of a double porosity' response with restricted interporosity flow. The 
heterogeneity parameters co and 2 are adjusted in the same way as for a producing well 
(see Section 4.1.2). 

More frequently, a response similar to the thick curves (well B, rl~ =5000) is obtained. 
The fissure flow regime is short lived and the transition starts before the pressure and 
derivative curves intersect. The early' time behavior does not describe a characteristic 
regime and the match has to be adjusted by trial and error on pressure and derivative 
theoretical responses. 

6.4.4 Interference tests in double porosity reservoirs with restricted interporosity 
flow and permeability anisotropy 

In double porosity reservoirs, the fractures are frequently more dominant in one 
direction than another. The permeability is then maximum in the direction of the 
fissures and minimum in the direction perpendicular. Interference tests are used to 
define the directional flow properties with the method presented in Section 6.2.2. 

When several observation well interference responses are analyzed to estimate the 
permeability anisotropy, the same interporosity flow parameter/t should be used for all 
wells. Ma and Tiab (1995) propose using the effective distance rl~..,.# of Equation 6.6 in 
the ~rz) 2 group to define the match of the transition regime. 
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6.4.5 Pressure  type-curve  for unrestricted (transient)  interporosity  flow 

The type-curve of Figure 6.20 corresponds to a double porosity reservoir with 
unrestricted interporosity flow (Bourdet and Gringarten, 1980; Deruyck et al., 1982). 
The time scale is defined with the t/D/rD 2 group of Equation 6.11. A family of Theis 
solutions, labeled in 0) values, is superimposed on transition curves labeled/5' rD 2. 

For slab matrix blocks, the fl interporosity parameter is defined by: 

3 2  
fl = - - -  (6.13) 

50) 

and for sphere matrix blocks: 

1 2  
/5 = - - - -  (6.14) 

30) 

With unrestricted interporosity flow, the fissure flow is very short and seldom seen. The 
interference response starts on a t r a n s i t i o n  j~rD 2 curve and reaches the exponential 
integral total system curve at late time. The shape of the f l  rD 2 transition curve is smooth 
and not very characteristic compared to the final total system homogeneous response. 
When the derivative is not used, the match is sometimes difficult. 

As for active well responses, a first straight line of slope m/2 can be seen on a semi-log 
scale, if the transition regime lasts long enough before the equivalent total system 
homogeneous regime. 
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Figure 6.2I. Interference responses in double porosity' reservoirs with unrestricted interporosity 
flow. Log-log scales, Pz) v e r s u s  tDj./rz) 2. Same parameters as on Fig. 6.19. 

6.4.6 Pressure and derivative analysis of interference tests in double porosity 
reservoirs with unrestricted interporosity flow 

The two observation well responses presented in Figure 6.21 are generated with the 
same parameters as in the examples of Figure 6.19 (the two distances are respectively 
rD =1000 and rz> =5000 for wells A and B and the double porosity reservoir is defined 
with 2=5x10 -s and co =10-~). The reservoir cross flow is not restricted and the matrix 
blocks are assumed to be spherical. The time scale is t~?/r>=. 

For well A, the response shows a very short fissure flow regime, similar to the curve 
Figure 6.19 for a reservoir with restricted interporosity flow. When the pressure and 
derivative curves intersect, the response is already in transition behavior. In Figure 6.19, 
the intersection between the two curves A is defined at PD =P'~o =0.32 as on a 
homogeneous response. In Figure 6.21, it is only p~ =p'~ =0.25. The point of 
intersection between the pressure and derivative curves cannot be used to define the 
match in reservoirs with unrestricted interporosity flow. 

During the double porosity transition of example A, the derivative response tends to 
stabilize at approximately p'~o =0.3. Finally, when radial flow in the total system 
equivalent homogeneous behavior is seen, the derivative reaches the usual 0.5 plateau. 

The response of well B is less characteristic. The fissure flow regime is not seen and the 
signal is delayed compared to curve A. The transition is short and no intermediate 
derivative stabilization is seen before the 0.5 plateau. If the test period is short and the 
final radial flow has not been reached, the analysis can be difficult to conclude. 
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6.5 INTERFERENCE TESTS IN LAYERED RESERVOIRS 

With layered reservoirs, the interference test responses depend upon the two well 
conditions: if the same layers are perforated in the active and observation wells or not, 
and if there is cross flow in the observation well or not: 
�9 When the perforated layers are different, the pressure response in the observation 
well is due to reservoir cross flow. 
�9 If several layers are communicating with the observation well, the interference 
pressure drop can be different in the layers. Cross flow is then established though the 
observation well and, even though it is not producing at surface, the well is active and 
influences the reservoir pressure response (the flow lines are not radially symmetric 
around the active well any more). 

Many combinations are possible depending upon the layered system and the completion 
of the wells. In 1981, Chu and Raghavan and, in 1989 Onur and Reynolds have 
discussed interference tests in non-communicating layers with crossflow in the 
observation well. They concluded than the effect of the skins at both wells can be 
greater than the effect of the contrast in the layers properties. Streltsova (1984 a) 
considered vertical crossflow in a two layers reservoir by assuming only one layer is 
producing to the well, and radial flow in the second layer is negligible. 

in the following, a "two layer" configuration is considered with the double permeability 
model (Bourdet, 1985) described in Chapter 4. The theoretical responses of several 
interference test configurations are presented to illustrate some basic characteristic 
behaviors. The examples can be extrapolated to more complex configurations, and they 
show that a layered reservoir interference model is needed for analysis. 

6.5.1 Line source well in a two layers with cross flow reservoir 

On the double permeability responses presented in Figure 6.22 and 6.23, the contrast 
between the layers is small enough to produce an apparent homogeneous behavior in the 
active well (see Section 4.2): tc=0.7 and co =0.4. The cross flow parameter is Z=10 .6 and 
the distance of the observation well is rz)= 1000. 

The dimensionless pressure p> and the dimensionless time group tDl+2/rD 2 a r e  defined by 
the parameters of the total system (Equations 4.49 and 4.50). The active well is a line 
source communicating with the two layers and three different observation well 
configurations are considered: in Figure 6.22, only one of the two layers, respectively 
layer 1 or layer 2, is perforated (Bourdet, 1985), and in Figure 6.23, they are both 
perforated (Houz6 and Viturat, 1985). The pressure and derivative of the Theis solution 
corresponding to the total equivalent homogeneous reservoir system are shown with the 
dotted curves. 
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If the observation well is only perforated in the higher permeability layer (#1), the 
response is seen before the equivalent homogeneous solution for the total system 
(Figure 6.22). At tl~_z/rl~2=O.l for example, the amplitude of the layer 1 pressure 

9 
response is 10 times larger than the Theis solution. Later, about at tz~l+:/r/~-=5, the layer 
1 double permeability response reaches the equivalent homogeneous behavior. 

In the opposite configuration, when only the low permeability layer (#2) is 
communicating with the observation well, the early time response is delayed compared 
to the Theis solution for tile total system. The responses of layer 1 and that of layer 2 
merge on the dotted pressure and derivative curves when the equivalent homogeneous 
behavior is reached. 
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At the start of the response, the two layers show a different pressure. If they are both 
perforated, this pressure differential produces a cross flow in the observation well. The 
resulting response is shown in Figure 6.23: it is also ahead of the Theis solution for the 
total system, and it appears not very different from the layer 1 response. When several 
layers are perforated, the high permeability layer dominates the global observation well 
behavior. Chu and Raghavan (1981) reached a similar conclusion in their investigation 
of non communicating layered reservoirs. They concluded that if a homogeneous 
reservoir model is used for analysis, the total formation permeability thickness kh can 
be slightly overestimated but porosity compressibility product ~b c, can be 
underestimated by a factor of 2 or more. 

The responses presented Figure 6.22 and 6.23 are generated with no skin effect on both 
wells. With this hypothesis, the time of start for the total system equivalent 
homogeneous behavior is defined, as for double porosity reservoirs, with the ,~r/) 2 
group. If the skin is different between layer 1 and layer 2, the response follows a 
different behavior. It is difficult to differentiate the influence of the skin factors to that 
of the diffusivity ratio between the two layers (Chu and Raghavan, 1981), and the match 
is frequently not unique. 

The interference examples of Figure 6.22 and 6.23 show that, even with a low contrast 
between the layers and an apparently homogeneous active well, the observation well 
response is clearly heterogeneous. This change of well behavior is inverse to that of 
double porosity reservoir responses, where the heterogeneity is visible in an active well 
but not always in the observation well. 

6.6 PULSE TESTING 

6.6.1 Advantages and limitations of the pulse testing method 

With pulse testing, the active well is produced in a series of alternate flow and shut-in 
periods. The rate and the duration of each flow are the same. All shut-in periods also 
have the same duration, not necessarily equal to the flow time. With three or four 
pulses, the observation well response is easier to identify in a noisy pressure 
environment than a single pulse interference signal. 

Pulse and interference tests may be used for the estimation of reservoir permeability and 
storativity, but the choice of the best procedure has not been completely discussed. 
Some of the parameters considered during the selection of the test procedure are 
summarized in the following, taking into account the recent advances in accurate 
pressure measurements and computing facilities. 
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Model identification 

The analysis technique of pulse tests (Johnson et al., 1966; Brigham, 1970; Kamal and 
Brigham, 1975; Earlougher, 1977) is based on a completely different approach than that 
for interference tests. Only the amplitude and the time lag of the pressure pulses are 
considered and the type of reservoir behavior is not identified. A reservoir pressure 
trend or a possible drift of the gauge does not affect the analysis, but the type of 
reservoir behavior is assumed during the interpretation. Frequently the line source 
response for a homogeneous infinite reservoir is used but, with the modern analysis 
tools, the complete catalog of well and reservoir solutions is available. 

The question of the choice of the proper interpretation model is not solved yet. When 
the reservoir behavior is not known from previous tests, only the interference procedure 
provides a diagnosis of the response by log-log pressure and derivative curve analysis. 

Test history 

It is frequently believed that the duration of pulse tests is shorter than the time usually 
needed for interference tests. In practice, the testing time is at least the same with both 
types of tests (Kamal, I983) and only the shut-in time is less, which has some economic 
benefit. It is noteworthy that the period of the pulse test sequence should be different 
from 12 hours in order to prevent any confusion with a possible tidal effect in the 
observation well, and the measured time lag must be less than the duration of the flow 
or shut-in period (Brigham, 1970; E1-Khatib, 199 l). 

Low diffusivity reservoirs 

In the case of reservoirs with a low diffusivity (k/~b/a c,) and a large distance r D between 
the wells, the time needed to produce three pressure oscillations in the observation well 
can be so long that pulse testing is not possible (Bourdarot, 1998). Only the interference 
procedure can be envisaged in such conditions. 

High diffusivity reservoirs 

Conversely in high permeability reservoirs, the amplitudes of interference responses are 
low and they can be masked by the noise of the pressure signal. When the wells are 
close enough to produce a quick response at the observation point, the pulse testing 
approach is the recommended procedure. 



Pulse tests 301 

6.6.2 Analysis of pulse tests 

When the analysis is made by hand, the response amplitude and time lag are measured 
with the "tangent method" (Johnson, 1966) and the correlation curves presented by 
Kamal and Brigham (1975) are used to estimate the reservoir permeability and 
storativity. A homogeneous reservoir response is then considered, the active well is a 
line source. When the test or the reservoir response does not satisfy these conditions, 
results from hand analysis are not completely correct. 

Several recent studies have discussed the effect of wellbore condition and reservoir 
heterogeneity on pulse test responses. No manual interpretation method has been 
proposed and the analysis is made by test history matching on simulated pressure 
responses. 

Wellbore storage effect 

The effect of wellbore storage at the active or observation well increases the time lag 
and reduces the amplitude of the pulse response (Prats and Scott, 1975; Ogbe and 
Brigham, 1984 a). When the magnitude of the wellbore storage is defined (from the 
analysis of the producing well response for example), it is possible to introduce this 
effect on the pulse test simulation used for analysis. 

Wellbore storage is an important parameter to consider in the design of a pulse test: 
when a short pulse period appears feasible (if the inter-well distance is small for 
example), the flow and the shut-in periods must be longer than the effect of wellbore 
storage. 

Heterogeneous reservoir behavior 

The effect of reservoir anisotropy is treated in the same way as for interference tests 
(Kamal, 1983), the dimensionless time lag and time period are simply changed 
according to Equation 6.7. Little information is available on the effect of reservoir 
boundaries on pulse test responses (Vela, 1977) and, to our knowledge, pulse tests in 
double porosity reservoirs have not been considered yet. Prats (1986) used a numerical 
approach to investigate pulse test responses in double permeability reservoirs. He 
concluded that for large distance between wells and low reservoir heterogeneity, the 
analysis of pulse tests with the homogeneous solution yields a good estimate of the 
average reservoir properties. When the contrast between layers is large and the inter- 
well distance short, the results of homogeneous analysis provide a diffusivity (k/r cl) 
close to the better layer characteristics. A similar conclusion is presented in the 
discussion of interference responses in layered reservoirs (Figure 6.23 of Section 6.5). 



302 Multiple well testing 

6.7 CONCLUSION 

When only mechanical pressure gauges were used, the main purpose of multiple well 
tests was to establish communication between wells. With the high accuracy pressure 
data available today, multiple well testing is recognized as a very powerful testing 
method, more sensitive to many types of reservoir heterogeneity than single well tests. 

The operating conditions are very, important in interference tests. In addition to the high 
accuracy pressure data requirement, the reservoir pressure trend must be defined 
accurately, and it must remain constant during the test time. The influence of other 
active wells in the reservoir must be considered, in particular when the production rates 
are not constant (see discussion of the influence of neighboring producers in Section 
10.1.2). 

Pulse testing is less affected by a noise in the reservoir pressure but, during the analysis, 
the model is not identified. Research is needed in pulse testing to develop practical 
testing procedures. A systematic analysis of pulse test responses generated for different 
well conditions and reservoir types would be useful to establish a general methodology 
for test design and interpretation. In case of fissured or layered reservoir for example, 
additional information is probably needed from cores, logs or producing well analysis, 
in order to conclude a pulse test interpretation successfully. 



CHAPTER 7 

A P P L I C A T I O N  T O  G A S  R E S E R V O I R S  

Two different types of tests are used for gas wells. Historically, the first testing methods 
were only designed to define the well deliverability in order to predict the flow rate, as a 
function of the wellhead pressure. The results were used in the design of the surface 
production equipment, setting taxes and also for regulating production, particularly in 
North America. Backpressure tests and isochronal or modified isochronal tests are the 
usual deliverability testing methods. The theoretical rate at which the well would flow if 
the sand face was at atmospheric pressure is called the "Absolute Open Flow Potential," 
AOFP. The analysis of deliverability tests does not yield a description of the well nor of 
the reservoir. 

More recently, transient testing has become current practice for gas wells. The analysis 
provides a description of the producing system, and therefore the well deliverability is 
also defined. 

The transient response of gas wells is very different from that of liquid systems because 
the fluid properties vary with changes in pressure. The analytical models presented in 
earlier Chapters for liquid flow are not directly applicable, and the interpretation of 
transient tests in gas wells is more complex. The test data have to be modified before 
starting the analysis; in general, the pressure data is converted into "pseudo-pressures". 
Another difficulty of gas well test interpretation is the high velocity reached by the flow 
around the wellbore, which affects the well responses by inertial effects or turbulent 
flow conditions. The skin effect is then rate dependent and changes from one test period 
to the next. 

In this Chapter, the behavior of natural gas is first described, the resulting transient 
analysis methods are presented and deliverability testing is discussed afterwards, 
together with the corresponding analysis plots. Only dry gas well responses are 
considered, test interpretation in multiphase reservoirs is the subject of Chapter 8. 

7.1 DESCRIPTION OF GAS WELLS PRESSURE BEHAVIOR 

The hypothesis of slightly compressible fluids, used in previous Chapters to describe 
liquid flow in a porous medium, is not valid for gas systems. In the following sections, 
the behavior of natural gas is presented, and the pressure responses of gas wells are 
compared to those of liquid wells. 
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7.1.1 Gas compressibility and viscosity 

The compressibility of gas cg is a function of the pressure. For a real gas, the equation of 
state is defined as 

pl ,~ = ZnRT (7.1) 

Where Z is the real gas deviation factor. For an ideal gas Z =1, and the compressibility 
is cg =lip. For a real gas, Z changes with the pressure, and the compressibility is 
expressed as 

C~ -- 
1 1 ~ Z  

p z ~ p  
(7.2) 

In gas systems, the viscosity /z is also a function of pressure. The resulting partial 
differential equation governing the pressure transient response of real gas is not linear 
and, as opposed to liquid flow, it cannot be solved by analytical methods. 

7.1.2 Pseudo-pressure 

As shown by A1-Hussainy et al. in 1966 (a and b), by changing the pressure variable to 
pseudo-pressure re(p), the differential equation can be linearized approximately and it 
becomes very similar to the diffusivity equation for slightly compressible fluids. 

The pseudo-pressure, also called "real gas potential", is defined as 

/) 

P @ 
re(p) = 2 f p ( p ) z ( p )  

PO 

(7.3) 

The reference pressure p0 is an arbitrary constant, smaller than the lowest test pressure. 
All pressures are expressed in absolute units, the pseudo-pressure has the unit of 
(pressure) 2 / viscosity, psia2/cp with the usual system of units. For the calculation of 
re(p), p and Z must be known as a function of pressure. When the results of P.V.T. 
analysis are not available, gas property correlations are used. 

For practical analysis of gas well tests, the complete pressure data is converted into 
pseudo-pressure and, by using re(p) as the working variable, the solutions derived for 
liquid flow can be applied to the data. The pseudo-pressure change, expressed as 
Am(p) = m(p)-m[p (At=0)], is independent of the reference pressure p0 of Equation 7.3. 

The pseudo-pressure corrects the effect of change of gas viscosity in the calculation of 
permeability. However, in the case of a large change of gas compressibility during the 
test, this transformation does not exactly reproduce an equivalent liquid behavior. 
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7.1.3 Pseudo-time 

In 1979 (b), Agarwal introduced pseudo-time, tps, in order to linearize further the 
differential equation describing gas flow. The pseudo-time is defined as: 

l dt 

to 

(7.4) 

p and cl are pressure dependent. The calculation of tp, requires the pressure to be known 
during the complete flow rate sequence. Frequently, the pressure has not been recorded 
during part of the production history, and changing the test data into superposition of 
pseudo-time becomes cumbersome. 

Except in very low pressure wells, when the gas compressibility changes significantly 
after a small variation of pressure, or during reservoir limit testing with a large 
depletion, using the pseudo-time does not really improve the quality of the analysis 
results. These situations are exceptional, and the pseudo time transformation is seldom 
necessary and usually ignored. 

A typical example of low-pressure behavior can be observed in some damaged gas 
wells. When the last flowing pressure is only a few hundreds of psi, the build-up 
pressure and derivative curves immediately after shut-in do not follow the usual log-log 
unit slope wellbore storage straight line, but increase faster (see discussion of changing 
wellbore storage in Section 10.1.2). By using the pseudo-time, the first part of the 
response can be corrected to improve the aspect of the log-log match. As the match 
parameters are not changed, the results of log-log analysis are the same as when the 
pseudo-pressure is simply expressed versus the elapsed time. 

In the case of significant depletion, Bourgeois et al. (1996 c) proposed correcting the 
analytical model instead of using the pseudo-time. Gas well material balance correction 
is discussed in Section 7.2.5. 

7.2 PRACTICAL TRANSIENT ANALYSIS OF GAS WELL TESTS 

7.2.1 Simplified pseudo-pressure for manual analysis 

Before computers became generally available, the pseudo-pressure was calculated for 
each pressure data point by estimating the area of a graph of 2p/p Z versus p. Such a 
procedure is time consuming, and a simplified form of re(p) was frequently preferred. 

Figure 7.1 is a graph of p Z versus p for a typical natural gas at constant temperature: 
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�9 When the pressure is less than 2000 psia, the product/d Z is almost constant and 
re(p) simplifies into: 

2 ~f 2 _~ 
_ _  J P @  _ p - p 0  //7(1/9)- 
p z  po r z t 

(7.5) 

On low-pressure gas wells, it is thus possible to analyze the test in terms of pressure- 
squared p2. 

�9 When the pressure is higher than 3000 psia, the product p Z tends to be 
proportional to p, p /p  Z can be considered as a constant and the pseudo-pressure m(p) 
becomes' 

]? 

2p fdp -(p- p0) p' 
p z  po /d l z, 

On high-pressure wells therefore, the gas behaves like a slightly compressible fluid, and 
the pressure data can be used directly for analysis. 

�9 Between 2000 psi and 3000 psia, no simplification is available, and m(p) must be 
used. 

The two limits of validity of the simplified forms ( <2000 psia and >3000 psia) are 
approximate, and depend upon the gas composition and temperature. When re(p) can be 
estimated with a computer program, the pseudo-pressure is preferably used for the 
complete range of test pressure. However, the practical engineer sometimes prefers to 
see the analysis in real pressure or even in pressure squared, rather than re(p) values of 
10 l~ psia2/cp, for which he or she has no "feel". 
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7.2.2 Definition of the dimensionless parameters 

The gas standard conditions are used for the definition of the dimensionless terms. In 
the usual field units, the standard pressure is P.,.c = 14.7 psia and the temperature is T.,.c = 
520~ (60~ all temperatures are expressed in absolute units). The gas rate is expressed 
in standard condition as q,c in 103 scft/D or Mscf/D. 

The gas properties used for reference in the dimensionless terms depend upon the 
treatment applied to the raw data, namely the "pseudo-pressure", the "pressure-squared" 
or the "pressure". When the pseudo-pressure is considered, the dimensionless terms are 
defined with respect to the gas properties at initial condition (subscript i) whereas, with 
the pressure and pressure squared approaches, the properties are defined at the 

arithmetic average pressure of the test (symbol ). 

In the following section, the dimensionless interpretation variables are given 
respectively for re(p), p2 and p. 

Dimensionless pressure 

The dimensionless pressure (Equation 2.3 for oil) is presented first in the general form, 
and a simplified expression is given for the usual standard conditions (P,~.c = 14.7 psia 
and T,,.c = 520~ 

re(v)" 

kh r~c [re(p;)- re(p)] 
PJ) - 50300Tq.~.c P.~.c 

kh 

1422TqL,.c 

(7.7) 

2 p"  

PD = 
5o3oo/,z~qsc p,,,c 

1422r 

(7.8) 

p: 

P D  = 
khp V,.c (p, _p) 

25150/aZTq~,. c P.,.c 

71 l/aZTqs c 

(7.9) 
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Dimensionless time 

For gas wells, the dimensionless time of Equation 2.4 is expressed as  

re(p)" 
0.000263k 

{ D  = 2 At (7.10) 
r c,/ rw 

p- and/): 

0.000263k 
11) = .~ 

e l . I t  t l" w - 

At (7.11) 

Dimensionless wellbore storage 

As for oil wells, the wellbore storage coefficient is expressed in Bbl/psi. In 
dimensionless terms, the Equation 2.5 for oil wells is changed into" 

re(p)" 
0.8936C C/) = - -  (7.12) 
:o,,h,',~ 

2 p andp: 

0.8936C Cz) = ~  (7.13) 

Dimensionless time group 

The usual dimensionless time group t:]C:: of Equation 2.6 becomes' 

re(p)" 

tD = 0 . 0 0 0 2 9 5 ~ ~  
CD 

kh At 

/a, C 

9 

p- a n d p  

tD = 0 . 0 0 0 2 9 5 - - ~  
CD 

kh At 

/a C 

(7.14) 

(7.~5) 
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7.2.3 Straight line parameters 

The different characteristic flow regimes presented in previous Chapters (wellbore 
storage, linear flow, spherical flow, radial flow and, to some extent, pseudo steady state) 
are always described by straight lines on a plot of pressure versus a specialized time 
scale. For gas wells, the equation of the corresponding straight line can be obtained in 
terms of re(p), p2 or p, by introducing the appropriate definition (Equations 7.7 to 7.13) 
into the dimensionless Equations corresponding to these flow regimes (Equations 5.1 
and 5.14 for example in the case of parallel sealing faults or a closed system). 

In the following section, the straight-line equations for the wellbore storage regime and 
infinite acting radial flow are presented in the general form, and in terms of the usual 
standard conditions (P.,.c = 14.7 psia and 77.,.c = 520~ 

Wellbore storage analysis 

On a Cartesian plot, the wellbore storage straight-line slope mwB of Equation 1.9 
becomes, for gas: 

m(p)" 

NwB - 14.85 TqsC Psc 
/tiC T,,c 

= 0.4197 Tq''c 
/aiC 

(7.16) 

2 p .  

ZTqsc P~.c 
mwB - 1 4 . 8 5 - -  

C T,.c 

= 0.4197 ZTq~"c 
C 

(7.17) 

p:  

ZTqsc Psc 
mWB =7.425 _ 

pC T,~ 

Z Tq.~. C 
=0.2098 _ 

pC 

(7.18) 

Semi-log analysis 

The slope m of the semi-log straight line, expressed in Equation 1.15 for oil, is now 
defined as: 
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re(p): 

m - 5.791x104 Tq~'c P.,.c 
kh T,,~, 

= 1.637x103 Tcl,~ 
kh 

2 p 

m - 5.79 lxl 04/~ZTq.,~. p,~. 
kh T,~. 

= 1.637xl 03 /~ZTq,~. 
kh 

(7.19) 

(7.20) 

p , 

m -  2.896x104 /aZTq,~_ p,~ 
pkb T,~ 

= 8.183x102 /~ZTq,~ ' 
pkh 

(7.21) 

and the skin equation 1.17 for drawdown is changed into 

,n(p): 
S' l15lIArn(p)ll'I-l~ k -  m --+3.23~b/a, c,,r,7' ) (7.22) 

2 p amp"  

S'= 1.151 / kPlhr orm Apl hr - log 9 + 3.23 (7.23) 

The pseudo-skin S' is the global skin, including the wellbore damage, possibly a 
geometrical skin component, and the inertial-turbulent flow effect discussed in the next 
section. It is frequently rate dependent, the higher is the flow rate, the higher is S'. 

7.2.4 Non-Darcy flow 

Inertial and turbulent flow effects 

Due to the high velocity of the flow in the immediate surroundings of the well, inertial 
effects are frequently not negligible. In some cases, the flow is not even laminar but 
becomes turbulent. Darcy's law is then no longer applicable in the vicinity of the well, 
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and the inertial and turbulent effects produce an additional pressure drop (Houpeurt, 
1959; Wattenbarger, 1968; Mattar and Brar, 1975). The skin coefficient S', measured 
during well tests, is expressed with a rate dependent term as: 

S '= S + Dq.,. c (7.24) 

where D is called the non-Darcy flow coefficient. In order to separate the two 
components of the skin effect, S' has to be evaluated at several rates. 

Estimation of S and D 

During drawdown periods in a multiple rate test, the total skin effect of Equation 7.24 
is, for period #n, S'~ = S + D %,,c, and during the previous period #n-I ,  S'~.1 = S + 
D%_l,,c. The corresponding pressure drops due to skin are A m ( p ) s .  ~ = 

0422Tqn,sc/kh)S'n and Am(p)s,n_ 1 = 0422 Tqn_l,sc/kh)S'n_ 1 . When the superposition 

method is used (see Chapter 2), the period #n is analyzed for a change of flow rate (% - 
%-~),c, and the pressure at the start of the period is the last pressure of period #n-1. The 
skin pressure drop measured on period #n is expressed with the difference (Bourdarot, 
1998) 

Am(p)sk,, , =(1422T/kh)(qn,scS'n-q~_l,scS'r,_ 1) 

=(1422T/kh)(qn - qn-1)sc S + D(q,2~ - qn-12 )sc 

=(1422T/kh)(qn - qn-1)sc[ S + D(qn + qn-1)sc] 

(7.25) 

During shut-in periods (% = 0) and during the periods immediately after shut-in (%-1 = 
0), the measured skin coefficient corresponds to S' of equation 7.24 but, for all other 
flow periods it corresponds to IS + D (% + %-1).,.c]. 
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Figure 7.2. Variation of the pseudo skin with the rate (q,,+q,,_~). Linear scales. 
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In Figure 7.2, the pseudo-skin [S + D (% + q,,_~).,~] is plotted on linear scales versus the 
rate term (q,, + q,,_~),~.. The straight-line intercept gives the true skin S and the slope gives 
the non-Darcy flow coefficient D. When only build-up periods are analyzed in a 
multiple rate test, the linear plot simplifies into S', versus qi-~. 

7.2.5 Material balance correction 

During a reservoir limit test, the average pressure can be estimated with the usual 
material balance relationship 

P _ P ,  l _ G r  , (7.26) 

where G, is initial gas volume and Gp the cumulative gas production. 

When the pseudo-steady state Equation 5.14 is used with the pseudo-pressure of 

Equation 7.7, the resulting average pressure pvv is different (Equation 5.21 for oil 

wells) �9 

m(p  vv ) - re(p, ) - 2.349 
T q.,.~. 

At 
(bp, c,, hA (7.27) 

T 
= re(p, ) - 2.349 G/, 

~/a, c, hA 

As mentioned in Section 7.1.3, transforming the pressure variable into pseudo-pressure 
does not correct the changes in gas compressibility when there is significant depletion. 
Instead of using the pseudo-time, Bourgeois, and Wilson (1996 c) propose correcting 

the analytical model by m(-fi)-m(-fi/,/,). 

For each time step of the calculation, the cumulative gas production @ is used to 

estimate p from the material balance relationship of Equation 7.26, and then p is 

changed into m(p). The second term m(-fiI)r ) is estimated from Equation 7.27. With 

this correction, the model response follows the linear relationship of p /Z  versus the 
cumulative production, and therefore the overall material balance is honored. 
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Figure 7.3. Deliverability plot for a backpressure test. Log-log scale, pressure-squared method. 

7.3 DELIVERABILITY TESTS 

Even though it is possible to predict gas flow rate against wellhead pressure from the 
results of transient test analysis, the deliverability testing procedure is still used on gas 
wells. By flowing the well at several different rates, deliverability tests are in fact well 
adapted to the analysis of the non-Darcy flow effect. The two analysis methods, 
transient and deliverability, can be applied to the data. 

7.3.1 Deliverability equations 

Empirical approach 

In 1936, Rawlins and Schellhardt presented an empirical relationship between flow 
rates and the stabilized flowing pressures pw/' 

where the pressures pi and pwf are in absolute units, C and n are two constant terms. The 
coefficient n can vary from 1 in the case of laminar flow to 0.5 when the flow is fully 
turbulent. 

As shown in Figure 7.3, a log-log plot o f  (2oi 2 -p~j2)  versus q.,.c yields the "stabilized 
deliverability straight line", of slope 1In. The Absolute Open Flow (AOF) Potential is 
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estimated by extrapolating the stabilized deliverability line to atmospheric pressure (pwf 
= 14.7 psia). The deliverability analysis illustrated in Figure 7.3 is also called the "C & 
n" or Fetkovich (1973) method. 

In infinite or closed systems, the pressure never stabilizes during drawdown: it first 
follows the semi-log approximation and, during pseudo-steady state regime, it is a linear 
function of time (see Chapter 5.4). A stabilized flowing pressure condition is seen only 
when the gas reservoir is in contact with a constant pressure support. In the empirical 
relationship of Equation 7.28, the flowing pressures p,,j is said to be stabilized when the 
pressure variation is no longer measurable. It is therefore related to the sensitivity of the 
pressure gauge. 

Theoretical approach 

A more rigorous treatment of deliverability tests in closed systems can be developed if 
the stabilized pressure is replaced by the pressure during the pseudo-steady state regime 
(see Chapter 5.4). In theory, the initial pressure p, has to be replaced by the average 

reservoir pressure p ,  but it is assumed that the depletion is negligible and p is 

constant. A new form of the deliverability equation, including a term q.,,c 2 for turbulent 
flow is obtained. 

In a closed system, the difference between the pseudo-steady state flowing pressure p,:f 
and the following shut-in average pressure p is constant (see Section 5.4.7). When the 

pseudo-pressure of Equation 7.7 is used, Equation 5.20 gives the laminar-inertial- 
turbulent (LIT) flow relationship: 

A~ r,;, T 
+0.351+0.87S q,,c +1422--Dq.~c 

C .q kh 
(7.29) 

With a circular reservoir of radius r~,, C4 = 31.62 and the Equation 7.29 reduces to 
(Houpeurt, 1959; Mattar and Brar, 1975)" 

- - -  ~ +  0.87S q,~, +1422 T 2 
kh r~,, k--s Dq"c 

(7.30) 

Before the pseudo-steady state regime, the response follows the semi-log approximation 
and Am(p) is expressed as" 

) -  - kAt 1 ~ 2 + 3.23 + 0.87S q~,.~. + 1422 T 
q~/a,c,r~ khDqs~ 

(7.3]) 
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Figure 7.4. Deliverability plot for an isochronal or a modified isochronal test. 
Linear scale, pseudo-pressure method. 

The two Am(p)deliverability relationships can be expressed as a(t)qsc + bqsc 2. During the 
infinite acting regime, a(0 of Equation 7.31 is an increasing function of the time 
whereas "a" is constant when pseudo-steady state is reached (Equation 7.30). The 
coefficient "b" is the same in the two equations. 

In Figure 7.4, the ratio [m(pi)-m(pwf)l /q~.  c is expressed versus q.,.c on linear 

coordinates (Houpeurt or LIT or "a & b" method). The two characteristic behaviors of 
Equations 7.29 and 7.31 are described by two parallel straight lines of slope "b". The 
lower line, of intercept a(tp), describes the transient deliverability response at tp, and the 
higher line is the "stabilized deliverability straight line", of intercept "a". The Absolute 
Open Flow Potential is estimated by solving the quadratic Equation 7.30 at pwf = 14.7 
psia: 

- a  + ~/a 2 + 4b(m(p)-  m(14.7)) (7.32) 
qsc ,AOF = 2b 

7.3.2 Back pressure tests 

The well is produced to stabilized pressure at three or four increasing rates q,,.c:/(Figure 
7.5), the different flow periods have the same duration. This testing sequence is also 
called a "Flow after flow test". In low permeability reservoirs, the total production time 
can be relatively long. 

When the empirical approach is used, the stabilized pressures P,,J, lJ and rates q, cj are 
plotted on log-log scale with (pi 2 -pw.[ 2) versus qsc, as shown Figure 7.3. If the pseudo- 
pressure is preferred, the deliverability plot is as shown in Figure 7.6, with 
[m(Pi)-m(pwf)l/q~.c versus q,,.~,. The intercept "a" and the slope "b" of the stabilized 

deliverability straight line are measured, and the AOF is estimated from Equation 7.32. 
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Figure 7.6. Deliverability, plot for a backpressure test. Linear scale, pseudo-pressure method. 

Backpressure tests were the first method to evaluate well deliverability. The testing 
procedure is time consuming, a large volume of gas is produced and there is only one 
build-up period. Since the procedure is not well adapted to transient analysis, the 
isochronal or modified isochronal tests are frequently preferred. 

7.3.3 Isochronal tests 

With isochronal tests, the well is again produced at three or four increasing rates but a 
shut-in period is introduced between each flow. The drawdown periods at %cj are 
stopped during the infinite acting regime after the same production time tp, and the 
intermediate build-ups last until the pressure is back to initial conditions Pi. The final 
flow is extended, sometimes with a reduced flow rate, to reach the stabilized flowing 
pressure (Figure 7.6). 
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The total produced gas is smaller during isochronal tests than with the back pressure 
procedure but, due to the shut-in periods, the test duration is relatively long. A complete 
transient analysis can be carried out on each of the build-up periods of the isochronal 
test procedure. 

On the log-log plot Q ) i  2 - pwj 2) versus q,c of Figure 7.7, the different pressure points Pws:/ 
measured at tp follow a transient deliverability straight line parallel to the stabilized 
deliverability line. The slope 1In is then defined from the short flow periods, and the 
final deliverability line can be drawn with a slope of 1In through the point 
corresponding to the stabilized pressure of the extended flow. 
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318  Gas reservoirs 

With the pseudo-pressure method, the pressure points p,dj follow a straight line on the 
linear plot of [m(p;)-m(pwf)J/q~,. C versus qsc (Figure 7.4). The slope is "b" and 

intercept "a(tp)". The stabilized deliverability straight line is then drawn parallel and 
passing through the point corresponding to the stabilized pressure of the extended flow 
period. The AOF is estimated from Equation 7.32. 

7.3.4 Modif ied isochronal tests 

With the modified isochronal sequence, the procedure is similar to isochronal tests 
except that the intermediate shut-in periods have the s a m e  d u r a t i o n  as the drawdown 
periods and, as shown in Figure 7.9, only the last flow is extended until the stabilized 
flowing pressure is reached. The total test duration is relatively short, and several build- 
ups are available for transient analysis. 

For the pressure points measured at t r, the difference on the y axis of the deliverability 
plots are calculated with reference to the pressure at start of the period p,,,,.~ (Katz et al., 
1959), with p,,,.~ = p,. The point for the final stabilized flowing pressure is expressed 
with respect to the initial pressure p,. 
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Figure 7.9. Pressure and rate history' for a modified isochronal test. 
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With the empirical procedure, the log-log plot of (p.,~2 _ p,,:12) versus q.,.~, displays the 
transient deliverability straight line of slope 1/n. The stabilized pressure of the extended 
flow period is used to define the stabilized deliverability straight line parallel to the first, 
and passing through the point (,De _ p,,12) (Figure 7.7). With the pseudo-pressure method 
(Figure 7.4), the plot of [m(p,,, ) - m ( p , :  t )J/q.,c versus q,.~ defines the transient straight 

line of slope "b" and intercept "a(fv)". The parallel stabilized deliverability straight line 
is drawn through the extended flow period point, [m(p,)-m(p~,.r)l/q,,. c , and "a" is 

known. The AOF can be estimated from Equation 7.32. 
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7.4 FIELD E X A M P L E  

Figure 7.10 presents an example of a four point modified isochronal test sequence. 
When the build-up periods are compared on a rate normalized log-log plot (Figure 
7.11), the different derivative responses are correctly superposed during the radial flow 
stabilization. It can be concluded that the flow rates are accurately measured during the 
multiple rate test sequence. 
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Figure 7.10. Modified isochronal test. Linear scale. 
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The following conclusions are established from the examination of the log-log plot of 
Figure 7.11: 
1. The radial flow regime is reached after approximately 0.1 hours. The duration of 
the shut-in periods (and the three first flow periods) could have been reduced. 
2. During the five initial minutes of shut-in, the wellbore storage effect is not 
constant. Due to the variable gas compressibility at early shut-in times, the shape of the 
derivative hump does not correspond to the usual wellbore storage behavior described 
on the type-curve of Figure 2.22 (see Section 10.1.2). 
3. Even though the derivative responses are correctly superposed, the pressure curves 
are not. The skin is changing from one period to next; the well is affected by the non- 
Darcy flow condition common with gas wells. 
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Figure 7.12. Deliverability plot of the modified isochronal test. Log-log scale o f  ~ 2  VS. q. 

On the deliverability plot of Figure 7.12, the four flow periods define a single 
deliverability line: the flowing pressures are close to stabilization at times of shut-in. 
The straight-line slope indicates n = 0.72, confirming thus a moderate non-Darcy flow 
effect. 



CHAPTER 8 

APPLICATION TO MULTIPHASE RESERVOIRS 

The well test interpretation methods described in previous Chapters are designed for 
wells producing a single-phase fluid, either liquid or gas. At surface, most wells 
produce oil and gas phases but the reservoir fluid can frequently be considered as a 
single phase fluid, and the usual interpretation methods for liquid or gas are applicable. 

This Chapter describes test interpretation when the flow in the reservoir is multiphase. 
A two-phase flow condition is encountered in solution gas drive reservoirs, when the 
flowing pressure in the reservoir is below the bubble point, or in retrograde gas 
condensate reservoirs below dew-point pressure. When water is produced, the flowing 
fluid can be three phases. Multiphase flow is different from the wellbore phase 
segregation phenomenon discussed in Chapter 10, where the second phase appears in 
the wellbore. 

When several phases are flowing together in a porous system, each reduces the ability 
of the other phases to flow and the effective permeability for each phase is less than the 
permeability for a single phase. The relative permeability of each phase is a function of 
its saturation, which is not constant, either in space or in time. For example, in 
reservoirs flowing below the bubble point, the effective permeability to oil is reduced 
by the high gas saturation near the well. In retrograde gas condensate reservoirs flowing 
below the dew point, the liquid saturation is highest around the well. The gas flow is 
more restricted in this area than in the outer reservoir region, and the presence of a 
liquid phase originated by retrograde condensation produces a non-Darcy flow 
condition (Kniazeff and Naville, 1965). As for gas wells (see Chapter 7), the skin effect 
S' can be rate dependent in multiphase systems and change from one test period to the 
next. 

Several approaches have been proposed to analyze tests in multiphase reservoirs but 
they all make simplifications for modeling the flow behavior. The simplest and most 
widely used is the method presented by Perrine in 1956: an equivalent liquid flow rate is 
considered, and the analysis methods of oil wells are applied. Other methods have been 
presented, using multiphase pseudo-pressure (Fetkovich, 1973; Raghavan, 1976) or 
pressure squared (A1-Khalifah et al., 1987). These are more difficult to use, the quality 
of the results depends largely upon the validity of the saturation curves and the P.V.T. 
properties introduced in the models. 

In this Chapter, only the Perrine method is described in detail, the pressure squared and 
the pseudo-pressure methods are simply introduced. 
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8.1 PERRINE'S METHOD 

The method is a modified single-phase approach. An equivalent //quid of constant 
properties is defined as the sum of the three phases: oil, water and gas (Perrine, 1956; 
Martin, 1959). The analysis yields the effective mobility of this equivalent fluid, but it 
does not give the absolute reservoir permeability directly. 

8.1.1 Hypothesis 

1. The three phases are uniformly distributed in the reservoir 
2. The saturations are constant and independent of the pressure 
3. The capillary pressures are neglected; the pressure is the same in the different 
phases. 

In practice, the saturation gradients are not always negligible and the equivalent single- 
phase fluid concept of Perrine can fail to describe multiphase flow (Weller, 1966; 
Raghavan, 1989). This is particularly the case in the low-pressure area around the 
wellbore, where the saturations can change significantly compared to the outer reservoir 
zone. 

8.1.2 Definitions 

The flow rate of the equivalent single-phase fluid is defined, at sand-face conditions, as: 

(qB)t -- qoBo + q~ B w + 1,O00qgBg 

=qoBo + q,,,B,,. + 0,000q.,.g-q~,R,.)Bg 
(8.1) 

where q~,~ is the gas rate measured at surface (expressed in Mcf/D), and qoR, the 
dissolved gas at bottom hole conditions. 

Perrine uses an empirical definition for the total mobility (k/y), of the equivalent single- 
phase fluid. It is expressed as the sum of the effective phase mobility: 

(8.2) 

The effective total compressibility c, is expressed as (Martin, 1959): 

67 R ~. w 
(8.3) 
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The two last terms of Equation 8.3 correspond to free gas being liberated (or dissolved) 
in the oil and the water phases after a change of pressure. The component of the 
compressibility due to the change of gas-oil ratio at reservoir condition is frequently 
larger than the other terms of Equation 8.3. 

8.1.3 Practical analysis 

Using the equivalent single-phase liquid concept and the effective compressibility, all 
interpretation methods for oil wells can be applied directly to multiphase systems. The 
analysis does not provide the absolute permeability, but only the total mobility (k//a)t. 

D i m e n s i o n l e s s  t e r m s  

The multiphase dimensionless pressure (Equation 2.3 for oil) is: 

pD - 141.2(qv), @ (8.4) 

The dimensionless time (Equation 2.4 for oil): 

O.O00264(k//a), 
tz) = At (8.5) 

2 
C t Y w 

The dimensionless wellbore storage coefficient (Equation 2.5 for oil) is not changed" 

C D = ~  

0.8936C 
(2.5) 

The dimensionless time group tD/CD of Equation 2.6 is" 

tD _O.O00295(k//~)t h - A t  
Cz) C 

(8.6) 

Semi-log analysis 

The slope m of the semi-log straight line, expressed in Equation 1.15 for oil, is: 

m -  1 6 2 . 6 ~  
(qB), 

(8.7) 
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and, for drawdown periods, the skin equation 1.17 is expressed: 

(8.8) 

8.1.4 Discussion of the Perrine's method 

The results of Perrine's method become less reliable with increasing gas saturation 
(Weller, 1966). Furthermore, by ignoring the changes of saturation around the wellbore, 
the skin can be over-estimated and the effective permeability is frequently 
underestimated (A1-Khalifah, 1987; Raghavan, 1989). 

When the relative permeability k,.,,~ .... ,g,, of the different phases is known, the absolute 
permeability can be estimated from the effective mobility (Ul0,: 

(8.9) 

The individual phase mobility (U/a),,o,w,,~,,, is sometimes estimated by introducing the 
corresponding phase flow rate in the permeability Equations 8.4 and 8.7. This procedure 
appears questionable when the saturations are not uniform or the producing fluid ratio is 
not representative of the investigated zone. 

8.2 PSEUDO-PRESSURE METHOD 

Multiphase pseudo pressure functions have been proposed for tests in solution gas drive 
reservoirs and gas condensate reservoirs. As opposed to the real gas pseudo-pressure of 
A1-Hussainy et al. (1966 a) presented in Chapter 7, the multiphase pseudo-pressure uses 
relative permeability data. 

The sensitivity of the pseudo-pressure methods to the quality of the relative 
permeability curves deserves further examination. To our knowledge, the multiphase 
analysis methods presented below have not been used intensively in the industry. The 
methods need to be validated with documented examples. 

8.2.1 Solution gas drive reservoirs 

Definitions 

In 1973, Fetkovich defined the multiphase pseudo-pressure as: 
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m(p)=P~kro(S~ 
0 'ldolJo 

(8.~o) 

where the relative oil permeability kro is a function of the oil saturation So. 

The relationship between pressure and saturation must be known to calculate the 
integral re(p). During drawdown periods in solution gas drive reservoirs, the pressure 
gradients and the saturation profiles around the well depend upon the rate sequence. 
Thus, the multiphase pseudo-pressure function is not only dependent on pressure, but 
also on the test history. During shut-in periods, the saturation-pressure relationship used 
for the re(p) calculation is different. The pressure build-up reflects the initial conditions 
(Raghavan, 1976; Boe et al., 1981), namely the pressure distribution and saturation 
profile at time of shut-in (At=0). Contrarily to the gas pseudo-pressure of A1-Hussainy 
et al., the multiphase pseudo-pressure is not the same for drawdown and for build-up 
periods. 

Interestingly, re(p) can be generated with wellbore data only as the saturation at sand 
face So is used in Equation 8.10 (Raghavan, 1976; Boe et al., 1981). Raghavan (1989) 
presented a method in which the permeability ratio kg/ko is estimated from the gas-oil 
ratio Equation 8.11. For drawdown, the instantaneous producing gas-oil ratio R versus 
the pressure is used. For build-up, it is assumed that R is constant during the shut-in 
period, and it is equal to the producing gas-oil ratio at time of shut-in (At =0). 

kg/aoBo 
R= R s + (8.11) 

ko/a g Bg 

The relative permeability curves are used to convert kg/ko into the oil saturation at sand 
face So, and finally into kro v e r s u s  the wellbore pressure. 

Discussion 

The multiphase dimensionless pressure (Equation 2.3 for oil) is" 

kh 
PD = ~ A m ( p )  (8.12) 

141.2qo 

and the dimensionless time (Equation 2.4 for oil) is defined with the initial system 
properties �9 

0.000264k 
tD = 2 At (8.13) 

r162 C. rw 
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The validity of the multiphase pseudo-pressure function has been checked against 
numerically simulated pressure data (Raghavan, 1989). During the transient period, the 
method gives the absolute formation permeability and corrects for the skin effect due to 
free gas saturation near the wellbore. During pseudo steady state flow the results are 
less accurate. 

The main drawback of the pseudo-pressure is that, as the calculation of the pseudo 
pressure is not the same during flow and shut-in periods, drawdown and build-up are 
not exactly reversible. This implies that the concept of superposition cannot be used, 
and therefore the analysis of transient tests becomes questionable. 

8.2.2 Gas condensate reservoirs 

Definitions 

For gas condensate reservoirs, Jones et al. (1988, 1989) developed a pseudo pressure 
function with the same concept as the solution gas drive Equation 8.10, but it is 
expressed with the two phases: 

r e ( p )  - p~, "~' + p,~ dp 
roy Vo /tg ) 

(8.14) 

where P(,.x is the molar density' of the oil and gas phases. It is assumed that the pressure 
drops below dew-point pressure around the well, but the outer reservoir region is still 
above dew point, in single-phase gas. 

In order to express the saturation with the pressure, Jones and Raghavan (1988) suggest 
using a steady-state relationship between the relative permeability for oil (k,.o) and for 
gas (k,.g): 

kro Pg /doL 
= ~ ( 8 . 1 5 )  

krg po/a gV 

Here, L and V are the mole fractions of liquid and vapor, for each step of equilibrium of 
a C~176176176176 test. 

in the calculation of the integral Equation 8.14 with respect to the wellbore pressure, an 
equation of state is used to define molar density and viscosity, and relative permeability 
curves are needed. 
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Discussion 

In transient analysis of gas condensate reservoirs, the estimated skin factor appears 
smaller when the multiphase pseudo pressure function is used instead of the usual gas 
pseudo pressure of A1-Hussainy et al (1966). The multiphase analysis takes into account 
the saturation profile when the pressure is below dew point, and therefore it corrects for 
the "damage" caused by condensate drop-out near the well. On the other hand, the 
steady-state approximation used in Equation 8.15 can introduce errors in the total 
mobility. 

When the single phase gas pseudo pressure is used for analysis, the radial changes of 
mobility due to variable saturations are not accounted for, and test pressure responses 
usually describe a composite reservoir behavior. As for falloff tests in injection wells 
(see Section 4.3.5), Gringarten et al. (2000) defines several zones around a well flowing 
below dew point. Between the outer reservoir region, at initial liquid saturation, and the 
near wellbore region where the two phases are flowing and the apparent gas mobility is 
reduced, a transition zone with increasing condensate saturation develops. Possibly, a 
fourth region with a low liquid saturation and an increased gas mobility can be present 
in the immediate vicinity of the wellbore. 

8.3 PRESSURE SQUARED METHOD 

Because of the limitations of the pseudo-pressure approach discussed earlier, and when 
relative permeability curves are not available, the pressure squared method of A1- 
Khalifah et al. (1987) offers an interesting alternative for the analysis of multiphase 
flow tests. 

Definitions 

A1-Khalifah et al. showed that, by approximating the group (ko/#oBo) to a linear function 
of the pressure, the multi-phase flow equation can be simplified to a diffusivity equation 
expressed in terms of pressure squared. Therefore, multi-phase pressure data can be 
analyzed with p2 instead of p, using the usual interpretation solutions. 

Calling "a" the constant proportionality, 

ko 
/do B o 
~ = a p  (8.16) 

the multiphase dimensionless pressure (Equation 2.3 for oil) is defined with respect to 
the oil parameters a and %" 
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aa a(p2 ) 
PD - 282.4qo 

(8.~7) 

The effective total compressibility and the dimensionless time are the same as with 
Perrine's method (respectively Equation 8.3 and, using the effective mobility (U/a),, 
Equation 8.5). 

For semi-log analysis w i t h  1) 2 versus log At, the straight-line slope m is expressed as 

m = 325.2 q() 
ah 

(8.18) 

and, for drawdown periods, the skin equation is: 

S=1.151 p~h~-pi _log +3.23 
m c~c,r,7, 

(8.19) 

Several choices of reference pressure P,.~,i are proposed for evaluating the empirical slope 
"a" in Equation 8.16. In the case of high volatile oil, and in low volatile oil when the 
drawdown is low, the authors suggest estimating this constant at initial pressure p, for 
drawdown periods and, for build-ups, they recommend using the average reservoir 

pressure p .  When the oil volatility is low and the drawdown high, pr4=p,7(At=0.1hr) 

for drawdown, and p,.4=F,.,(At=10hr) for shut-in. 

The effective oil permeability is obtained from the pressure match of Equation 8.17 (or 
the semi-log straight line Equation 8.18) 

282.4qo p,.4 (YoBo )~,.c! 
k o = " PM (8.20) 

h 

the gas and water effective permeability are estimated from the following: 

�9 /a  () B o  o 
(8.21) 

k w WOR/a"Bw 
- k(, (8.22) 

/a o B,) 

where the viscosity/ag,,, and the formation volume factor Bg, w are evaluated at p, for 

drawdown, and p for build-up periods. The total mobility is then expressed with 

Equation 8.2. 
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Discussion 

As with Perrine's equivalent fluid, the producing fluid ratio must be representative of 
the investigated zone. Only the effective permeability can be estimated with the 
pressure-squared method, not the absolute permeability. The results depend directly on 
the choice of the constant of proportionality for the (ko//aoBo) group. A1-Khalifah et al. 
(1987) report that the oil effective permeability and the skin are more accurately 
estimated than with the Perrine's approach, especially for build-up tests. 
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CHAPTER 9 

S P E C I A L  T E S T S  

In the previous Chapters, well pressure responses to constant flow rates were considered 
for analysis. Other testing procedures are used in some cases, and the interpretation 
methods must be adapted accordingly. In the first part of this Chapter, different types of 
well tests with varying rates are described. 

In Sections 9.1 and 9.2, the pressure response to a step pressure change is considered, 
such as in tests with down hole shut-in devices (drill stem tests) and impulse tests, when 
the well is opened for only a few minutes. The DST procedure is presented and the 
analysis methods are reviewed with the hypothesis of the well flowing to surface or not. 
Specific techniques are required for the interpretation of DST's. The impulse test 
procedure is then described as an alternative. 

Section 9.3 covers tests of wells flowing at constant pressure. The transient flow rate 
analysis methods are presented for oil and gas reservoirs, and the practical limitations of 
constant pressure tests are discussed. 

In a second part, Section 9.4, vertical interference tests are briefly reviewed. It is shown 
that this single-well testing technique can be used for accurate determination of the 
vertical permeability. 

9.1 DST 

9.1.1 Test description 

With the drillstem testing technique, the well is controlled by a down hole shut-in valve. 
For safety reason, the drill string is not usually used for the test, and production tubing 
is preferred. 

Before the test, the well is partially filled with a liquid cushion designed to apply a 
hydrostatic pressure p0 above the valve smaller than the formation pressure p,. When the 
tester valve is opened, an instantaneous drop of pressure is transmitted to the sand face, 
and the formation fluids start to flow into the well. 
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Figure 9.1. Example of DST pressure response. The sequence is initial flow, initial shut-in, flow 
period and final shut-in. The rate is less than critical. 

In case of liquid flow, the level rises in the production string and the backpressure due 
to the liquid column increases. As long as the liquid level has not reached the surface 
(and provided the flow rate is less than critical, Ramey et al., 1975 a), the rate decreases. 
This is called a "slug test", which requires specific analysis techniques. 

The well is then shut-in for a pressure build-up. When no flow to surface is desired, the 
down hole valve is closed before the liquid level has reached the surface. As illustrated 
in Figure 9.1, the usual drill stem test procedure consists of a first short initial flow 
followed by the initial shut-in to reach p,. The well is then opened for the slug test and, 
due to the backpressure of the rising liquid column, the bottom hole pressure increases. 
Finally, the well is shut-in for a build-up period. 

If surface production is possible, the flow time is extended until the well produces at 
surface and the rate tends to stabilize. The DST procedure then becomes similar to that 
of a standard production test. 

In low-pressure wells, the flowing pressure can reach the initial reservoir pressure 
before the down hole valve is closed. In these cases, the well kills itself and the pressure 
build-up cannot be monitored after the liquid flow has stopped. Only a slug test analysis 
can be attempted. 

When the flowing condition is critical, the rate is not controlled by the downstream 
pressure but by the completion or perforations configuration. The rate is constant and 
the pressure increases linearly with time during the flow. The flowing bottom hole 
pressure is not suitable for interpretation and only the shut-in period can be used for 
analysis of such tests. 
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9.1.2 Slug test analysis 

Slug test type-curves 

In I975 (a), Ramey et al. presented a set of pressure type curves for the analysis of slug 
tests on log-log and semi-log scales (the log-log type curve is presented in Figure 9.2). 
The pressure, expressed by the dimensionless ratio PDR, is presented versus the 
dimensionless time tD/CD. The different curves describe the well condition with the 
usual correlating Co e 2s group. 

The dimensionless pressure ratio PDR is defined by the drop of pressure (pi -p,~/), 
normalized by the instantaneous drop of pressure (p~- p0) applied when opening the 
valve" 

- ( t )  

POR = (9.1) 
PJ -P0  

When the well is opened, the pressure ratio pDR is 1. As the liquid level rises in the well, 
(Pi- pw]) decreases and the ratio becomes less than one. 

With the slug test type curves of Figure 9.2, the same pressure ratio is used for the data 
and the dimensionless curves. Only the time match and the curve match have to be 
adjusted. 

The permeability thickness product is accessed from the time match (Equation 2.6)" 

kh= ~IC ItD/CDI (9 .2)  

0.000295 ~. ) A t  MATCH 

1 
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Figure 9.2. Slug test type curves. Log-log scales, PDR versus tJCD. 
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The wellbore storage coefficient must be known. With a changing liquid level, C is 
expressed, in oil field units: 

C =144 Vu (1.8) 
P(g/gc) 

where V,, is the wellbore volume per unit length in barrels per foot, p the density of the 
liquid in pounds per cubic foot and g/g~ the gravitational acceleration in lbf/lbm. The 
skin is estimated from Equation 2.11: 

2S 

S - 0 . 5 1 n  (C I) e )MATCH 
0.8936C/0c, hr,~ 

(9.3) 

Analysis of slug test pressure with derivative type-curves 

The pressure behavior during a slug test can be expressed with the usual drawdown 
pressure response Ap of Equation 1.1 by a simple relationship: the response to an 
instantaneous change of pressure is proportional to the time derivative of the pressure 
response to a constant flow rate (Ramey et al., 1975 a; Cinco-Ley, et al., 1986; de 
Franca Correa and Ramey, 1987; Ayoub et al. 1988). 

Using the dimensionless pressure Pl) of Equation 2.3, Peres et al. (1993) express the 
pressure drop (p,- p,,j) during a slug test as: 

0.000295kh At(p, -p,,,l (t))- dp,) 
C/a(p, - Po ) d In t l) 

(9.4) 

From Equation 9.4 it can be seen that, the product of the slug test pressure change (p,- 
p.f) and the elapsed time At can be matched directly against a derivative type-curve, 
without having to differentiate the data. Any of the derivative type-curves presented in 
previous Chapters can be used to analyze slug test responses, in homogeneous and 
heterogeneous reservoirs. 

The permeability thickness product is estimated either from the time match with 
Equation 9.2, or from the pressure match of Equation 9.4: 

kh- /aC(Pi -P~  dpD /dlntD I 
0.000295 kt(p,-p,, j(t))) 

MATCH 

(9.5) 

As with the slug test type-curves of Ramey et al., the wellbore storage and the skin 
coefficients are calculated from Equations 1.8 and 9.3. 



Drillstem test 3 3 5 

Limitations o f  slug test analysis 

Several other analysis methods have been presented for slug test interpretation. Peres et 
al. (1993) proposed integrating the slug test pressure response and using the 
conventional pressure type curves as a complement to the derivative curves. 
Conversely, Ostrowki and Kloska (1989) suggested using the time derivative of Ramey 
et al. slug test type curves to match the derivative of slug pressure. 

Whatever method is used, the analysis of slug tests is not as accurate as the analysis of a 
standard drawdown response with a constant surface rate. The following two factors are 
identified as the main limitations for slug tests interpretation: 

1. Definition of the initial pressure: All slug test analysis methods use the 
dimensionless pressure ratio of Equation 9.1. With this group, the initial reservoir 
pressure pj must be known accurately and a small error in p~ can introduce a large 
distortion on the late time data curve. This is especially true in low-pressure wells, when 
the flowing pressure becomes close to the initial pressure and the difference (p,-  p,,j) 
relatively small. 
2. WeIlbore storage effect: Due to changing liquid level, the wellbore storage 
coefficient C is large and, as the duration of the flowing period is in general short, the 
response is often influenced by the wellbore storage effect for the entire flowing time. 
The radial flow regime is not seen, and the match is difficult to conclude uniquely. 

9.1.3 Build-up analysis 

At the end of the drill stem test procedure, the well is shut-in down-hole for a pressure 
build-up. Two possibilities have to be considered, depending on whether the well is shut 
in before the liquid level has reached the surface or not: 

1. If the surface flow rate is well established before shut-in, the build-up is analyzed in 
the same way as the shut-in period of a producing well (Section 2.2.2). 
2. When, as illustrated in Figure 9.1, the well is shut-in while the liquid level is still 
rising, the decreasing sand face rate has to be known as a function of time in order to 
analyze the subsequent build-up. Due to the high cost of down-hole flow metering, and 
for safety reasons, rate measurements are in general not considered for non-surface 
flowing DST's and flow rates must be estimated. 

Rate estimation 

In the following section, an example of flow rate estimation for a DST with no flow at 
surface is presented. As shown in Figure 9.3 with the simulated DST example of Figure 
9.1, the slug test response is described by several pressure steps. Knowing the liquid 
gravity and neglecting inertial and frictional effects in the production string (which is 
reasonable since fluid velocity is low), the pressure difference between each step is 
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converted into the corresponding height of fluid. From the capacity of the production 
pipe, the height is converted into volume. With this hydrostatic calculation, the final 
build-up period can be analyzed with the multiple rate methods described in Section 
2.2.2. 

In this example, the one-hour flow period is divided into 6 time intervals. During each 

interval j, the constant pressure p j  is defined as the average pressure between the start 

and the end of the time interval p j - ( P  i-1 + P j ) /2 .  Seven pressure points are used" P0 

is the pressure in the string immediately before opening, and P6 is the last flowing 
pressure p (At =0). The rise of liquid level is estimated from pressure difference 

between two steps ( p / - P / - i  ) .  Assuming a specific gravity of 0.75, the oil gradient is 

estimated at 0.325 R/psi. The capacity of the drill string is 0.007 bbl/fi. 
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Figure 9.3. Example of rate estimation during a DST flow period. Linear scales. 

Table 9.1. Rate calculation example 
point time, pressure, average fluid rise, rate of fluid flow rate, 

# hr psi pressure, psi ft rise, ft/hr BOPD 
- - Ahj qj = 0.007x 

- Ah P/  - p / - I  k h ' / =  
j t j p j P/ f = 0.325 t j - t~_ 1 24xkh' 

1 1000 

1 2095 

1 3414 

1 5110 

1 7120 

1 8983 

2 1000 

4724.51 

4753.13 4738.82 44.05 (*) 805.06 135.25 

4783.17 4768.15 90.25 684.00 114.91 

4816.47 4799.82 97.45 576.04 96.77 

4848.19 4832.33 100.04 497.42 83.57 

4873.02 4860.61 87.00 466.09 78.30 

4900.73 4886.88 80.83 399.73 67.15 

(*) the first rate ql is estimated with P0 - P 0  and the time rate of fluid rise Ah' is 

doubled. 
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As shown in Table 9.1, the flow rate decreases from 135.25 to 67.15 BOPD, the average 
rate during the one-hour flow period being 91.05 BOPD. 

Inertial and frictional effects can be ignored for the usual DST conditions. In high rate 
producing wells, they could become significant (Saldana-C and Ramey, 1986). 

Practical analysis of  DST's 

As for any build-up test, the final shut in period is analyzed using log-log and semi-log 
methods. Due to the down hole shut-in device, the effect of the wellbore storage is short 
lived during a DST build-up period. Frequently, the response reaches the radial flow 
regime before the first recorded point and, on log-log scale, the pressure and derivative 
responses tend to be flat. As a result, both the time match and the curve match CD e 2S 

can be difficult to fix on the PD versus tz)/C~) dimensionless type curve. The match of the 
build-up data is not uniquely defined, and the analysis does not provide the wellbore 
storage coefficient C but only the kh product and the skin coefficient S. 

Computer analysis allows a simulation of the complete test to be made as a checking 
procedure but, with most interpretation programs, the wellbore storage coefficient C 
used in the simulation is constant during the complete test sequence. With DST's, when 
the down-hole valve is closed for build-up, C is two or three orders of magnitude 
smaller than the wellbore storage of a flowing well. As a result, the DST simulation, 
generated from the build-up analysis results, does not match the flow period accurately. 

de Franca Correa et al. (1987) view the flow / shut-in sequence of non-surface flowing 
DST's as a single slug test period, with a sharp change of wellbore storage at time of 
shut-in. After the initial instantaneous pressure drop, the wellbore storage first 
corresponds to the changing liquid level of Equation 1.8. When the down-hole valve is 
closed, the storage becomes the compressibility term of Equation 1.7. With this 
description of the DST sequence, the complete test can be simulated accurately. 

9.2 IMPULSE TEST 

9.2.1 Test description 

In impulse tests, the well is produced from or injected into the reservoir for only a few 
minutes and then closed. The impulse technique is a variation of the DST analysis 
method: 
�9 For a DST, a step pressure drop is applied to the formation and, during the resulting 
slug test period, the well is considered to be flowing. A build-up test is made after the 
flow (second flow and shut-in of Figure 9.1). 
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�9 With impulse tests, the pressure drop is generated by a short production, and the 
following pressure increase is analyzed as a shut-in period (first flow and shut-in of 
Figure 9.1, or Figure 9.4). 

9.2.2 Impulse analysis 

With the impulse analysis method of Ayoub et al. (1988), a single analysis plot of the 
complete well pressure response is used to obtain all well and reservoir parameters. 
During the short flow. the impulse response is expressed as ( p , -  p,,! )t v and, during 

the shut-in, as (p, - p,., )(tv + At). 

As with the Perez et al. method, the derivative type curves are used to analyze the 
pressure response. The impulse match of the homogeneous reservoir example of Figure 
9.4 (tp=5 min., shut-in = 2 hr.) is shown in Figure 9.5. During the flowing time, the 
impulse response is matched on a pressure type curve and, during the shut-in period, the 
response deviates from the usual pressure response to reach the derivative curve with 

"~S the same CD e- 

The pressure match is adjusted to the 0.5 line of the derivative type-curve. Since the 
flow rate is not measured during the short flow period and only the amount of fluid Q, 
produced or injected is known, the pressure match is expressed by replacing 

C(Pi - Po) in Equation 9.4 by Q, (Ayoub et al., 1988): 

O'O00295kh (tp + At~pi - p ) =  dP~ (9.6) 
Q,/a d In t D 
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The time match is obtained by matching the early time data with the pressure type- 
curve, giving the wellbore storage coefficient C with Equation 2.10. The skin is then 
estimated with Equation 2.11. 

9.2.3 Discussion of impulse analysis 

Frequently, the rate is not constant during the short flow period and the early time 
match is not accurate. In these cases, the response is properly defined only during the 
radial flow regime at shut-in time, with a stabilization of the pressure response on the 
0.5 derivative line. Both the wellbore storage coefficient C and the type curve parameter 
CD e 2s are difficult to define, and the calculation of skin is approximate. 

For accurate analysis of impulse tests, the initial pressure must be known. When p, is 
not known, Cinco et al. (1986) propose starting by analyzing the derivative of the 
impulse, on a second derivative type-curve. 

The impulse method has also been used (rather than the Hornet method) to analyze 
build-up tests after relatively long production periods (Soliman, 1982; Cinco et al., 
1986), when At >> re. The pressure change (Pi - Pw, ) is analyzed versus (tp + At), thus 

avoiding the compression effect of the Homer time on the analysis plot. 

The conventional pressure derivative (Chapter 2) does not compress the time scale 
either. When the derivative response can be accurately defined, it offers the best 
alternative for the analysis of build-up tests, whatever the duration of the flowing period 
tp, and the shut-in time At. The derivative analysis is not affected by a possible error in 
initial pressure, and the pressure curve can be used to estimate the skin accurately. This 
is illustrated in Figure 9.6, where the conventional build-up analysis of the shut-in 
period after 5 minutes flow of the example Figure 9.4 is presented. 
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Figure 9.6. Pressure and derivative analysis of the impulse shut-in period. 
Log-log scales, Ap and kp' versus At. 

9.2.4 Well responses after an instantaneous source: summary 

Slug and impulse test theories are based on the response to an instantaneous source. 
During non-surface flowing DST's, slug test responses are affected by a large wellbore 
storage effect and the analysis is frequently not unique. With the impulse technique, the 
effect of wellbore storage is shorter, and the start of the characteristic radial flow regime 
is seen earlier. The main limitation of the impulse technique during early time is the 
change of behavior, between the short flow and the shut-in period. The best analysis 
data is obtained during build-up tests with down-hole shut-in. 

The response to an instantaneous source can be used not only for specifically designed 
tests, but also for a quick and reliable analysis of the well pressure behavior after 
underbalanced perforation, after backsurging operations, or for a repeated formation test 
(Ayoub et al., 1988; Cinco-Ley et al., 1986; Waller and Krase, 1986). 

9.3 CONSTANT PRESSURE TEST, AND RATE DECLINE ANALYSIS 

Wells are sometimes producing at constant wellbore pressure. This condition is 
obtained for example when the well produces into a separator or a pipeline at constant 
pressure. In such cases, the rate is not constant but declines with time. 

As shown by van Everdingen and Hurst (1949), there is a simple relationship between 
the constant rate solution and the constant pressure solution. Any of the constant rate p> 

/ function s presented in previous chapters can be changed into a constant pressure qD 
function. Transient rates can be analyzed using techniques analogous to that of transient 
pressures for constant rate flow. 
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9.3.1 Radial homogeneous oil reservoir response 

Several analysis methods of rate versus time have been proposed, using log-log type 
curves or using semi-log straight line analysis. In 1952, Jacob and Lohman presented 
the type curve shown in Figure 9.7, as the infinite reservoir response. 

For log-log analysis, the dimensionless flow rate is expressed as: 

141.2Bp )q(t) 
-- kh(p;-p   (9.7) 

and the effective dimensionless time tDe, based on the equivalent wellbore radius of 
Equation 1.14, is used (Uraiet and Raghavan, 1980; Ehlig-Economides and Ramey Jr., 
1981 a). The kh product and the skin factor S are estimated from the rate and time 
matches. 

Except at very early time, the rate does not change significantly with time, and the 
shape of the q versus At log-log curve is not very characteristic. Frequently, the 
uniqueness of the match is difficult to establish. 

For semi-log analysis, the reciprocal of the rate 1/q is plotted vs. log At. 

1 = 162'6 B/'l II~176 k - - - ~ -  ] 
q kh(pi - Vwf) r 3.23 + 0.87S (9.8) 

The relationship expressed in Equation 9.8 is similar, except for the slope mq o n  the 
right hand side, to the usual semi-log pressure response of Equation 1.15 (homogeneous 
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reservoir and constant rate production). However, the time to reach the semi-log straight 
line is longer with constant pressure tests than with the constant rate pressure responses 
(Uraiet and Raghavan, 1980; Ehlig-Economides and Ramey Jr., 1981 a). 

The permeability is estimated from the slope mq and the skin is estimated from the 
intercept of the 1/q straight line at 1 hour: 

kh - 162 6 B!l �9 ( 9 . 9 )  

m,1 (P, - V,,l) 

S 1.15 lIl~"q(lhr)- l o g / ~ -  ' 'n,s ~ + 3.230~,c,r~7. ] (9.10) 

Fetkovich (1980) presented a set of flow rate type curves for closed circular reservoir 
(Figure 9.7). Dimensionless flow rate and time are the same as on the Jacob and 
Lohman type curve (1952), the curves are labeled in terms of dimensionless reservoir 
radius r<,/r,~,. Before boundary effects, the rate response is similar to the Jacob and 
Lohman type curve. During pseudo steady, state flow, the decline of flow rate is 
exponential when a constant pressure is imposed on the well. 

The practical aspects of long-term constant pressure tests make the identification of 
boundary effects by decline curves analysis difficult�9 A late time deviation from the 
infinite reservoir curve can be caused by a small change in the flowing pressure, or a 
variation in the wellbore skin damage during the production. Fetkovich decline curves 
have been designed not only for the analysis of constant pressure tests, but also for 
production forecasting. 

9.3.2 Other  well and reservoir configurations 

Double porosity reservoirs 

Ozkan et al. (1987) discuss deliverability responses for double porosity reservoirs with 
transient interporosity flow. The rate decline curves follow the same pattern as double 
porosity constant rate pressure responses. On a semi-log plot of 1/q vs. At, the double 
porosity response exhibits two parallel straight lines of slope m~ s. During transition, the 
semi-log straight line has a slope of rnq/2. 

Finite conductivity fracture 

Decline type curves for a well intercepting a finite conductivity fracture were first 
generated with a numerical simulator by Agarwal et al. (1979 a) and, in 1981, Guppy et 
al. used a semi-analytical solution. On the log-log type curves, the reciprocal of the 
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dimensionless rate 1/qD is presented as a function of the dimensionless tDfOf Equation 
3.8, and different fracture conductivities kJDWJD are considered. The dimensionless 
reciprocal rate 1/qD has the same form as the usual dimensionless pressure of Equation 
2.3, but Ap is a constant (p~- p@, and q varies with time: 

1 k h ( p , - P u ! f )  1 
~ =  (9.11) 
q D 141.2B,a q(t) 

Interestingly, the 1/qD deliverability curves look similar in shape to the [D constant rate 
pressure type curve of Figure 3.9, and therefore are easy to understand. The values of 
the 1/qD curves are greater than the PD curves, but on the log-log scale, they show the 
same characteristic 1/4 and 1/2 straight line slopes during the bi-linear and linear flow 
regimes. 

Massive hydraulic fracturing is a common practice in low permeability gas reservoirs. 
Such wells normally produce at constant well pressure. The use of the 1/qD finite 
conductivity fracture log-log type curves on gas well responses is discussed in the next 
Section "Gas reservoirs". 

Multiple well production 

Other well and reservoir configurations can be envisaged for decline rate analysis. Any 
well test interpretation model, designed for pressure analysis, can be used to generate 
decline curves. In addition, Bourgeois and Couillens (1994) proposed a general 
superposition method to predict pressure or flow rate responses in the case of multiple 
well production. The van Everdingen and Hurst (1949) relationship, between the 
constant rate PD function and the constant pressure qD function of a single well, is 
generalized to the case of "n" interfering wells producing with mixed constant pressure 
or flow rate constraints. A computer program is required to generate the responses, but 
the simulations predict the rate behavior accurately for complex producing system and 
any well test model. 

Gas reservoirs 

In 1989, Berumen et al. investigated gas rate decline analysis. When radial flow is 
established, and assuming the skin is not rate dependent, 1/%c versus log At follows a 
semi-log straight line. The slope mq is expressed with the gas pseudo pressure re(p) (as 
in Equation 7.19 for constant gas rate pressure response, Agarwal et al., 1979 a): 

mq - 1.63x103 T (9.12) 

The skin is calculated with Equation 9.10, where /J and c~ are estimated at initial 
pressure p~. 
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By incorporating a rate dependent skin (S '= S +Dq) in the analytical solution used to 
generate decline rate curves, Bourgeois and Wilson (1996 c) showed that the shape of 
the rate transient is changed significantly compared to the constant skin response. 

This is illustrated on the simulated example of Figure 9.8, with a well flowing at 
constant pressure in a homogeneous infinite reservoir. First, a constant skin is assumed 
(D=0, S ' =  S =15) and the rate at 3000 hours is estimated at 17,180Mscf/D. Two 
additional simulations are generated with the same global skin (S '=15) at 3000 hours. In 
one case. S =7.5 and D=0.000446 and, in the other case, S =0 and D=0.000893. On the 
two simulations with non-Darcy flow effect, the flow rate starts to be smaller than in the 
case of constant skin, at 3000 hours the curves cross each other, and it becomes larger. 
If the reservoir was closed, the rate curves would intersect again during the pseudo 
steady state regime, and the constant skin rate would end-up the larger (Bourgeois and 
Wilson, 1996 c). 
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Figure 9.9. Semi-log plot of transient gas rate of Figure 9.8 with rate dependent skin factors. 
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In Figure 9.9, the data of Figure 9.8 is presented on a semi-log scales in terms of the 
reciprocal of the rate 1/q.,.c. The three simulations follow an apparent semi-log straight 
line but, when Dr0, the slope is smaller than mq defined in Equation 9.12 for D=0 (by 
25% and 40% respectively in this example). When the skin is rate dependent, the 
permeability is over estimated by semi-log straight-line analysis. 

In the case of finite conductivity fractured gas wells, when the well response is not 
affected by non-Darcy flow effects, the deliverability type curves of Agarwal et al. 
(1979 a) or Guppy et al. (1981) can be used to estimate the well and reservoir 
parameters (namely kh, xf and kiw ft. 

Using the gas pseudo pressure function re(p), the dimensionless reciprocal rate 1/q1:) is 
expressed as (Equation 7.7 for the dimensionless pressure) : 

1 1 
= �9 ( 9 . 1 3 )  

qz) 1422T q~.c(t) 

In the dimensionless time tDf,/~ and c, are estimated at initial pressure Pi. 

During the bilinear flow regime, a Cartesian plot of llq, c versus  (At) 1/4 displays a 
straight line of slope mBLV (similar to Equation 1.27 for the constant oil rate pressure 
response, Guppy et al., 1981): 

493.8T 

mBLv = [rn(p, ) -  m(p~f )]h~Jk.f w f ~(r t )ik 
(9.14) 

In practice, when the fracture is long and k is small, radial flow is not reached before 
several years, and the transient rate data does not exhibit the three characteristic flow 
regimes. A complete analysis with the deliverability curve frequently requires a 
previous knowledge of the kh product from a pre-fracturing build-up test (Agarwal et 
al., 1979 a). Alternatively, when the three parameters kh, xf and kjwf are known, the 
curves can be used for performance prediction of fractured gas wells. 

Guppy et al. (1981) report that when the well response is affected by non-Darcy flow 
effects, the 1/4 slope straight line of the of 1/qsc log-log plot is distorted, resulting in an 
apparent varying fracture conductivity. 

Build-up analysis after a constant pressure flow 

When a build-up test is conducted after a period of constant pressure flow, the time 
superposition should be used in order to take into account the declining rate prior to 
shut-in. As shown Section 9.1.3 for DST analysis, the superposition function is 
generated by approximating the rate curve with several constant flow rate periods. 
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When the equivalent Homer time is used for simplification, the production time is 
defined as the cumulative production divided by the last flow rate. Ehlig-Economides 
and Ramey (1981 b) report that the analysis results are sufficiently accurate in the 
majority of cases. 

9.3.3 Discussion 

Even although tests at constant pressure yield in theory the same information as 
constant rate pressure data, they appear to have limited applications due to practical 
problems: 
�9 Maintaining a constant flowing pressure can be difficult, especially at early time, 
when the analysis of near wellbore effects is desired. In addition, a constant wellhead 
pressure does not imply a constant sand face pressure. The pressure drop from flowing 
friction in the wellbore varies with the transient rate, and a correction is needed for 
interpretation of constant wellhead pressure tests (Ehlig-Economides and Ramey, 1981 
a). 
�9 The wellbore skin must be constant  for rate decline analysis. This point must be 
checked before analysis of long-term production tests. For gas wells, the occurrence of 
non-Darcy flow distorts the transient rate response, thus significantly reducing the 
accuracy of constant pressure test analysis. 
�9 The technology for measuring flow rates does not provide data as accurate as the 
pressure gauges now available. 

Caution must be exercised when planning or interpreting transient rate tests. 

9.4 VERTICAL INTERFERENCE TEST 

The knowledge of vertical permeability is of prime importance for field development 
strategy. Some usual examples of the application of this knowledge are: 

�9 Completion decisions, such as the evaluation of possible productivity increase by 
horizontal drilling, 
�9 Production strategy, in the event of gas or water coning, 
�9 Enhanced recovery projects in the case of layered systems, when a tight zone is 
separating two permeable intervals. 

Feasibility studies related to underground storage in aquifers also require an accurate 
evaluation of the vertical flow properties. 

Vertical interference testing has been proposed by many authors for homogenous or 
stratified formations, with different approximations of the vertical flow properties 
(Bremer et al., 1983; Kamal, 1984; Ehlig-Economides and Ayoub, 1984). The vertical 
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interference test model described in the following text is an extension of the Kuchuk et 
al. multiple layer horizontal well analytical solution (1991 b). Both homogenous and 
layered systems are envisaged, with a spherical flow geometry. 

9.4.1 Test description 

For a single-well vertical interference test, the well is perforated at two different depths, 
but only one interval is active (flowing or injecting). The pressure is monitored on the 
two perforated segments, isolated in the wellbore (see first diagram of Figure 9.10). 
Several types of well completion can be used during such tests. 

With the double-stage testing approach, which has been developed for gas storage 
studies in low permeability formations, two tests are performed: one test on a discrete 
short interval, and the other on a longer interval that includes the short interval. A 
coupled interpretation of both tests allows independent calculation of horizontal and 
vertical permeability. 

9.4.2 Vertical interference test responses 

On the examples of vertical interference responses of Figure 9.11, a homogenous layer 
is assumed. The active segment is centered in the interval, the corresponding dotted 
pressure and derivative curves are the same as the partial penetration example of Figure 
3.17 for z,,,/h=0.5. Several vertical distances are considered for the observation segment. 
If the vertical distance is small (z,,,_ob.,./h=0.6), the interference response describes the 
spherical flow regime and the final radial flow over the entire reservoir thickness. When 
the vertical distance is increased (zw_obs/h=0.8), the response is delayed and only the final 
radial flow regime can be observed. As already discussed in the multiple well 
interference test, Chapter 6, the three interference derivative curves of Figure 9.11 show 
that, within the drainage volume, the rate of pressure change is the same at any point. 

hw-obs ~ .............................. 

h w ............... Zw Zw_obs 

Homogeneous reservoir 

kill, kvl kH2, kv2 
NNiiiiN/iiliiiiiiili!NN!!i!iiii[;l~NN/!i!ii~iii/iIN!NiiiiNiiii~iNiNNN!i 

km3' kv3 t _ ~  k m 

Three layers reservoir 

Figure 9.10. Well and reservoir configurations. 



348  Special tests 

10 2 c'- 

E3 
c~ 

= _o 101 

I , -  Q_..~ 

i f )  . - -  

_ ~ ;  1 - c ~  
0 . _  

i f )  
f - -  

.__ 10-1 
c~ 10 

0 6 - - ' ~  Zw-~ = " / /~ 0,. 7~" -  ,,~0.8 " 
10 2 10 3 10 4 10 5 10 6 10 7 

Dimensionless time, tD/C D 

Figure 9.11. Vertical interference responses from a well in partial penetration with wellbore 
storage. Log- log  scale, pip versus t/jC/o. C/~ = 6, S ,=0 ,  k~,'kH = 0.005. 

Several  distances.  P roduc ing  segment:  h , . h  = 1/10. z,./h = 0.5; observation segment: h ...... t,.,/h = 
1/100,---,-ot,., ,~/7 = 0.6. 0.7.0.8.  

10 2 
t -  

a 

= c~ 101 m-o_ 
o') 
(1) (D 

1 3 _ ' - , =  

e )  > 
o0 . - -  

r-C~ 
0 . _  
i f )  
r  

.__ 10-1 Cb 

_.-.'_'"'" . .  

kv/kH 
o , , 

10 102 10 3 10 4 10 5 10 6 10 7 

Dimensionless time, tD/C D 

Figure  9.12. Ver t ical  in terference responses  f iom a \veil in partial penetration with wellbore 
storage.  L o g - l o g  scale, p/~ \ e r s u s  t:)/C/~. C / ) =  6. S ,=0 .  P roduc ing  segment/~, , , /h  = 1/10, z,,/h = 0.5; 

observation s e g m e n t / 7  ...... ~.,. h = 1/100. - ..... ~, h = 0.6. 

Several  ver t ical  p e r m e a b i l i t y  k~-kH = 0.5. 0.05. 0.005. 

With the same well configuration, the influence of the vertical permeability kv is 
demonstrated in Figure 9.12 (the dotted pressure and derivative curves correspond to the 
same example of Figure 3.17, for k~/kH = 0.005). When k~, is increased, the time of the 
start of the vertical interference effect is reduced, and the magnitude of the pressure 
response is larger. 

Figure 9.13 presents three examples of vertical interference response across a low 
permeability interval. The reservoir configuration, depicted on the second diagram of 
Figure 9.10, is the same as for the horizontal well example of Figure 3.42 where a low 
permeability interval divides the pay zone in two main layers. The dotted pressure and 
derivative curves describes the response of a partial penetration well perforated in the 
bottom layer. The three interference responses, shown by the solid lines, are monitored 
in the top layer, above the low permeability interbed. 
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When the permeability reduction in the central interval is large (kin =10 -2 k#1,3), the 
magnitude of the vertical interference response is significantly smaller than when there 
is no flow restriction (kin = kill,g). The tight zone delays the start of the interference 
response and, on the derivative curve kH2 =10 2 kin,3, no spherical flow regime is 
evident. Only a long transitional behavior is seen before the final horizontal radial flow 
regime. 
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CHAPTER 10 

P R A C T I C A L  A S P E C T S  O F  

W E L L  T E S T  I N T E R P R E T A T I O N  

In this final Chapter, the practical application of the theory presented earlier is 
discussed. First, different types of problems with the test data are envisaged. Preparation 
and validation of the raw data used for analysis are thoroughly discussed. Then, usual 
distortions in the pressure response are described, and guidelines are established for 
proper analysis of such test responses. 

The second part deals with the interpretation methodology. After a synthesis of the 
diagnosis methodology, the different model responses are summarized and two 
examples of interpretation consistency checks are presented. 

Finally, the question "how representative are the interpretation results" is addressed. 
The implication of using analytical models for interpretation is reviewed, the meaning 
and the accuracy of the interpretation results are evaluated and, for illustration, a 
discussion of the radius of investigation is presented. 

10.1 FACTORS COMPLICATING WELL TEST ANALYSIS 

Results of interpretation are directly dependent upon the quality of the pressure and rate 
data used for analysis. Data preparation is crucial in well test interpretation, and 
frequently it takes more time than the analysis of well pressure responses. In the 
following section, the usual problems encountered when preparing the data for analysis 
are discussed in detail, and data checking and validation are presented. 

In the second part of this section, it is shown that the well or reservoir conditions can 
affect, in some cases, the pressure recorded down hole. The identification of wellbore 
problems is discussed for test responses that do not follow the usual wellbore storage 
behavior described in Chapters 1 to 3, and the recommended analysis approach is 
presented. In developed fields, the effect on well test responses of interference from 
neighboring producing wells is addressed. 



3 5 2 Practical aspects of interpretation 

10.1.1 Data preparation and validation 

The final build-up of the test sequence presented in Figure 10.1 is used in this Section to 
illustrate several possible errors during the data processing. In this example, the well has 
been produced for 100 hours, shut-in for 50 hours and re-opened at the same flow rate 
for a 20 hour flow test before the final build-up. During the test sequence, the reservoir 
behavior corresponds to the infinite acting radial flow regime. 

Rate history definition 

Two different difficulties can be encountered when the rate history is prepared for a 
well test analysis: 
1. The well production history is not complete, or accurate. The rate must be 
estimated during some flow periods of the test sequence. 
2. Too many rate changes occurred, sometimes for a very long period before the test 
period of interest. The history has to be simplified. 

First, the influence of an inaccurate production history is illustrated with the simple test 
example of Figure 10.1. Then guidelines are presented for the practical definition of the 
well production history used for interpretation. 

Rate simplijicalion example 

Two approaches are currently used in order to simplify the rate history of a test: 
1. An equivalent production time is defined as the ratio of the cumulative production 
divided by the last rate (called equivalent Hornet time). On the example in Figure 10.1, 
the final build-up period is analyzed with a previous rate history simplified into a single 
drawdown of t:, = 120 hr. 
2. When there has been a shut-in period in the rate history and if the bottom hole 
pressure has almost reached the initial pressure p,, it is wrongly assumed that the rate 
history prior to this shut-in has no effect on the final build-up response and it is ignored. 
On the test example, t v =20 hr with this method. 
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Figure 10.1. Example of test sequence with two drawdown periods. Linear scale. 
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Figure 10.2. Log-log plot of the final build-up. The derivative is generated with three different 
rate histories. 

On the log-log plot of Figure 10.2, the correct multiple rate derivative response is 
compared to the curves generated with the two simplified rate sequences. When 
tp =20 hr is used, the correction introduced by the superposition time is too large (see 
discussion of Figure 2.7), and the derivative deviates above the theoretical stabilization 
corresponding to radial flow. Conversely, with tp = 120 hr, the intermediate shut-in from 
100 hr to 150 hr is ignored, the time superposition function does not completely correct 
the influence of the previous rate sequence, and the derivative curve drops below the 
stabilization at intermediate time. As this later approximation honors the cumulative 
production, the derivative response is correct on late time data. 

Definition o f  the rate history 

In practice, it is possible to simplify the rate history when the production changes 
occurred a long time before the analyzed period, but not if the rate variations happened 
immediately before the test period. The closer to the time of the start of the test period, 
the more accurate must be the flow rate profile. Bourdarot (1998) proposes the 
following rule of thumb: if the duration of the analyzed period is At, any rate changes 
that occurred at more than 2 At before the start of the period can be simplified. The 
equivalent Homer time is then used to reduce the number of rate changes, keeping only 
the most significant rate variations and long shut-in periods. 

When the total production time prior to shut-in is long compared to the duration of a 
build-up test, the interpretation of the model extrapolated pressure is difficult. In 
Chapter 5, it is shown with the discussion of Figure 5.25, that the slope of the Homer 
semi-log straight line is not affected by initial flow periods of a long production history, 
but the extrapolated pressure p* is. 

Introducing years of accurate production data in the well flow history does not always 
improve the quality of the interpretation results. With the time superposition method 
presented in Section 2.2.2, when the first flow periods are extrapolated into the time of 
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the final shut-in, the total production time for the initial flow rates becomes very large 
compared to the final shut-in time, and the corresponding radius of investigation also 
becomes large. Many changes of reservoir characteristics and boundaries may affect the 
extrapolated flow periods, when they are not visible on the short build-up test. In such a 
case, extrapolation at very' long times of the reservoir model defined from the short 
build-up analysis may not be valid. 

This point is further discussed in Section 10.2.3 with two examples. It is shown that, 
when a long production history is used in a multiple rate sequence, the reservoir and 
boundary model must be applicable to the longest extrapolated period, and include all 
changes of reservoir properties and limits within the large investigated area of the first 
extrapolated period. If not, the model extrapolated pressure (and the initial pressure p,) 
estimated from the build-up analysis is not correct. The radius of investigation for build- 
up periods is further discussed in Section 10.3.3, at end of this chapter. 

Frequently, some rate data are missing, such as during a clean-up, or any flow period 
where no separator measurements are made. When the missing rates have to be 
introduced in the production history, they must be estimated. Usually, well head 
pressure and choke size are used but, if pressure measurements are available during 
these flow periods, it is possible to validate the estimated flow rate. As discussed in 
Section 3.1.3, the comparison of different test periods on a normalized log-log plot 
(Ap/q and Ap'/q versus At) is very efficient for checking the flow rates. 

The test simulation on a linear scale is another good quality control plot. When the 
interpretation model, defined on a single period, does not match the complete test 
sequence, three hypotheses can be considered: 
1. Either the model is not applicable for long periods (with for example a difference in 
the initial pressure, see Chapter 5 or the next Section 10.2.3), 
2. Or the well condition has changed during the production (well cleaning / being 
damaged, or rate dependent skin as discussed in Chapter 7), 
3. Or the rate history is not correct. 

Error of start of the period 

Once rate history is defined, the pressure data measured down hole is spit into 
individual test periods, and the different quantities Ap, Ap' and At are estimated for log- 
log analysis. If a well test interpretation software is used, all test periods are usually 
extracted automatically from the rate changes defined in the rate history. During this 
process, several errors can be introduced on the period response curves: 

1. When the pressure and the rate data are not perfectly synchronized, the time of start 
of the test period can be earlier or later than the true change of rate. 
2. In some cases, the pressure is noisy or oscillating at the time of shut-in. The 
program uses the pressure point at the time of the rate change for the start of the new 
period p(At=0). This point can be higher or lower the true stabilized pressure at the end 
of the previous period, and the resulting calculated pressure change is wrong. 
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Figure 10.3 is a magnified plot of Figure 10.1 at the time of shut-in of the final build-up. 
Five possible errors are considered. Cases a and b describe a 0.1 hr time error before 
and after the shut-in time, cases e and d a 10 psi pressure error below and above the last 
flowing pressure and, with case e corresponding to a time and pressure error, a build-up 
point is used for the start of the period. 

In the case of a time error, the calculated elapsed time At is either too large (case a), or 
too small (case b). In the first case, the pressure curve is displaced towards the right 
and, at early time, the pressure curve increases with a slope higher than unity (Figure 
10.4). When the shut-in time used to extract the test period is too late, the pressure curve 
is displaced towards the left, and at early time, it is distorted as shown in Figure 10.5. If 
the quality of the pressure data is poor, this error can suggest the presence of a linear 
flow regime at early time. Interestingly, the derivative curves are not distorted as 
severely as the pressure responses, thus allowing the diagnosis of an error at the start of 
the period. 
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With pressure errors, a similar distortion is observed on the pressure curves. When Ap is 
over estimated (case e, Figure 10.6), the pressure curve is displaced upwards and, at 
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early time, the distortion is very similar to the case b of Figure 10.5. With case d, Ap is 
under estimated (Figure 10.7) and the response looks the same as case a of Figure 10.4. 

When a build-up point is used for the start of the period, the error can be difficult to 
identify on a log-log scale. With case e, a point during the pure wellbore storage regime 
has been selected for the calculation of Ap, Ap' and At. The resulting pressure and 
derivative curves follow a unit slope straight line at early time, the response appears 
correct. A good match can be obtained on such a test period but, as Ap is too small, the 
resulting skin is under estimated. When the build-up point used for the start of the 
period is taken after the pure wellbore storage, the distortion of the response is easier to 
identify. 
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Figure 10.8. Case e: shut-in time too late, last flowing pressure is taken in the build-up data, 
during the wellbore storage regime. 

When a log-log plot suggests a time or pressure error such as in Figures 10.4 to 10.7, 
several correction methods are available. If the response is affected by a wellbore 
storage effect, a linear scale plot of Ap versus At such as in Figure 1.4 can be used. The 
wellbore storage straight line of slope mWBS must intercept at the origin. If not, a 
pressure or time correction must be applied but the linear scale plot does not indicate 
which parameter has to be changed. An examination of the test history plot on expanded 
scale, such as Figure 10.3, more accurately defines the correction to apply. With time 
and pressure error such as case e, a good log-log match can be obtained but, on the test 
simulation match, the underestimated skin coefficient shows clearly with a reduced 
amplitude on the simulated curve. 

Pressure gauge drift 

In order to minimize the risk of a gauge drift, several pressure sensors are usually run 
down hole during testing. Before pressure transient analysis, the gauge responses are 
compared by estimating the difference 8p between the pressure signals. When 5p is not 
constant, either one gauge is effected by a drift, or the weight of the fluid column 
between the two sensors is not constant (see next Section 10.1.2). 
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Drift can be positive, when the recorded pressure increases, or negative when it drops. 
In Figure 10.9, a constant drift of • 0.05 psi/hr is introduced on the build-up example of 
Figure 10.1. On the resulting log-log plot of Figure 10.10, the derivative curves suggest 
the presence of an apparent boundary effect, sealing in the case of positive drift, and 
constant pressure when it is negative. 

The effect of a constant drift is inverse during flow and shut-in periods. For example, an 
increase of derivative on build-up responses is transformed into a pressure stabilization 
during drawdown, therefore a falling derivative curve. This fact can help identify a 
problem of constant drift. 

When only one pressure gauge is available for analysis, pressure gauge drift can be 

identified by comparing the flow and shut-in periods on a normalized log-log plot (Ap/q 
and Ap'/q versus At). When the responses are not symmetrical, a gauge error can be 
envisaged. Examination of the test simulation on linear scale also gives a clear 
indication of a pressure drift. If for example a build-up response shows a pressure 
stabilization corresponding to a declining derivative response, such as on the negative 
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drift curve of Figure 10.10, two boundary conditions can be possibly envisaged: closed 
system or constant pressure: 
1. With a negative drift, the magnitude of drawdown responses is amplified, and the 
flowing pressure does not stabilize as expected with the constant pressure hypothesis. 
2. When a closed reservoir model is used to match the build-up, the model response 
can possibly reproduce both the drawdown and build-up data but, in such a case, the 
size of the reservoir is usually very small and not compatible with geological reservoir 
data. 

Pressure gauge noise 

In most cases, pressure gauge noise can be reduced by using the smoothing algorithm 
described in Section 2.3.5. This technique is efficient with a random noise but, when the 
raw data has been processed manually before generating the derivative plots, a regular 
noise may have been introduced. This may be the case for example when the pressure 
points are grouped by pairs, with a very short time difference (a few seconds), each pair 
being separated by a much longer time interval, such as a few minutes. 

In the following case, a regular noise is introduced in the final build-up example of 
Figure 10.1 by adding 1 psi every 2 pressure points (Figure 10.11). 

On the resulting log-log plot Figure 10.12, the derivative response is very scattered, and 
it starts to oscillate after one hour with an increasing amplitude. As a result, the 
derivative curves seem to split into two smooth branches. In some cases, the time of 
departure of the two apparent branches is much earlier than on the example of Figure 
10.12 (generated with a low density of pressure points), and the lower branch is out of 
scale. Then, only 50% of the data is displayed on the log-log derivative curve, but the 
general aspect is smooth. This configuration can be misleading because, apparently no 
smoothing is needed, and the increasing trend of the upper branch can be interpreted as 
a reservoir response when it is only a truncated response. In such a case, the log-log 
pressure response does not confirm the derivative signature, and no consistent match 
can be obtained. 
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Figure 10. I2. Log-log plot of the build-up example. Noise of +1 psi every 2 points. 
Three points derivative algorithm. No smoothing. 

In order to prevent a diagnosis on a truncated derivative curve, it is convenient to 
indicate, on the log-log plot, the derivative points that are not plotted because they are 
negative or simply out of scale. Frequently, this is achieved by showing the missing 
derivative data points on the bottom x axis of the graph, with a different color. 

10.1.2 Effect of the well and reservoir condition on pressure responses 

Changing wellbore storage 

Changing wellbore storage happens when the compressibility of the fluid in the 
wellbore is not constant. It is observed for example when, in a damaged oil well, free 
gas is liberated in the production string: the reservoir is flowing above bubble point but, 
after APskin, the fluid becomes two phases. 
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Figure 10.13. Log-log plot of a drawdown example of changing wellbore storage. 
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Figure 10.14. Log-log plot of a build-up example of changing wellbore storage 

During drawdown, the pressure is high at early time and no free gas is liberated in the 
wellbore. First the response describes the compressibility of the oil. Later, when the 
wellbore pressure drops below bubble point, the gas compressibility dominates and the 
wellbore storage coefficient of Equation 1.7 is increased by the change from Co to cg. 
On a log-log scale, an increase of the wellbore storage coefficient C is shown by a 
second unit slope straight line at later times, as shown in Figure 10.13. During the 
transition between the oil compressibility wellbore storage Co, and that for the gas Cg, 
the pressure tends to stabilize and the derivative can show a short declining trend. 

During build-up periods, the response corresponds to the gas wellbore storage 
coefficient immediately after shut-in, and changes to the lower oil wellbore storage 
later. This produces a steep increase of derivative and, in some cases, the derivative 
follows a slope greater than unity at the end of the gas dominated early time response as 
illustrated in Figure 10.14. 

When a large drawdown is applied on gas wells, changing wellbore storage can also be 
observed due to the variable gas compressibility. The compressibility variation being 
smoother than for oil wells below bubble point, the distortion is less characteristic on 
the pressure and derivative curves. With build-up data, the wellbore storage derivative 
hump is shorter than on the theoretical models with constant wellbore storage. In such a 
case, when the early time unit slope straight line is correctly matched, a constant 
wellbore storage interpretation model suggests a long derivative transition hump, and it 
reaches the derivative stabilization later than the data. It is then preferable to ignore the 
early time unit slope straight line, and to adjust the wellbore storage coefficient on later 
time data, in order to correctly describe the start of radial flow at the beginning of the 
derivative stabilization. The match is not good at early time, but the reservoir response 
is correctly described. 

High temperature gas wells can also show changing wellbore storage effects because of 
variable temperature in the wellbore during shut-in. 
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Two phases liquid level 

For wells producing different fluid phases (oil + water, or gas + condensate), a phase 
redistribution happens in the wellbore during shut-in, producing a characteristic 
"humping" effect. This is illustrated in the following with an example of well producing 
oil and water. 

diphasic flow changing liquid level end of phase 
segregation effect 

Figure 10.15. Changing liquid level after phase segregation. 

In the example Figure 10.15, the depth of the gauge is above formation. When, after 
shut-in, the water droplets fall to the bottom of the well, the weight of the fluid column 
between the pressure gauge and the formation is not constant, but increases as long as 
the water level rises. Initially the hydrostatic weight corresponds to a low percentage of 
water, to ultimately reach 100% of water if the interface reaches the gauge depth. In 
some cases, the build-up pressure can show a temporary decreasing trend after some 
shut-in time as illustrated Figure 10.16. 
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Figure l O. l 7. Log-log plot of the build-up example of phase segregation. 

When the interface between the two phases stabilizes or reaches the depth of the 
pressure gauge, the pressure difference between gauge and formation returns to a 
constant, and the remaining build-up data can be properly analyzed. During the hump 
when the build-up pressure is declining, the derivative becomes negative (Figure 10.17). 

In some cases, the water cushion created during the first hours of shut-in is slowly re- 
injected back into the reservoir at later times. Changing liquid level effects can then 
dominate the entire build-up response, and only drawdown periods are suitable for 
analysis (Gringarten, 2000). 

As a general rule, the pressure gauge should always be positioned as close as practically 
possible to the perforations or producing interval. When phase redistribution is expected 
in a well producing several phases, the duration of the humping effect is shortened by 
reducing the distance between the pressure gauge and the reservoir. 

Interference effects from neighboring wells 

When testing wells in producing fields, interference effects from neighboring producers 
can affect the analyzed pressure data. Ideally, a multiple well simulation model should 
be used for analysis. Using the proper rate history for each producer, and accurate 
reservoir geometry, the combined effect of neighboring wells is added to the response 
of the tested well. This procedure is cumbersome, and frequently many approximations 
have to be made. For example, the different wells may not produce from exactly the 
same layers, or the well spacing and the geometry of the reservoir boundaries are 
difficult to describe with an analytical model. In many cases, tests are analyzed with a 
single well model. It is then recommended to minimize as far as possible the pressure 
disturbance generated by other wells. 

As most well responses follow a logarithmic time relationship, the transient effect is 
clearly reduced as the time increases. When a well test is planned in a multiple well 
reservoir environment, it is preferable to maintain unchanged the flowing condition of 
all other wells before the test. If a neighboring well is opened or closed just before or 
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during the well test, its possible interference effect is larger than if no change is made in 
its flow rate. 

10.2 INTERPRETATION PROCEDURE 

In this Section, a summary of the interpretation methodology, introduced in Section 3.1 
and described through the other Chapters, is initially presented. Typical responses of the 
usual interpretation models are then reviewed, and two examples of interpretation 
consistency checks with the test history plot are discussed. 

10.2.1 Methodology 

Well test analysis is a three step process: 

1. Identification of the interpretation model. The derivative plot is the primary 
identification tool. 
2. Calculation of the interpretation model. The log-log pressure and derivative plot is 
used to make the first estimates. 
3. Verification of the interpretation model. The simulation is adjusted on the three 
usual plots: log-log, semi-log superposition and test history on linear scale. 

Log-log and superposition scale plots focus on a single test period, as opposed to the 
test history plot that applies the interpretation model to a larger time interval, the 
complete test sequence. 
�9 The main purpose of the semi-log superposition match is to refine the initial log-log 
results. On log-log scales, the pressure Ap curve is not very sensitive to small variations 
in the response (see discussion Section 2.1) and, on the derivative curve, the constant 
skin factor is only present on early time data. Furthermore, the derivative response can 
be affected by noise. With the linear 3'-axis of the semi-log superposition scale, the 
definition of the pressure response is improved, without being affected by data 
processing such as smoothing. 
�9 The test history plot can indicate discrepancies in the data such as in the rate 
history, or in the start of the analyzed period (see discussion Section 10.1.1). 
Alternatively, it is also a good verification plot for the interpretation model, as 
illustrated next in Section 10.2.4. 

The consistency of the interpretation model is finally checked against non-testing 
information. 
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10.2.2 The diagnosis: typical pressure and derivative shapes 

In the log-log diagnosis process, not only the different characteristic flow regimes are 
identified in the derivative signature, but also changes of flow properties during a given 
regime are evident. The flow regime identification, and the effect of a change of 
mobility or storativity during a regime are discussed in the following. 

Flow regime identification 

In the description of the different interpretation models presented in previous Chapters, 
it is shown that the number of typical flow regimes identifiable on pressure responses is 
limited. Only six different flow geometries produce a characteristic response on the 
derivative and, in some cases, also on log-log pressure curves. These regimes may 
happen at different times in a test response, depending on the interpretation model. In 
the Table 10.1 below, the characteristic shape (pressure = gray and derivative = black) 
for the six flow regimes are summarized, together with the most usual well or reservoir 
configurations, tentatively classified into early, intermediate or late time response. 

Table 10.1. Flow regimes summary 
Geometry Log-log scale Time range 

Shape Slope Early  Intermediate Late 
Double 

Radial . . . . . . . . . .  ' ..... : N (} porosity Homogeneous Semi-infinite 
0 restricted behavior reservoir 

""::/i/2 Infinite Two parallel 
conductivity Horizontal we l l  sealing 

Linear �9 ,~: 1/2 fracture boundaries 

................. 

Bi-linear �9 

Spherical �9 
::ii!:~i# iiiiiiiiiiii:i@iii@igii;ii!ii~i!i~!iiiiii~i 

Pseudo / 
Steady 
State �9 

,.,:. 

!llii!i!i!!~!iiiii@ililii~illi~lllili!ilii~ii~i!iil!li~i!!:..' 

Steady ~ ~  
State �9 

..... ii/4i.: Double 
Finite Finite porosity 

1 / 4  conductivity conductivity unrestricted 
fracture fault with linear 

flow 

N O  

-1/2 

1 
Q. 

-1 (-oo) 

Well in partial 
penetration 

Layered no Closed 
Wellbore crossflow wi th  reservoir 
s torage bounda r i e s  (drawdown) 

Constant 
Conductive pressure 

fault boundary 
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Changes of properties during radial flow 

During a given flow regime, some reservoir properties may apparently change in the 
course of the response. In the following, the effect of a change of mobility k//a, and 
storativity ~b c,, during the radial flow regime is presented. The influence is described 
both in terms of derivative, with a deviation from the radial flow stabilization, and on 
semi-log scales. For each case, some examples of corresponding interpretation models 
are given. 

Mobility decreases: Sealing boundaries, composite reservoirs, horizontal well with a 
long drain hole. 
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Figure 10.18. The mobility' decreases (k/l ~). Log-log and semi-log scales. 

Mobili O, increases Composite reservoirs, constant pressure boundaries, layered 
systems, wells in partial penetration. 
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Figure 10.19. The mobility' increases (k./,, T). Log-log and semi-log scales. 

During radial flow, the change of mobility is described by a vertical displacement of the 
derivative stabilization. When the mobility is decreased, the second derivative plateau is 
higher than the first and, conversely, when the mobility is increased it is lower. On 
semi-log scales, the slope of the second straight line is respectively higher or lower than 
the first slope. 

Storativity increases" Double porosity reservoirs, layered and composite reservoirs. 
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Figure 10.20. The storativity increases (r c, T). Log-log and semi-log scales. 

Storativity decreases" Composite systems. 
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Figure 10.21. The storativity decreases (~b ct ~). Log-log and semi-log scales. 

When only the storativity changes, the two derivative stabilizations are at the same level 
but a valley shaped transition is observed when the storativity increases and a hump 
above the radial flow stabilization in the case of a storativity decrease. On semi-log 
scales, the derivative valley is transformed into a pressure stabilization at transition time 
between the two semi-log straight lines, and the hump into a sharp pressure rise. Change 
of storativity affects the time of occurrence of the characteristic regime: the second 
semi-log straight line is displaced towards late time in Figure 10.20 and towards early 
time in Figure 10.21. 

The above discussion can be extended to any of the five other characteristic regimes. 
For example, the changing wellbore storage examples of Figures 10.13 and 10.14 can 
be described as a change of storativity during a pseudo steady state regime. An example 
of a decrease of the apparent mobility has been presented for the spherical flow regime 
in Figure 3.17, and during linear flow in Figure 5.20. It is easy to predict the effect of an 
increase of storativity, due for example to a double porosity system with restricted 
interporosity flow, during the same flow regimes (see discussion Sections 4.1.4 and 
5.7). 

Summary of usual log-log responses 

In the Appendix 1, a summary of the basic interpretation models is presented. They are 
classified in well models, reservoir models and boundary models. For the first and the 
last group, only a homogeneous reservoir is considered and, for the second group, the 
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well is affected by wellbore storage and skin, the reservoir is infinite acting. Combined 
interpretation models are not considered in this summary. 

For each model, the chronology of the characteristic flow regimes is given, together 
with the controlling parameter(s) or group of parameter(s). Except for the first model, 
the wellbore storage regime is not listed for reasons of conciseness. 

10.2.3 Consistency check with the test history simulation 

In this Section, two examples of well test interpretation adjustment with the test history 
plot are presented. For both examples, the initial pressure is 5000 psi. The first choice of 
interpretation model, defined from log-log analysis of the short shut-in period, is 
inconsistent when applied to the complete rate history. A second model has to be used 
for a consistent description of the well behavior. 

htcrease of derivative response after the last build-up point (second sealing boundary) 

The log-log derivative plot Figure 10.22 suggests the presence of a sealing fault but, 
when this model is applied with the extended production history (Figure 10.23), the 
initial pressure used to correctly describe the build-up test is lower than the original 
initial pressure. 

~ .  10 3 

C Q- 

g.g 10~ 

~ 01 
if) 
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Elapsed time, ~xt (hours) 
Figure 10.22. Log-log plot of the final build-up. Homogeneous reservoir with a sealing fault. 

The single sealing fault model does not generate enough pressure drop during the 
extended flow period and, in a second estimation, a second fault, parallel to the first is 
introduced (Figures 10.24 and 10.25). This second boundary is not seen during the short 
build-up test, only the test simulation match suggests the first model is not appropriate. 
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Figure 10.23. Test history simulation. Linear scale. Homogeneous reservoir with a sealing fault. 
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Figure 10.24. Log-log plot of the final build-up. 
Homogeneous reservoir with two parallel sealing faults. 
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Figure 10.25. Test history simulation. Linear scale. 
Homogeneous reservoir with two parallel sealing faults. 

Decrease of derivative response after the last build-up point (Layered semi infinite 
reservoir) 

On this example, the opposite diagnosis is made: the log-log derivative plot Figure 
10.26 suggests the presence of two parallel sealing faults. 



"t3 oO 

r- ~ 10 3 

5000 

4500 

4O00 

.< 

r" "~ 10 2 

o �9 "o 

~ 01 1 
~ 10 -3 10 -2 10 -1 1 101 13._ 
Q- Elapsed time, At (hours) 

Figure 10.26. Log-log plot of the final build-up. 
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Figure 10.27. Test history simulation. Lineal scale. 
Homogeneous reservoir with two parallel sealing faults. 

On the test history simulation of Figure 10.27 with the parallel sealing faults model, the 
initial pressure before the production history is too high, showing this boundary model 
is not applicable. The reservoir is layered and a two layer no crossflow model is used, 
one layer is closed. At late time, the derivative stabilizes to describe the radial flow 
regime in the infinite layer. The hump at intermediate time corresponds to the storage of 
the limited zone, and not to the linear flow regime as originally believed. 

The two examples illustrate the importance of an accurate initial pressure measurement. 
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Figure 10.28. Log-log plot of the final build-up. 
Two layers reservoir, one infinite and one closed layer. 
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Figure 10.29. Test history simulation. Linear scale. 
Two layers reservoir, one infinite and one closed layer. 
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10.3 WELL AND RESERVOIR CHARACTERISATION- INTERPRETATION 
RESULTS 

In this Section, the significance and the accuracy of the interpretation results are 
addressed. As illustrated with the final discussion of the radius of investigation, well test 
interpretation makes use of simple concepts, to describe a relatively complex system. 
When well test analysis results are transformed into reservoir properties, an appropriate 
understanding of the actual meaning and limitations of the interpretation concepts is 
required. 

10.3.1 Interpretation model 

Well test analysis consists of defining the interpretation model(s) that best describe the 
available pressure data, recorded during a given flow rate history. As discussed in 
Section 1.1.2, the interpretation model is simply a transfer function, it describes the well 
and reservoir behavior, not the real nature of the producing system. For example, the 
homogeneous reservoir model is the most frequently used in well test interpretation, 
when almost no reservoir can be considered strictly homogenous. Oil bearing 
formations are in general made up of several strata with different characteristics, the 
permeability is not uniform over the pay zone thickness and, sometimes, it is not 
isotropic but it varies with the direction. Still, the well and reservoir behavior can be 
described with the homogeneous reservoir model. 

The relationship between the parameters estimated from well test interpretation (the 
model parameters), and static measurements such as those obtained from core or log 
data is not easy to establish. The various discussions of the vertical permeability 
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measurements are an illustration of the difference between interpretation results, and 
reservoir properties (see Sections 3.4.4 for partially penetrating wells, 3.6.11 for 
horizontal wells, 4.2.6 for layered systems and 9.4.2 for vertical interference testing). 

Well test analysis results provide an average of the reservoir properties. With the 
permeability for example, the apparent vertical permeability kl, is a harmonic average 
(Equation 3.56) whereas, for the horizontal permeability kH, well testing gives the 
arithmetic average of each layer permeability (Equation 4.42 for example). 
Furthermore, in the case of permeability anisotropy, each layer's horizontal permeability 
is defined as the geometric average of Equation 3.3. 

The skin discussion of Section 3.7.1 illustrates another example of potentially unclear 
interpretation results, as many components can be introduced into this basic well test 
interpretation concept. In Section 10.3.3, it is shown that the radius of investigation is 
only a practical concept without a clear theoretical justification, and it should be 
considered as approximate, especially with build-up periods. 

In Section 1.1.2, the interpretation of well test data is described as an inverse problem, 
whose solution is in general not unique, and several models can be found applicable to 
describe the pressure response. The lack of uniqueness in well test interpretation has 
been frequently illustrated in previous Chapters, where different models are shown to 
produce similar responses. The model verification and validation is made by integrating 
data from other sources, such as geological, geophysical, petrophysical or fluid 
descriptions. 

10.3.2 Errors in static parameters 

The input data required for analysis has been summarized in Section 1.1.2. Possible 
errors in well test data are discussed in Section 10.1.1. In the following, the accuracy of 
the well and reservoir parameters is envisaged. 

Errors in the static parameters directly influence the calculated interpretation results, but 
in most cases they do not affect the choice of the interpretation model. When static 
parameters are not known precisely, it is always possible to make a first analysis with 
approximate values, and to refine the results with adjusted values later, without 
significantly changing the interpretation model. 

The net thickness h for example is frequently not accurately defined. From open-hole 
log interpretation results, the range of uncertainty for h can be as high as 30%. Other 
usual configurations, such as when a well is found to be behaving partially perforated 
due to the guns not going off over the complete formation thickness, or when the 
complete formation is not flowing into the wellbore can possibly lead to an error in the 
thickness. Similarly, when the oil viscosity p used for analysis is estimated from 
correlations, the reliability of the fluid property correlation can be relatively low. Since 
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well test interpretation provides the kh//a group, any error on h or/a directly influences 
the permeability estimate k. 

With other interpretation results, an error in h or ,u does not have the same influence. 
For example, with a fixed m (and kh//a group) in Equation 1.17, the estimated skin 
factor S is only slightly dependent upon h (with a logarithm relationship), but not upon 
the viscosity r In the same way, the radius of investigation, and the distance to a 
possible boundary, are dependent upon h (with the square root relationship of Equation 
1.23 or 1.24), but independent of/a. 

The influence, on the interpretation results, of an error in one static parameter can be 
easily evaluated from the corresponding equations. Two parameters are frequently a 
subject of discussion: 

1. The wellbore radius rw is usually defined either as the drilled hole diameter, or as 
the casing ID. Strictly speaking, the radial flow hypothesis is not valid near the 
perforations (see for example the discussion of Equation 4.41), and the real wellbore 
radius is not clearly defined. This parameter only influences the calculated skin factor 
(in a logarithm, as described in equation 1.17). The influence of any error in r,,, is not 
significant but, when the purpose of well testing is the variation of skin between tests, 
the same reference diameter should be used for consistency: the skin of a well should be 
defined relative to a choice of rw. With horizontal wells for example, several skin 
definitions have been proposed for different reference wellbore radius (see discussion of 
Equations 3.38 and 3.41). 
2. The total compressibility c, is a function of the saturations for each phase (Equation 
1.3). This parameter is difficult to estimate, in particular in a reservoir near the bubble 
point pressure where the gas saturation changes (see Chapter 8). In infinite acting 
homogeneous reservoirs, cr only influences the skin factor S (in the logarithm term of 
Equation 1.17) and the distances (with a square root relationship of Equations 1.23, 
1.24). An error in c, by a factor of 10 changes the radius of investigation r, by a factor of 
3.16, and the skin by only 1.151. 

Another example of a difficult parameter has been discussed in the Section 3.6 for 
horizontal wells. It is shown that the horizontal drain length, which can be both an input 
value or a derived value, directly influences the derived value of vertical permeability. 

10.3.3 Discussion of Pressure Profile and Radius of Investigation 

The radius of investigation r~, which is used as an input value for proven hydrocarbons, 
is frequently viewed as a minimum radial distance to any event that would not be 
observed during the test period. In practice, for an initial flow period, when a linear 
boundary is introduced with an interpretation software to estimate the radius of 
investigation, the resulting distance is similar to that estimated from Equation 1.23 or 
1.24. This apparently contradicts the sequence of flow geometry near a sealing fault 
described in Figure 1.22, where the pressure transient actually reaches the fault 4 times 
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earlier than the boundary can be observed on the producing well pressure (i.e. when the 
transient radius - different to the radius investigation shown in Figure 10.30 below - is 
double that of the fault distance). As discussed in Section 1.2.3, the mathematical 
concept of radius of investigation is approximate. By examining Figure 10.30 below, 
clearly, the transient radius is larger than the radius of investigation estimated from well 
testing with the above methods. Due to the averaging effects of the interpretation results 
discussed previously, well pressure responses do not describe the complete reservoir 
area affected by the well production but, practically, a smaller circular area around the 
wellbore. 

This is confirmed by Oliver's study of radial changes of permeability around the well 
(1990): he established that the pressure response is primarily affected by the 
permeability at a distance approximately half the radius of investigation estimated from 
Equation 1.23 or 1.24 (see Equation 4.95, Section 4.3.4). It can be concluded that the 
maximum influence is at a distance 1/4 of the sequence of pressure transient radii 
illustrated in Figure 1.22. whereas the start of a fault influence is seen when its distance 
is 1/2 of the transient radius. 

The definition of the time to the start of a boundary effect is also subject to errors. With 
a linear boundary, the change of reservoir characteristic is not radial but in one direction 
only. On the pressure response, the effect of the change of property is more diluted than 
in the case of a radial symmetrical configuration, and the influence of the boundary is 
first seen by a long transition before the hemi-radial flow regime. In the discussion of 
the sealing fault Equation 1.33 (Section 1.2.7 and 5.1.2), the time Atx used for 
estimating the fault distance is defined at the midpoint of the transition from radial (0.5 
on log-log plot) to hemi-radial flow (1.0 on log-log plot), and not at the start of this 
transition. Comparing Equations 1.24 and 1.33 shows that the radius of investigation at 
At, is more than twice the distance of the fault (At~ corresponds approximately to time t4 
in Figure 1.22, with a transient radius four time larger than the fault distance, or to the 
elapsed time 22 hr on the interference responses of Figure 6.8, when the observation 
well 02 is already affected by the fault influence). 
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Figure 10.30. Transient radius and radius of investigation at time the sealing fault starts to be 
seen. 
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When the criteria for detecting a possible reservoir limit is only a 10% deviation of the 
derivative above the infinite acting radial flow stabilization, Daungkaew (2000) reports 
that the resulting fault distance is still 20% smaller than the radius estimated from 
Equation 1.24. A distance similar to the calculated radius of investigation is obtained 
when the boundary distance is adjusted to show the start of the deviation on the last 
point of the test period. (In his horizontal well study, Kuchuk (1991 a) uses a similar 
criteria during vertical radial flow, see the discussion of Equation 3.44). 

For shut-in periods, the discussion of Figure 2.20 shows that the concept of radius of 
investigation is not clear. On this example with a sealing fault, the boundary is reached 
first with the extrapolated drawdown period, and later during the injection period 
starting at shut-in time. More generally, at a given shut-in time At after a multiple rate 
sequence, a radius of investigation can be defined for each extrapolated flow period (see 
definition of the rate history Section 10.1.1). At shut-in time At, the Equation 1.23 or 
1.24 only describes the radius of investigation corresponding to the injection period; the 
influence of a possible reservoir limit on the extrapolated flow periods is ignored. 

In practice, the radius of investigation during shut-in periods is approximated, as for 
drawdown, by the distance to a boundary effect introduced at the end of the build-up 
period. If a constant pressure boundary is be used, the distortion of the derivative 
response is sharper than with the sealing fault model, and the distance to the change of 
reservoir property is easier to define. 
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APPENDIX 1 

SUMMARY OF USUAL LOG-LOG RESPONSES 

Table A. 1. Well models 

Name and characteristic regimes Log-log pressure and derivative curves 

Wellbore storage and Skin (3.1) 

1 Wellbore storage, C 
2 Radial, kh and S 

Infinite conductivity fracture 
(3.2) 

1 Linear, xj 
2 Radial, kh and SHK F 

Finite conductivity fracture (3.3) 

1 Bi-linear, kfwf 
2 Linear, xf 
3 Radial, kh and SLKF 

...~, 
r 

-ca 
<3 

At 

<3 

<1 

At 

<1 

<1 

At 

Partial penetration (3.4) 

1 Radial, hw and Sw 
2 Spherical (mobility ]'), kv 
3 Radial, kh and ST 

<1 
~8 

<3 

At 



Horizontal well (3.6) 

At 

< 
1 Radial vertical, k~ and S,,, s8 
2 Linear (mobility ~) < 
3 Radial, kh and $7, . . . . .  . . . =  . . . . .  . .  

, . ' , : ) : '  i 

Double porosity, restricted 
interporosity flow (4.1.2) 

& 
1 Radial fissures, kh 

2 Transition (storativity T), co 
and 2 

3 Radial fissures + matrix, kh 
and S 

& 

Table A. 2. Reservoir  models 

Name and characterist ic  regimes Log-log pressure and derivative curves 

At 

Double porosity, unrestricted 
interporosity flow (4.1.3) 

1 Transition, 2 
2 Radial fissures + matrix, kh 

and S 

_ 

.,)~:,. 

. . . . . . .  ;':< ............ :i:!::~:i~:. ' , 
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At 

Double permeability, same skin 
S1=$2 (4.2.2) 

1 No crossflow 
2 Transition (storativity $), co, 

tc and 2 (kv) 
3 Radial, khl+kh2 and Sr 

<l 

<~ 

At 
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<1 

s~ 

<1 1 Radial, k2h2 and $2 
2 Transition (mobility 1"), 2 

3 Radial, khl+kh2 and Sr 

Radial composite (4.3.1) 

l Radial inner, k~h and Sw 
2 Transition (mobility ]', +), r 
3 Radial outer, k2h and SRC 

Linear composite (4.3.3) 

1 Radial inner, k~h and Sw 
2 Transition (mobility T, $), L 
3 Radial total, (k~h + k2h)/2 

and Sr 

<~ 

~3 

<1 
~3 

!:!, ~:1~: .........-..i . - . ; - -  - - :  - - ; . . ~ . : . ~ ,  .: - i ~ r : . . - - . :  

Double permeability, partial 
penetration S~ = oo (4.2.3) 

At 

At 

At 

Table A. 3. Boundary models 

Name and characteristic regimes Log-log pressure and derivative curves 

Sealing fault (5.1) 

1 Radial, kh and S 
2 Transition (mobility $), L 
3 Hemi-radial 

<q 

<i!! ......................... i> 
, , , J , , , i  J . . . . . . .  

At 



Channel (5.2) 
Centered 
1 Radial, kh and S 
2 Linear, L I+L2 
Off-centered 
1 Radial, kh and S 
2 Hemi-radial, L~ 
3 Linear, L I+L2 

-<5 

< 

Channel closed at one end (5.4) 
Centered 
1 Radial, kh and S 
2 Linear, L I+L2 
3 Transition (mobility +), L3 
4 Hemi-linear 

Intersecting faults (5.3) 
Centered 
1 Radial, kh and S 
2 Linear, L ~ +L2 
3 Fraction of radial, 0 
Off-centered 
1 Radial, kh and S 
2 Hemi-radial, L1 
3 Linear, L 1+L2 
4 Fraction of radial, 0 

Closed system centered (5.4) 
Drawdown 
1 Radial, kh and S 
2 Pseudo steady state, A 
Build-up 
1 Radial, kh and S 

2 Average pressure, p and A 

< 

< 

< 

-c:. 
< 

, .. r : : ~ , : . . - . . : ~ . . . . a  ::- :.~:~.~.. ":" 

< 

<1 

.:.,~:'::," 

i i i i i i 

At 

..... : ::.:: . :: . .: 

,.,.) . : 

At 
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At 

Closed channel (5.4) 
Drawdown 
1 Radial, kh and S 
2 Linear, L I+L2 
3 Pseudo steady state, A 
Build-up 
1 Radial, kh and S 
2 Linear, L I+L2 

3 Average pressure, p andA 

< 

< 

At 

At 
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Closed and intersecting faults 
(5.4) 
Drawdown 
1 Radial, kh and S 
2 Linear, LI+L2 
3 Fraction of radial, 0 
4 Pseudo steady state, A 
Build-up 
1 Radial, kh and S 
2 Linear, L I+L2 
3 Fraction of radial, 0 

4 Average pressure, p andA 

I I I | i i 

<1 

At 

Constant pressure boundaries 
(5.5) 

1 Radial, kh and S 
2 Transition (mobility $), L 

One boundary or multiple 
boundaries 

<1 

At 
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PRACTICAL METRIC SYSTEM OF UNITS 

C O N V E R S I O N  F A C T O R S  

Table A. 4. Conversion factors from oilfield to metric system, and inverse 

Oilfield Practical 
Quantity units metric units Multiply by 

Gas rate Mscf/D m3/D 2.831 685x10 -2 

Length ft m 3.048 000xl 0 1 

Liquid rate BOPD m3/D 1.589 873xl 0 1 

Permeability md md 1.000 000 

Pressure psi Bar 6.894 757x10 2 

Temperature ~ ~ 5.555 555x10 ~ 

Time hr hr 1.000 000 

Viscosity cp cp 1.000 000 

Volume cuft m 3 2.831 685x10 2 

Inverse 

3.531 466x101 

3.280 840 

6.289 811 

1.000 000 

1.450 377x10 ~ 

1.800 000 

1.000 000 

1.000 000 

3.531 466x101 

E Q U A T I O N S  

C h a p t e r  l 

C = 1 0 1 9 7 - -  
v~ 

kh 
S = Apski n 

18.66qB/./ 

18.66qB/2 In rs 18.66qB/2 In rs 
P w,s - P w,s=o = 

k s  h r w kh r w 

r aBu @ = 21.5.1-'--/log At l o g ~  + 
kh L 

k 
-3 .10+  0.87S 1 

(1.8) 

(1.11) 

(1.12) 

(1.15) 
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kh - 21.5 qB/,t 
m 

S = 1.151 l Ap!.!~ - log 
m k 1 2 + 3.10 

~ l  C t t w 

Ap(A,. ~)--o.5 ,, 66qB  Ei / / 
kh 0.0001423kAt 

I 0.000356kAt 1 Ap(At, r ) -  21.5qB/a log 2 + 0.809 
kh ~b/z c t r 

0.000356kAt 1 1 
- - - -  o r  

~b#ctri 2 4 y2 

r, = O . 0 3 4 ~/ kAt/ ~b/ae , 

r i =O.037~/kAt/~b~tc, 

Ap = 0.623 qB I /,z , f ~  
hx  f (~ct k 

I /.z qB 
x l - 0.623 (kctk hmLF 

Ap = 6.28 qB/a 4 ~  
h.,/t,s ws @~,o,~ 

~b/zctk hmBLF 

Ap - 9.33 qB/z _ 279.3 
ksr  s t.3/2 

k s - 279.3qB/z 
m S P H  

(1.16) 

(1.17) 

(1.18) 

(1.19) 

(1.20) 

(1.23) 

(1.24) 

(1.25) 

(1.26) 

(1.27) 

(1.28) 

(1.29) 

(1.31) 
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f 

L - 0.01411 kAtx 
~bpct 

(1.33) 

V 

Ap - 0.0417 qv A, + 21.5 qB ,  r l o g - 4 -  
(~ c t hA kh L r.-, 

log(C 4 )+ 0.351 + 0.87S] (1.35) 

6hA - 0 . 0 4 1 7 ~  
qB 

ctm* 
(1.36) 

PI -  kh 

21 . 5 B/~(I og At + 1 og ~ - ~ / c t  t;7k 3.10+0 .87S) 

(1.39) 

P I -  kh 

2 l'5B/dIl~ - rw Zog(C ~ )+ o.351 + o.sTs) 
(1.40) 

Chapter 2 

kh pD= Ap 
18.66qB/.l 

(2.3) 

0.000356k 
t D = At 

c/)/a c , r~ 
(2.4) 

C D ~ - ~  
0.1592C 

2 
(} c t h r  w 

(2.5) 

tD kk At =0.00223- - - -  
C D i.d C 

(2.6) 

CD e2S =~e0"1592C 2S (2.7) 

kh-18.66qB/d(PM) (2.9) 

C = 0.00223 kh (@M) ~/~ (2.10) 
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I tpAt  
[Ap(At) IBu=21.5  qB/'t log 

kh t p + At 
+ l o g ~  

k 
2 ~,l.l C t r w 

-3 .10+ 0.87S 1 

P w.,. - p;-21.5 qB/-z log tp + At 
kh At 

- ~ + l o g  ,,,+3.10 
~].lct r2 t p W 

p (At)= p, -21.s s~'~ (q,-q,_,)log(t. + At-t,)+(q~ -q~_,)~og(At) 
w.,. kh i=1 

Ap'= 9.33 qB/~ 
kh 

Ap'-o.311 q~ I ~' &t 
i~.r 6c, k 

Ap'= 1.571 qB/a 4~At 
h.,/k,.,+j. ~,o,k 

Ap'= 139.6 
qB/.t~/#Zzct 

k3/2 ~/At s 

qB 
Ap'= 0.0417 At 

~bct hA 

(2.13) 

(2.14) 

(2.15) 

(2.18) 

(2.24) 

(2.29) 

(2.30) 

(2.31) 

(2.32) 

Chapter 3 

2 ) qJcth C x - C  + rc(r~ - r w 

0.000356k 

I 0.000264k 1 

x f = ~b/-z c t TM 

CDf = ~  
0.1592C 

~cthx 2 
f 

(3.1) 

(3.8) 

(3.9) 

(3.1o) 
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0.000356k 
t D = A t  

21.5 qB/l I ~/k~,.k H At 

6#c,,;,. 1 I4 k ~ v  _b4 k~H/1 - - - 3 l ~ 1 7 6 1 7 6  k. ~ k~, )]  

Ap 1.246qB / /~At 
2Lh 1~ ~c,k. 

18.66qB/a 18.66 qB_,u S,,, + S_ 
2x/kI.k H L k# h " 

Ap-21.5qB/J[logkHA~tL2 - 2.40 ] 18.66qB/~+ 
kgh O/act 2~/ki,,k H L 

S w q- 
18.66 qB/l 

kHh 
SzT 

Ap 21.5 qB/a r [log k H At ] _ ~ - - - ~ 7 - _  3.10 + 0.87SrH 
kHh ~ ~b/actr,-, J 

I0.74 qB/a 
x/kr,, k H L -  

17l I, 7?_/: 

s .  - 1 . 1 5 1 , 0 h r )  , (A,  : O) lo~ 2 + 

_ -  O/~c,  min{z2~,,, ( h - z ) 2 }  
kl~" 0.0003567rAt ~,,d '" 

9 I I  L2 qB /l k H - 0.389 

S i t '  "-- 
2~/kl.k H L 
18.66qB/d 

[p(Ohr)- p(At = 0)]+ 2.3031og 1+ sin 

kHh - 

21.5qB/a 

m HRF 

STH - 1.15 1E p(lhr)-m~p(k, - O) k H - log  +3.1o I 

mRL v = 10.75 qB/~ 
kf  wf 

(3.29) 

(3.31) 

(3.33) 

(3.35) 

(3.37) 

(3.42) 

(3.43) 

(3.44) 

(3.45) 

(3.46) 

(3.47) 

(3.48) 

(3.50) 
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mBL F = 6.28 
qBcz 

x f ~/k f w./. 4~b/.t c t k H 

qB I" l.l mLV = 0.793 hrf r H 

mLF = 0.623 h-~--I- /~ 
f r 

(3.51) 

(3.52) 

(3.53) 

Chapter 4 

0.000356k 
At 

0.000356k 
t~j+m - ( r  2 At 

0.1592C 

C D f  +m --  

0.1592C 

(r 2 W 

t D tDf tDf+m 

CD CDf CDf +m 
= 0 . 0 0 2 2 3 ~ ~  

kh At 

r C 

(CD e2s )f = 0.1592Ce2S 
�9 ( ~ v ~ , ) j  hr 2 

CD e2S )f +m = O'1592Ce2S 
(~w,)r+~ hd 

Ap = 21.5 qB/d Ilog At + log 
kh 

k -3.1o+o.87xj 

(4.11) 

(4.12) 

(4.13) 

(4.14) 

(4.17) 

(4.18) 

(4.19) 

(4.27) 
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Ap- 21.5 qB~ Ilog At + log k 
l<h (r v o, )~,+,,/~,-,7 -3.10+0.87S 1 (4.28) 

P D  = 
klh 1 + k2h 2 
18.66qB/ 

@ (4.49) 

t D -0.000356 klh 1 + k2h 2 

Do, h), +(~o,h)21,,~.2 
At (4.50) 

0.1592C 
CD - [(~r + (~r ]r~ 

(4.51) 

tD = 0.00223 klhl + k2h2 At 
C D ,u C 

(4.52) 

klh 1 + k2h 2 - 18.66qB/~(PM) (4.53) 

C=OO0223klh~+k2h21-~M 1 /  (4.54) 

k I h / 
p1~= Ap 

18.66qB/ 
(4.58) 

0.000356k h, 
/ At t D = (4.59) 

0.1592C 
(4.60) 

tD = 0.00223 k,h, At 
C D ,u C 

(4.61) 

k,h, - 18.66qB/(PM) (4.62) 

C=OO0223k'h'(-~M I / d  (4.63) 

Ap = 21.5 qB~ Ilog At + log k; 
k,h, 0 o , ) , ~ w  ~ 

-3.10+0.87Si] (4.64) 
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qB/a Ap = 2 1 . 5 ~  
khTOTAL I log At + log khTOTAL 

(~bcth)ToTAL Z lr2 
-3.10+0.87S 1 (4.65) 

klh 
pD = Ap 

18.66qB/a 1 
(4.80) 

0.000356k 1 At 
tD = (qk/'tct )1 r2w 

(4.81) 

0.1592C 
CD = (~Ct )1 hr2 

(4.82) 

tD = 0.00223 klh At 
C D tJ 1 C 

(4.83) 

S - klh 
APskin 15.66qB/a 1 

(4.84) 

klh-lS,66qa~11(VM) (4.85) 

C - 0.00223 klh ( 1 ) (4.86) 

Ap = 21.54 qB/al llog At + log kl 
O/ o,)id -3.10+0.87S / (4.8g) 

Ap - 21.5 qB/'t2 /log At + log k2 - 3.10 + 0.87SRc 1 (4.89) 

k2h 
S RC = Ap skin RC 18.66qB/a 2 

(4.90) 

kn 4 k n l  ~ + .... + k~j+ 1 1- kj 

.... + ~ 2  1- +0.034 ~b/ac, 

+. . .  

(4.94) 
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At = kl kro 
/-do 

k~w 1 18.66qB 
+ = 0.5 hAp' 

ixW F 

(4.96) 

13,r I1866qB At r - 0.028 At - 0.028 
qDc, ~bc, h 2Ap' 

(4.97) 

Chapter 5 

0.000356k 
t DL = At 

~bixc, (L i + L 2 )2 
(5.2) 

A p -  1.246 qB i 1~ At + 18.66 qB/x (Sol ' + S) 
kh 

(5.4) 

mcl~ - 1.246 
qB 

(5.5) 

L l+L)  -1.246 qB I ix 
- hmch 7<+77, 

(5.6) 

kh 
Scll  = @ c l l  int - S 

18.66qBix 
(5.7) 

0.000356k 
toA = At 

O/~ c , A 
(5.15) 

mhc h = 2.494 h(L, + L2) /<~<, (5.16) 

Pi -P =0.0417 
qB 

r hA 
At (5.21) 

I mcph 
L = 0.0616 qB~bct (5.26) 

A p -  C+6.28 
qBM UA, (5.33) 
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Chapter 6 

t D 

r~ 
0.000356k 

2 qJlx ct r 
At 

Pi - Pwf = ~  21.5khqB/a( l~  + l~ k ~ - 3  ~b/~ctr2 .10) 

Ap(At, x, y) = 0.5 18.66 qB/a Ei[_(rD2/4tD)x,y ] 
~;max kmin h 

t,, rD J x,y (Jt ACt kxY 2 + k y x  2 - 2kxyxy 

tDf 0.000356k 
~ =  At 
,~k (r ~ 

(6.2) 

(6.3) 

(6.4) 

(6.7) 

(6.11) 

Chapter 7 

Standard condit ions" psc = 1 Bar  and T~,.o = 2 8 8 . 1 5 ~  

kh Tsc [m(p i ) -  m(p)] 
PD - 37.33Tq~ c P~,c 

kh 

0.1296Tq~. c 
[m(p,~-m(p~] 

PD = 
37.33s,2rq~,o p,c 

O.1296pzTqsc 

PD -- 
khp V,c (p _p) 

18.66/dZTqs c Psc 

O.0648pZTq,,. c 

tD = 
0.000356k 

2 
~b#i c ,  rw 

At 

(7.7) 

(7.8) 

(7.9) 

(7.10) 
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0 . 0 0 0 3 5 6 k  
At t D =  2 

O/~c, r~ 
(7.11) 

C D = 
0 . 1 5 9 2 C  

qk c tt hr 2 14' 

(7.12) 

C D - . ~ ~  

0 . 1 5 9 2 C  
m 

r 2, 
(7.13) 

to  kh At 
= 0 . 0 0 2 2 3 ~ - -  

C D /~, C 
(7.14) 

t i) kh At 
= 0 . 0 0 2 2 3  _ 

C/) y C 
(7.15) 

mwB - 0 . 0 8 3 4  
Tq.,.c P,c 

..,C T.c 

= 0 . 0 0 0 2 8 9 ~  
Tq~.c 

(7.16) 

m 

Z Tq.,.c P.,.c 
mWB - 0 . 0 8 3 4 - -  

C T,,c 

= 0 . 0 0 0 2 8 9  ZTq"c 
C 

(7.17) 

mWB -- 0 . 0 4 1 7  ZTq"c p'~ 
pC T,.c 

Z T q.,.c 
= 0 . 0 0 0 1 4 5  _ 

pC 

(7.18) 

m - 4 2 . 9 8  Tq''c P.,.c 
kh T,~, 

= 0 . 1 4 9 2  Tq''C 
kh 

(7.19) 

m = 4 2 . 9 8  ~ZTq~c P.~.c 
kh Tsc 

= 0 . 1 4 9 2 ~  
l~ ZT q.,.c 

kh 

(7.20) 
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m = 21.49 r Psc 
pkh T~.c 

= 0.0746 r 
pkh 

S'-1151( Am(p)'hr-l~ m OCtictir w2 + 3.10 1 

S'1"151( Ap21~r~176 m ~+3.10~,l.lCt r2w ] 

Am(p)slcin =(0.1296T/kh)(qn,scS'n-qn_l,scS'n_ 1) 
=(O'1296T/kh)(qn - qn-l)sc S + D(q2n - qn-12 )sc 
=(O'1296T/kh)(qn -qn-1)sc[ S + D(qn + qn-1)sc] 

Tq,~c m 

m(p pv ) = re(p, )-  0.000289 
~b /a i ct, hA 

T = m(p;)- 0.000289 Gp 
O/ai cti hA 

At 

m(p)-m(pwf)=O'1491f-II~ A/r2wC A + 0.351 + 0.87Slq~. ~. +0.1296 ~T 2 kh Dq~c 

m(p)-m(pwf )= 0.1491---T( 2kh  log 0"472rerw +0.87Siq,c +0.1296 ~khT Dq2 c 

2 
+ 3.10 + 0.87S1q.,. C + 0.1296----T Dq 2 

kh .~.c 

qsc,AOF = 2b 

(7.21) 

(7.22) 

(7.23) 

(7.25) 

(7.27) 

(7.29) 

(7.30) 

(7.31) 

(7.32) 

Chapter 8 

(qB)t = qoBo + qwBw +qgBg 
= qoBo +qwBw +(qsg -qoR.,.)Bg 

(8.1) 
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P D  = 

(k/~), h 
18.66(qB)t 

ap 

t D = 
0.000356(k//d), At 

C j) 
t D = O.O00223.(k//d)t..hkt 

C 

m - 2 1 . 5 ~  
(q~), 

(k/C,), h 

S - 1.151( Apll~ 
m 

_ log (k/~'), 
~C t r w 

+3.101 

kh 
PD = ~ Am(p) 

18.66q o 

0.000356k 
tD= ~ At 

ko 

/do Bo 
~ = a p  

ah A(p2 ) 
PD 37 "" qo .DD 

m -  42.97 q--C~ 
ah 

s_ 1.15 l(p~,~,--p~, log tkJ~! 
m ~C t rw 

+3.1o I 

ko --- 

37.33qo prc/(~o~o),~j PM 

(8.4) 

(8.5) 

(8.6) 

(8.7) 

(8.8) 

(8.12) 

(8.13) 

(8.16) 

(8.17) 

(8.18) 

(8.19) 

(8.20) 

Chapter 9 

k h  = ~c i,~ jcD / 0.00223 At MATCH 
(9.2) 
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S - 0 .51n  (C D e 2S )MATCH 
0"1592C/r hr 2w 

0.00223kh At(pi_pwf( t ) )= dp> 
C/a(Pi -Po )  dlnt> 

 ctp -po, / 1 k h = -01-0-0 22-3 At(p, - P w f ( t ) ) 
MATCH 

dPD 
0.00223khQt/1 (tp + AtOp i - p)= d In t D 

18.66Bht _ )q(t) 
qD=kh(p i  Pwf 

F 

1 = 21.5 By /logAt + log k - 
q kh(pi-Pwf) L r 

k h -  21.5 
B/,t 

mq (Pi - Pwf ) 

mq ~b/act r2w + 3.10 

1 k h ( p i - P w f )  1 
qD 18.66B/a q(t) 

m =0.1492 q 

1 kh[m(Pi)-m(pwf)] l 
qD 0.1296 T q,c (t) 

0.0449T 

3.10+ 0.87S] 

(9.3) 

(9.4) 

(9.5) 

(9.6) 

(9.7) 

(9.8) 

(9.9) 

(9.10) 

(9.11) 

(9.12) 

(9.13) 

(9.14) 



NOMENCLA TURE 

a = intercept of the stabilized 
deliverability straight line, Fig. 7.4. 
7.8, psia2D/cp/Mscf, or constant in 
Eq. 8.16 

A = area, Eq. 5.13, sq ft 
b = slope of the stabilized deliverability' 

straight line, Fig. 7.4.7.8. 
psia2DZ/cp/(Mscf 2) 

B = formation volume factor. RB/STB 
Bg = gas formation volume factor, Eq. 8.1. 

RB/scf 
Bo = oil formation volume factor, Eq. 8.1. 

RB/STB 
Bw = water formation volume factor. Eq. 

8.1, RB/STB 
C = wellbore storage coefficient, Eq. 1.7, 

Bbl/psi, or constant in Eq. 7.28 
CA = shape factor 
CD = dimensionless wellbore storage 

coefficient, Eq. 2.5.7.12.7.13 
C])~ = dimensionless wellbore storage 

coefficient based on equivalent 
wellbore radius, Eq. 3.13 

CD3 = dimensionless wellbore storage 
coefficient based on half fracture 
length, Eq. 3.10. or on fissure 
parameters, Eq. 4.13 

Cz),,-,, = dimensionless wellbore storage 
coefficient based on total system 
parameters, Eq. 4.14 

c, = formation compressibility,, psi -~ 
cg = gas compressibility, Eq. 7.2, psi -~ 
co = oil compressibility, psi ~ 
Cs = apparent wellbore storage coefficient 

for a stimulated well, Eq. 3.1, Bbl/psi 
cl = total compressibility, Eq. 1.3 and 8.3, 

"-1 psi 

c t = total compressibility at average test 

pressure, section 7.2.2, psi t 
ct, = total compressibility at initial 

pressure, section 7.2.2, psi t 
Ctl,2,/ = total compressibility in layered, Fig. 

4.41, or composite reservoir, Fig. 
4.51, psi ~ 

c~ = water compressibility, psi -~ 
D = turbulent, Eq. 7.24, D/Mscf, or 

friction flow coefficient, Eq. 3.49, 
D/Bbl 

d,D = dimensionless distance of linear 
composite interface i, Eq. 1.34 

e = exponential ( 2 .7182 . . . )  
Ei = exponential integral 
F = storativity ratio (inner zone / outer 

zone), Eq. 4.79 
F ~  = dimensionless conductivity of finite 

conductivity fault, Eq. 5.28 
F, = storativity ratio in radial composite 

layer i, Eq. 4.79 
g = gravitational acceleration, f t /sec  2 

G = dimensionless pressure drop in a low 
conductivity fracture, Eq. 3.15 

g~ = gravitational acceleration conversion 
lector 

G, = initial gas volume, Eq. 7.26, Mscft 
G], = cumulative volume of gas produced, 

Eq. 7.26, Mscft 
17 = formation thickness, ft 

h, = apparent formation thickness, Eq. 
3.27, ft 

hj = matrix skin thickness, Fig. 4.27, ft 
1717 = dimensionless reservoir thickness- 

anisotropy group, for a well in partial 
penetration Eq. 3.19, for a horizontal 
well Eq. 3.30 

hf = fissures thickness, Eq. 4.1, ft 
]7, = perforated interval length, Fig. 3.15, 

ft 
/7 ..... b.~ = observation interval length, Fig. 9.10, 

ft 
ht,2.] = layer thickness, Fig. 4.41, ft 

17' = semi-permeable wall thickness, Fig. 
4.41, ft 

Ah = change of liquid level depth, section 
1.2.2, ft 

Ah/ = change of liquid level during interval 
j, Table. 9.1, ft 

Ah'j = time rate of change of liquid level 
during interval j,  Table. 9.1, ft 

k = permeability, md 

k = average horizontal permeability in 

anisotropic system, Eq. 3.3 and 6.5, 
md 

ka = altered permeability near a finite 
conductivity fault, Eq.5.29, md 

kj = matrix skin permeability, Fig. 4.27, 
md 
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kj. = permeability in fracture, Fig. 1.14, or 
fissures, Eq. 4.1, or semi-permeable, 
Fig. 5.32, or finite conductivity fault, 
Fig. 5.37, md 

kjDwj~ = dimensionless fracture conductivity, 
Eq. 3.14 

kg = effective permeability to gas, Eq. 8.2, 
md 

k~ = horizontal permeability, md 

kH = average horizontal permeability in 
layered system, Eq. 3.55, md 

k,, = matrix permeability, Fig. 4.27, md 
k m a  x = maximum directional permeability, 

Eq. 3.3, Fig. 6.9, md 
kmin = minimum directional permeability, 

Eq. 3.3, Fig. 6.9, md 
ko = effective permeability to oil, Eq. 8.2, 

md 
k,.x. .... = relative permeability to gas, oil and 

water, Eq. 8.9, fraction 
ks = permeability in the skin zone, Fig. 

1.12, or spherical permeability, Eq. 
1.30, md 

kv = vertical permeability, Fig. 3.15 & 
3.24, md 

k v = average vertical permeability in 
layered system, Eq. 3.56, md 

kx,y.~ = directional permeability, Fig. 3.40, or 
components of permeability tensor, 
Eq. 6.5, md 

k~ = effective permeability to water, Eq. 
8.2, md 

k z l , 2  fl = layer vertical permeability, Fig. 4.41, 
md 

kl.zd = permeability in layered, Fig. 4.41, or 
composite reservoir, Fig. 4.51, md 

k'~ = semi-permeable wall vertical 
permeability, Fig. 4.41, md 

L = distance (Fig. 1.21, 4.51), or half 
length of an horizontal well, Fig. 
3.24, ft, or smoothing coefficient, 
Fig. 2.21, or liquid mole fraction, Eq. 
8.15 

La = apparent effective half length of an 
horizontal well in anisotropic system, 
Eq. 3.54 

Lc~) = dimensionless critical distance of a 
sealing fault, Eq. 5.34 

L~p = apparent distance of constant pressure 
boundary in a finite conductivity fault 
response, Eq. 5.32 

LD = dimensionless distance, Eq. 1.34 

LeIl = effective half length of an horizontal 
well producing in several segments 

LjD = dimensionless distance of boundary j, 
Eq. 1.34 

m = straight line slope during radial flow, 
Eq. 1.15, psi/cycle, Eq. 7.19, 
psia2/cp/cycle, Eq. 7.20, psia2/cycle, 
Eq. 7.21, psi/cycle 

M = mobility ratio (inner zone / outer 
zone), Eq. 4.78 

mBLF = straight line slope during bilinear 
flow, Eq. 1.27 or 3.51, psi/(hrl/4), or 
Eq. 9.14, D/(Mscf.hr TM) 

inch = straight line slope during linear flow 
in a channel, Eq. 5.5, psi/(hr 1/2) 

mcp = derivative straight line slope in case 
of a constant pressure boundary, Eq. 
5.26, psi.hr 

mhc h = straight line slope during semi-linear 
flow in a channel, Eq. 5.16, psi/(hr 1/2) 

m ~  = straight line slope during horizontal 
radial flow, Eq. 3.35, psi/cycle 

Mi = mobility ratio in radial composite 
layer i, Eq. 4.78 

mk~ = straight line slope during linear flow 
to a fracture, Eq. 1.25, psi/(hr 1/2) 

mq = 1/q straight line slope during radial 
flow, Eq. 9.8, 9.12, 1/(BOPD. cycle) 

maLv - straight line slope during radial linear 
flow, Eq. 3.50, psi/cycle 

rasp H = straight line slope during spherical 
flow, Eq. 1.29, psi.hr 1/2 

mVP, F = straight line slope during vertical 
radial flow, Eq. 3.31, psi/cycle 

mWBS = straight line slope during wellbore 
storage effect, Eq. 1.9, psi/hr, Eq. 
7.16, psia2/cp/hr, Eq. 7.17, psia2/hr, 
Eq. 7.18, psi/hr 

m w e d g  e = straight line slope during fraction of 
radial flow in a wedge, Eq. 5.12, 
psi/cycle 

m* = straight line slope during pseudo 
steady state, Eq. 1.35, psi/hr 

re(p) = pseudo-pressure (or real gas 
potential), Eq. 7.3, psia2/cp, Eq. 8.10 
and 8.14, psia/cp 

n = number of fissure plane directions, 
Fig. 4.27, or laminar- turbulent 
coefficient in Eq. 7.28 

p = pressure, psia 
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p = average pressure, Eq. 5.21, in layered 

system, Eq. 4.77, or average test 
pressure, section 7.2.2, psia 

PBt:J) = dimensionless build-up pressure. Eq. 
2.12 

Pl) = dimensionless pressure, Eq. 2.3.7.7, 
7.8, 7.9 

Pz) = dimensionless average pressure. Fig. 

5.25, Eq. 5.22 & 5.24 
PD.MBH = M.B.H. dimensionless pressure. Eq. 

5.22 
PDee = dimensionless pressure ratio. Eq. 9.1 

pf = pressure in the fissures, psia 
p, = initial pressure, psia 

p, = average initial pressure in la\ercd 

system. Eq. 4.76, psia 
PI = productivity index. Eq. 1.37. 

(STB/D)/psi 
p/ = pressure at end of interval j, Table. 

9.1. psia 

p.j = average pressure during interval j. 

Table. 9.1, psia 
p,,, = pressure in the matrix, psia 

PM = pressure match, Eq. 2.22, psi -1 
/)vJ<> = dimensionless multirate pressure, Eq. 

2.17 

Pvv = average reservoir pressure of Eq. 

7.27, psia 
P,v' = reference pressure for Eq. 8.16, psia 
P,,-o = standard pressure condition (14.7 

psia) 
pw = bottom-hole pressure, psia 
pwf = flowing bottom-hole pressure, psia 
P~0 = flowing bottom-hole pressure at end 

of period j, section 7.3, psia 
Pws = shut-in bottom-hole pressure, psia 
P,,.v = shut-in bottom-hole pressure at end of 

period j, Fig. 7.9, psia 
P~:~,:.,.~ah = stabilized flowing bottom-hole 

pressure, section 7.3, psia 
P0 = reference pressure used for pseudo- 

pressure, Eq. 7.3, or pressure above a 
DST valve, Fig. 9.1, psia 

P'D = dimensionless pressure derivative 
p* = extrapolated Homer pressure, Fig. 

2.8, psia 
PD* = dimensionless extrapolated Homer 

pressure, Fig. 5.25 & 5.26 
~3p = vertical distance between two semi- 

log straight lines, Eq. 4.29, psi 

Ap = pressure change, Eq. 1.1 & 1.2, psi 
ApB U = build-up pressure change, Eq. 1.2, psi 

Apski n = pressure change due to skin, Eq. 1.11, 
psi 

Ap' = pressure derivative, Eq. 2.23, psi 

/~P*int - - t i m e  zero intercept of the pseudo- 
steady, state straight line m*, Eq. 5.17 
& 5.18, psi 

AN~ h~ = pressure change at 1 hour on the 
semi-log straight line, Fig. 1.9, psi 

q = flow rate. STB/D or Mscf/D (= 
103scft/D) 

c/j~ = dimensionless flow rate, Eq. 9.7 
q/z) = dimensionless flux per unit of 

fracture length, Eq. 3.16 
qg = sand face gas rate at standard 

conditions, Eq. 8.1, Mscf/D 
q,> = tractional rate of layer i, Eq. 4.70, 

4.71, 4.72 
ql = rate during the period j in a multiple 

rate sequence, Fig. 2.9 or Table. 9.1, 
STB/D 

LT qiD = late time stabilized fractional rate of 

layer i, Eq. 4.66 
qj.,~ = gas rate at standard conditions during 

period j, Eq. 7.25, Mscf/D 
qo - oil rate, Eq. 8.1, STB/D 
q,~ = gas rate at standard conditions, 

MsclTD 
q,g = surface gas rate at standard 

conditions, Eq. 8.1, Mscf/D 
O~ = cumulative volume produced, Eq. 

9.6, STB 
q,, = water rate. Eq. 8.1, STB/D 

i" = radial distance to the well, ft 
R = distance of radial composite interface, 

Fig. 4.51, ft, producing gas - oil ratio, 
Eq. 8.11 

rD = dimensionless radius, Eq. 1.21 
RD = dimensionless distance of radial 

composite interface, Eq. 1.21 
rj) ...... ~ = dimensionless apparent distance of 

observation well, Eq. 6.6 
r~ = reservoir radius in Eq. 7.30, ft 
t) = fracture radius, Eq. 3.52, ft 
r~ = radius of investigation, Fig. 1.5, Eq. 

1.23 & 1.24, ft 
~-,~) = dimensionless radius of investigation, 

Eq. 1.22, or of influence of the 
fissures, Eq. 6.12 
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Rjz) = dimensionless interface distance in 
multiple radial composite, or in radial 
composite layerj  

r,, = matrix blocks size, Fig. 4.27, Eq. 4.7, 
ft 

rs = radius of the skin zone, Fig. 1.8, or 
equivalent spherical radius, Eq. 1.29, 
ft 

Rs = dissolved GOR, Eq. 8.1, scf/STB 
R,w = dissolved gas - water ratio, Eq. 8.3, 

scf/STB 
rw = wellbore radius, Fig. 1.5, ft 

r .... = equivalent wellbore radius, Eq. 1.14 
or 3.6, ft 

S = skin coefficient, Eq. 1.11 

S = average skin in layered system, Eq. 
4.75 

Sani = anisotropy skin, Eq. 3.7 
Sch = geometrical skin during linear flow in 

a channel, Eq. 5.3 
Sj = false skin calculated from total 

system parameters, Eq. 4.30 or skin 
factor across a finite conductivity 
fault, Eq. 5.29 

Sg = gas saturation, Eq. 8.3, fraction 
S~ = geometrical skin Table 3.7, for 

horizontal well, Eq.3.39 and Fig. 
3.31, 3.32 

Si = skin of layer i, Fig. 4.41 
SHay = geometrical skin of an infinite 

conductivity fracture, Eq. 3.12 
SL = pseudo-skin in layered system, Eq. 

4.74 
SL~F = geometrical skin of a low 

conductivity fracture, Eq. 3.15 
Sm = matrix skin, Eq. 4.36 
So = oil saturation, Eq. 8.3, fraction 
So,- = oil residual saturation, fraction 
Se~, = geometrical skin of a well in partial 

penetration, Eq. 3.18 
Sac = radial composite skin, Eq. 4.91 

S~. = total skin of a well in partial 
penetration, Eq. 3.17, or slanted Eq. 
3.26 

STH = total skin during horizontal radial 
flow, Eq. 3.38 

STy = total skin during vertical radial flow, 
Eq. 3.32 

S~F = geometrical skin of a uniform flux 
fracture, Eq. 3.11 

Sw = water saturation, fraction, or skin 
factor in front of the perforated 
interval 

Swi = initial water saturation, fraction 
Sz = partial penetration skin during linear 

flow to a horizontal well, Eq. 3.34 
Sz~ = partial penetration skin during 

horizontal radial flow to a horizontal 
well, Eq. 3.36 

$2r = double porosity skin, Eq. 4.41 
So = geometrical skin of a slanted well, 

Eq. 3.23 
S' = rate dependent skin coefficient, Eq. 

7.22, 7.23, 7.24 
S'. = rate dependent skin coefficient during .1 

period j, Eq. 7.25 
S'w = apparent skin during vertical radial 

flow based on vertical well model, 
Eq. 3.41 

t = time, hr 
T = absolute temperature, ~ 

tD = dimensionless time, Eq. 2.4, 7.10, 
7.11 

tz)A = dimensionless time based on drainage 
area, Eq. 5.15 

tDf = dimensionless time based on half 
fracture length, Eq. 3.8, or on fissure 
parameters, Eq. 4.11 

tDf+,, = dimensionless time based on total 
system parameters, Eq. 4.12 

tz)L = dimensionless time based on half well 
length, Eq. 3.29, or on channel width, 
Eq. 5.2 

ti = time at start of the period i in a 
multiple rate sequence, Eq. 2.17, hr 

TM = time match, hr -1 
tp = production time, Fig. 2.4, hr 

tpD = dimensionless production time 
tpDA = dimensionless production time based 

on drainage area 
t m = pseudo-time, Eq. 7.4, hr 

tp.,, = time of start of pseudo-steady state 
regime, hr 

T.~.c = standard temperature condition, 
(520~ ~ 

At = elapsed time or build-up time, Fig. 
2.4, hr 

At, = intersection time of two semi-log 
straight lines or midpoint of 
derivative transition, Eq. 1.33, hr 

V = volume, bbl, or vapor mole fraction, 
Eq. 8.15 

Vf = fissures volume per unit reservoir 
volume, Eq. 4.2, fraction 

V~ = pore volume of closed layer i, Eq. 
4.77, cu ft 
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V,,, = matrix volume per unit reservoir 
volume, Eq. 4.2, fraction 

/,~,, = wellbore volume per unit length, Eq. 
1.8, bbl/ft 

Vw = wellbore volume, Eq. 1.7, bbl 
AV = change in volume, bbl 

x = coordinate, Fig. 6.9. ft 
.x~, = half length of a rectangular reservoir. 

Fig. 3.4, ft 
x/ = half fracture length. Fig. 1.11. ft 
y = coordinate. Fig. 6.9. ft 

Ye = half  width of  a rectangular reservoir. 
Fig. 3.4. ft 

w, = thickness of the altered permeability' 
region near a finite conductivity fault. 
Eq. 5.29 

%, = fracture, or semi-permeable, or finite 
conductivity fault width. Fig. 1.14 or 
5.32 or 5.37. ft 

Z = real gas deviation factor. Eq. 7.1 

Z = real gas deviation factor at average 
test pressure, section 7.2.2 

Z, = real gas deviation factor at initial 
pressure, Eq. 7.5 and section 7.2.2 

-,, = distance from the center of the 
perforated interval. Fig. 3.15. or from 
a horizontal well. Fig. 3.24. to the 
lower reservoir boundary, t't 

- .... = apparent distance from a horizontal 
well to the lower reservoir boundary. 
Eq. 3.28, t~ 

z,~._ob.,. = distance from the center of the 
observation interval to the lower 
reservoir boundary,. Fig. 9.10, ft 

a = geometric coefficient in 2. Eq. 4.6. or 
transmissibility ratio of a semi- 
permeable fault. Eq. 5.27 

/5' = parameter in transition curve for an 
observation well with double porosity 
transient interporosity floxv. Fig. 6.20. 
Eq. 6.13 and 6.14 

/5" = transition curve for a well with 
wellbore storage and skin, double 
porosity transient interporosity flow, 
Fig. 4.16, Eq. 4.31 

2" = Euler's constant ( 1 . 7 8 . . . )  
A = difference 

4 = storage of  one group of  matrix blocks 
per unit of  matrix storage, Eq. 4.40, 
fraction 

b" = constant of  in fl', Eq. 4.32 & 4.33 
0 = angle between a slanted well and the 

vertical, or between two intersecting 
faults, Fig. 5.14 

0,, = well location in a wedge, Fig. 5.14 
0,,' = transformed angle for a slanted well 

in anisotropic system, Eq. 3.24 
tc = mobility ratio, Eq. 4.44 

K~ = mobility ratio of layer j,  Eq. 4.67 
A = interporosity flow coefficient, Eq. 

4.5, or layer, Eq. 4.46 

}~efl"  - -  effective interporosity flow 
coefficient, Eq. 4.38 & 4.39 

2J = interlayer flow coefficient of  layer j, 
Eq. 4.69, or in radial composite 
layered system. Eq. 4.46, or 
interporosity flow coefficient in 
fissured layer, or in fissured 
composite system, Eq. 4.5 

2, = total mobility, Eq. 4.96 

/z = viscosity, cp 

/_l~, = gas viscosity, Eq. 8.2, md 
/,z, = viscosity' in composite reservoir, Fig. 

4.51. or at initial pressure, Eq. 7.5 
and section 7.2.2, cp 

/4, = oil viscosity.', Eq. 8.2, md 
/_z,, = water viscosity, Eq. 8.2, md 

/,z = viscosity at average test pressure, 

section 7.2.2, cp 
/9 = density, Eq. 1.8, lb/cu ft 

p~,.g = molar density of  oil or gas, Eq. 8.14 
r = porosity,, fraction 

~.l = fissures porosity, Eq. 4.2, fraction 

r = matrix porosity, Eq. 4.2, fraction 

r = porosity' in layered, Fig. 4.41, or 
composite reservoir, Fig. 4.51 

F ( p )  = ,,Lv) 

co = storativity ratio in fissured, Eq. 4.4, 
or layered system, Eq. 4.45 

co, = storativity ratio of layer i, Eq. 4.68, or 
in radial composite layered system, 
Eq. 4.45, or fissured layered or 
fissured radial composite system, Eq. 
4.4 
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S U B J E C T  I N D E X  

A 
Absolute open flow potential, 4, 303.313, 

315, 318 
Acidized well: See Well. stimulated 
Aflerflow: See Wellbore, storage 
Agarwal time: See Time, effective 
Angle: 
- of intersecting faults: See Boundary. 

intersecting 
- o f  slanted well: See Slanted well 
Anisotropy of permeability: See Permeability 
AOFP: See Absolute open flow potential 
Apparent wellbore radius: See Wellbore. 

radius, equivalent 
Apparent well length: See Horizontal well, 

effective length 
Average pressure: See Pressure 

B 
Back pressure test. 4, 315-316 
Bi-linear floxv. 35.40-41. 148. 254. 365 
- t o  finite conductivity fracture: See Fractured 

well, finite conductivity 
- t o  a conductive fault: See Fault. conductive 
Bottom hole rate: See Rate, sand lace 
Boundary, 2, 148, 265,267-268, 354, 368- 

371 
-, closed, 20-22.42.56, 184. 189. 203. 210, 

217, 225-238, 243. 255. 259-262. 264-265. 
267, 269-270, 281,289-290. 312.314. 342. 
344, 358, 365, 367 

- - - - a n a l y s i s ,  229-238 
- - -  log-log responses: See Log-log, 

derivative hump or straight line, derivative 
stabilization in bounded systems or pressure 
stabilization or unit slope 

- ~ -  See Radial flow 
- - - ,  build-up in, 21,225-226. 233-238. 260 
- - - ,  drawdown in, 20-21, 42, 225-232,260 
- - - - - P s e u d o  steady state, 6, 20-22, 39, 42, 

225-233,260-261. 281,290. 309.312, 314. 
326, 342, 344, 365, 367 

- -  ~ reservoir area or size or pore volume 
or storage, 21-22, 180, 227-229, 231-232, 
237, 260, 342, 370 

- - -  reservoir shape and well location, 
231-232, 237 

- - - ,  depletion in, 21,225,233,237, 243, 
260, 305, 312, 314 

-, constant pressure, 6, 22, 69-70, 77, 107, 
109. 184, 190, 217, 234, 238-243,247, 250- 
251,255-256, 264, 268-269, 314, 358-359, 
365, 366 

- -  analysis, 242-243 
log-log responses: See Log-log, 

derivative hump or straight line, derivative 
stabilization or derivative negative unit 
slope or pressure stabilization 

- - -  See Radial flow 
- - -d is tance ,  240-242, 373-375 
-, intersecting sealing, 159, 218-224, 226, 

229, 256, 267, 270 
- -  analysis, 222-223 
- - -  log-log responses: See Log-log, 

straight line, derivative stabilization in 
bounded systems or half unit slope 

- -  - -  See Radial flow, or fraction of 
- - - .  angle between, 220-223 

. distance and well location between, 
220-222 

- parallel sealing, 23, 96, 148, 210-218, 222- 
223,229. 254, 259, 262-267, 270, 281,368- 
370 

- - -  analysis, 213-218 
- - -  log-log responses: See Log-log, 

derivative build-up distortion or valley or 
straight line, derivative stabilization in 
bounded systems or half unit slope 

- - -  See Radial flow 
, linear flow, 210-215, 218, 229-230, 

259, 262-264, 266-267, 365, 367 
, hemi, 230-231 

- - - ,  width and well location between, 210, 
212-216, 218, 231,259, 262-264, 267 

-, single linear: 
. conductive: See Fault 
, sealing, 17-20, 34-35, 43-44, 90, 116, 

155-156, 190-191,205-210, 220, 229, 241, 
244, 246, 250, 253-254, 257-258, 267, 270, 
281-282, 368-369 

- - -  - -  analysis, 207-210 
log-log responses: See Log-log, 

derivative build-up distortion or straight 



line, derivative stabilization in bounded 
systems 

See Radial flow, or hemi 
- - -  , distance to, 19-20, 95, 156, 205-209, 

258-259, 373-375 
- - - ,  semi permeable (or communicating): 

See Fault 
-, upper or lower, 70, 72, 77-78, 90, 103-104, 

107, 268-269 
Build-up: 
-derivative distortion: See Log-log 
- in heterogeneous reservoir: See Composite 

or Fissured or Layered 
- in homogeneous bounded reservoir, 21, 

209-210, 216-218, 224, 233-238, 242, 246- 
247, 251-252, 358-360, 368-371 

- in infinite homogeneous reservoir, 29-36, 
42-44, 60, 75, 95-97, 311-312, 325-326, 
328, 335-337, 339-340, 345-346, 353-354, 
361-363,375 

- pressure, 2, 30, 226 
-test ,  3, 4, 225-226, 316, 319, 332, 335-337, 

340, 345-346, 352-354, 368-371 
- -  example: See Example 
-type-curve: See Type-curve, build-up and 

derivative 

C 
Channel reservoir: See Boundary, parallel 
Closed reservoir: See Boundary 
Clean-up, 4, 354 
Commingled: See Layered reservoir 
Composite reservoir, 180-204, 217, 366-367 
- --- analysis, 191-192 
- - -  log-log responses: See Log-log, 

derivative build-up distortion or hump or 
valley or straight line, derivative 
stabilization in composite reservoir 
response or unit slope 

- -  ~ See Radial flow 
-, boundaries in, 262-266 
-, build-up in, 189-190, 264-265 
-, fissured: See Fissured reservoir 
-, interface in, 182, 193, 195-196 
-, interference test in: See Interference 
-, layered, 202-204, 261 
-, linear, 181-183, 190-193, 195,205, 238, 

245, 262-266, 290 
-, mobility ratio in, 182, 184-185, 187-188, 

190-193, 195-198, 202, 249, 286-287, 289- 
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-, radial, 53,112, 151,181-190, 192-198, 
200-204, 246, 265, 279, 286-290, 327 

, estimating interface distance in, 186, 
188, 195, 197-198, 202-204 

-, storativity ratio in, 182, 185-186, 192, 195, 
288-290, 367 

- transition behavior in, 184, 186, 189, 192, 
195, 197-198, 201 

Compressibility: 
-, gas, 304-305,322, 361 
-, oil, 5, 8, 322, 361 
-, total, 5, 156, 373 

,effective, 322-323 
-, water, 5, 322 
Computer package: See Software 
Conductive fault: See Fault 
Constant pressure boundary: See Boundary 
Constant pressure test, 33 l, 340-346 
Crossflow: See Interlayer flow 

D 
Damage: See Well 
Darcy: See Non Darcy flow 
Decline curve: See Type-curve, rate 
Deliverability test: See Gas, well test 
Depletion: See Boundary, closed 
Derivative, 34, 36-46, 51,195-196, 334, 340, 

353, 360 
- analysis: See Log-log 
-, build-up, 42, 353 
-, estimating, 44-45 
- -  smoothing, 44, 359, 364 
- o f  second order, 50, 340 
-, normalized: See Log-log 
- straight line: See Log-log 
- with respect to time, 57, 21 l, 274, 334 
Design: See Test design 
Diagnosis, 4, 22, 25-26, 35, 45, 51-52, 269- 

270, 300, 353,358-360, 365-367 
Differentiation: See Derivative 
Dimensionless: 
- d e r i v a t i v e ,  37, 334, 338 
- distances, 12, 20 
-pressure, 26-27, 120, 163, 172, 182, 307, 

323,325, 328, 333 
- quantities, 10, 13, 25-26, 51, 84-85,309 
- r a t e ,  341,343, 345 
- t ime,  26-27, 56, 85, 120-121,123, 163, 172, 

182-183,212, 227, 274, 284, 291,308, 323, 
325 
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Double permeability reservoir: See Layered 
reservoir 

Double porosity reservoir: See Fissured 
reservoir 

Drainage area, 6, 9, 12, 19, 373-375 
Drawdown, 
-, extrapolated, 30-32.34 
- derivative. 36-44 
- pressure, 1. 226 

- test, 3 .7 .29,  99. 225. 325. 3 2 8 . 3 5 8 . 3 6 1 .  

363 
- -  See Test history plot 
Drillstem test, 4, 331-337, 340 
-, build-up period of. 335-337 
-, slug period of. 332-335. 337 
DST: See Drillstem test 

E 
Effective time: See Time 
Effective wellbore radius: See Wellbore. 

radius, equivalent 
Effective well length: Nee Horizontal well 
Elliptical flow: See R/t-dial flow. pseudo 
Equivalent production time: See Horner 
Equivalent wellbore radius: See Wellbore 
Example. 26, 28-29.32-33.39.68.78-79.98- 

99, 157-159, 174-175.224. 256-257. 261- 
262, 319-320 

Exponential integral, 11-12. 206. 273-274. 
291 

Extrapolated pressure: See Pressure 

F 
Falloff: See Injection 
Fault: 
-, conductive (or communicating), 195,238, 

241,243, 245, 247-252 
- -  analysis, 251-252 
- - - - - ,  bi-linear flow. 247. 249. 252 
- - -  log-log responses: See Log-log. 

derivative hump or valley or straight line, 
derivative negative unit slope or 
stabilization in bounded systems or quarter 
unit slope 

- - - ~  See Radial flow 
- - - ,  conductivity of. 248-249, 251-252 

, skin factor in, 249-252 
-, sealing: See Boundary, linear 

-, semi permeable (or partially 
communicating), 181,234, 243-247, 249, 
264 

- -  analysis, 246-247 
log-log responses: See Log-log, 

derivative hump or straight line, derivative 
stabilization in bounded systems 

- - -  See Radial flow 
. transmissibility ratio of, 245-246, 249 

Fissure: 
- flow: See Fissured reservoir, behavior 
- network, 110, 116-118, 243,267 
- - - g e o m e t r y ,  117-119, 138, 142, 149, 151- 

154, 198-202 
- - - - :  See Matrix blocks 
- - -pe rmeab i l i ty ,  118, 122, 137 
- - -  porosity. 118 
- - -  storativity, 119-120, 122 
- - -  volume, 118-119, 162 
-, radius of influence of: See Radius 
Fissured reservoir, 49, 53, 104, 110, 112, 

116-159, 181, 199-202, 243,248, 252-257, 
290-296, 301,342, 366-367 

-analysis,  125-126,128-129, 131-137, 140, 
142-143,145-147 

- -  log-log responses: See Log-log, 
derivative build-up distortion or hump or 
valley' or straight line. derivative 
stabilization in fissured reservoir response 

- -  See Radial flow 
- behavior: 
- - - f i s s u r e  flow, 122-132, 134, 137, 140, 

143-144, 146, 150, 152-154, 199-201,257, 
267, 290-296 

- - - t o t a l  system flow, 122-132, 134, 137- 
139-141, 143-144, 146-147, 152-154, 201, 
257, 291-292. 296 

- - -  - - .  time of start oK 128, 130, 142, 145, 
150, 153 

- - -  transition regime, 122-124, 127-131, 
134, 136. 137-145, 147-148, 150, 152-155, 
158. 199-201,255-257, 291-296 

-. boundaries in, 148, 235,252-257 
-, build-up in, 133-137, 146-147 
-, composite, 200-202 
-, horizontal well in, 110, 116,148 
-, interference test in: See Interference 
-interporosity flow (parameter), 119-120, 

1 4 8 ,  1 5 6  

, estimating, 126, 128, 133, 140, 292, 
294, 296 

, effective, 120, 122, 148-151, 163, 178 
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influence of, 130-131,144-145, 152- 
153, 199-201 

, restricted, 116-117, 120, 121-137, 141, 
143, 150-158, 165, 171,186, 199-202, 253, 
255-257, 291-294, 367 

- ---, unrestricted, 104, 116-117, 137-151, 
154-156, 159, 177-178, 202, 207, 254, 295- 
296, 342 

-, layered, 199-200 
- matrix skin: See Matrix blocks, skin 
- pseudo skin: See Skin, in fissured reservoir 
-, storativity in, 123 

, fissure, 120, 122, 133, 152, 257, 291, 
293 

- - - r a t i o ,  118-119, 121,144, 155-156,291 
- - - - - ,  estimating, 125-126, 128, 132, 140, 

292-294 
, influence of, 129-130, 143-144, 199, 

291,295 
, total system, 120, 122, 133-134, 152, 

292 
Flow after flow test: See Backpressure test 
Flow regime, 6-22, 35, 39-40, 148, 309, 365, 

367-368 
-chronology of, 22-23, 25, 45, 365-367 
- ~  See Model, behavior 
Flux distribution to: 
- fractured well: See Fracture 
- horizontal well: See Horizontal well 
Formation volume factor, 5,322, 328 
Fractured reservoir: See Fissured reservoir 
Fractured well, 49-50, 55-68, 104-106, 181, 

279 
- analysis: 
- -  log-log responses: See Log-log, 

derivative hump or straight line, derivative 
stabilization in homogeneous reservoir 
response or half unit slope or quarter unit 
slope or unit slope 

- ~  See Radial flow, pseudo 
- fracture (half) length, 13-14, 56, 61, 64, 85, 

89 
- - - ,  estimating, 14, 55-56, 61, 67, 105 
- flux distribution to, 56, 67-68, 99 
- horizontal: See Horizontal well 
- with infinite conductivity, 13-14, 22, 49, 

55-61, 64, 65, 67-68, 86, 89, 92-93, 95-96, 
99, 116 

- ~  analysis, 57-59, 60-61 
_ _ _ w ,  linear flow, 14, 39-40, 55, 60, 62, 65, 

67, 105-106, 343,356 
- with finite conductivity, 15-16, 62-68, 99, 

104-105, 116, 248, 280, 342-343, 345 

, analysis, 64-68, 104-106 
, bilinear flow, 15, 40-41, 62, 65, 67, 

105-106, 343,345 
, conductivity of, 16, 55, 62-65, 68, 105, 

252, 343, 345 
, estimating, 15-16, 63, 65, 67, 105, 

343, 345 
- w i t h  uniform flux, 55-61, 67-68, 
- with skin, 59-60, 63 

G 
Gas 
-cap,  6, 22, 69, 77, 81,107, 109-110, 238, 

268-269, 346 
- d r i v e :  See Solution gas drive 
- o i l  ratio, 322, 325, 328 
- properties, 304 
-, retrograde: See Retrograde gas condensate 
- well test, 4, 265,303-320, 343-345 
- - - ,  deliverability, 4, 303, 313-320 
- - -  - -  straight line, 313, 315, 317-318 
- - - ,  transient, 303,305-312, 361 
- - - -  rate decline, 343-345 
Geometrical skin: See Skin 
GOR: See Gas, oil ratio 

H 
Half unit slope: See Log-log, straight line 
Hemi-radial flow: See Radial flow 
Horizontal well, 5, 56, 80-81, 81-113, 116, 

148, 269, 280, 346, 366 
- analysis, 93-97, 104-105 
- -  log-log responses: See Log-log, straight 

line, derivative stabilization in 
homogeneous reservoir response or half 
unit slope or unit slope 

- -  See Radial flow, pseudo or vertical 
-effective length, 84, 86-89, 92-93, 95-96, 

100-103, 106-107, 109, 111 
-(half)  length, 82, 85, 99-103, 111 
-, finite conductivity, 83, 99-100 
-, fractured, 84, 104-106, 110 
-, flux distribution to, 99-100 
- in fissured reservoir: See Fissured reservoir 
- in layered reservoir, 106-110, 347 
- linear flow, 82, 86-89, 93-97, 100, 102-104, 

108, 148, 269 
-, multilateral, 84, 110-111 
-, partially open, 83, 99, 101-103, 110 
- - -  penetration ratio, 101, 103 
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-, (non) rectilinear, 83, 99, 103-104 
-, (non) uniform skin in, 83, 99-101 
Homer, 32-33, 35, 42, 60, 237-238, 340 
-, analysis: See Superposition, time 
- equivalent time, 238, 346, 352-353 
Humping: See Liquid level, changing 
Hydraulic fracture: See Fractured well 

I 
Image well, 206, 211,220. 227. 239. 257 
Impulse test, 331,337-340 
Inclined well: See Slanted well 
Inertial effect" See Non Darcv flow 
Infinite acting radial flow See Radial flow 
Initial pressure: See Pressure 
Initial shut-in. 3,332. 338 
Injection well, 180-181. 196-198.200. 202. 

240, 273.285,363 
- falloff. 3, 197-198 
- i n j e c t i o n  period, 3.30. 34. 197 
Instantaneous source: See Pressure. change. 

step 
Interface See Composite reservoir 
Interference" 
- effect, 102, 106, 111,363-364 
- test, 2-3,273-302 
- -  analysis: 
- - -  log-log responses See Log-log. 

derivative hump or valley or straight-line. 
derivative stabilization, or Type curve. 
interference 

- - - ~  See Radial flow 
- - - e s t ima t ing  storativity in. 273. 280. 284. 

292-293,299, 301 
- -  in homogenous reservoir, 274-280 
- - -  with boundaries, 281-282, 301 
_ w ~  with permeability anisotropy. 282- 

284 
in composite reservoir. 285-290 
in fissured reservoir, 290-296. 301 

- w  in layered reservoir. 297-299. 301 
- ~  type curve: See Type-curve or Line 

source 
- ~ ,  vertical, 72, 331,346-349 
Interlayer flow parameter: See Layered 

reservoir 
Interporosity flow parameter: See Fissured 

reservoir 
Intersecting boundaries: See Boundary 
Inverse problem, 4-5,268, 372 
Isochronal test, 4, 316-318 

L 
Layered reservoir, 5, 69, 73, 75, 84, 116, l l9, 

151, 160-180, 197, 199-200, 202-204, 254, 
257-262, 346, 348-349 

- a n a l y s i s ,  167-168, 171-174 
- -  log-log responses: See Log-log, 

derivative hump or valley or straight line, 
derivative stabilization in layered reservoir 
response or unit slope 

- -  See Radial flow 
- behavior: 
- - -  when all layers are perforated, 164-168, 

199-200, 202-204, 257-262, 297-298, 366- 
367. 370-371 

- -  when only one layer is perforated, 169- 
173,297. 348-349. 366 

- boundaries in, 254, 257-262, 267, 370-371 
-. build-up in, 180, 260, 370-371 
-. commingled, 160, 162, 164-165, 173, 175- 

176, 178-180, 199, 202-204, 257-262, 297, 
299. 370-371 

-. composite: See Composite reservoir 
-, fissured: See Fissured reservoir 
-, horizontal well in, 106-110, 347 
- interference test in: See Interference 
- interlayer flow (parameter), 108, 162-163, 

167-168, 171, 175, 177, 199-200, 203,297 
- - - .  pseudo steady state, 160-163, 178 
- -- .  transient, 160, 163, 177-178 
-mobili ty ratio, 162, 164-168, 170-173,175- 

179, 199, 202-203,258-260, 297 
-. multiple layer, 175-177, 202, 258 
-pseudo skin: See Skin, in layered reservoir, 

. commingled 
- pseudo steady state cross flow: See 

Interlayer flow 
-storativity ratio, 162, 165-168. 173, 175, 

177, 179, 199-200, 202. 257-261,297-299 
-total  system flow. 164-165. 169-175, 179, 

202-203. 258-261,298 
- - - .  time of start of, 167, 171 
- transient cross flow: See Interlayer flow 
-transition regime, 164-167, 169-170, 177- 

178, 199-200, 203 
Leaky fault: See Fault, semi permeable 
Limited entry: See Partial penetration 
Line source, 84, 206, 274, 277-279, 284, 291, 

300 
- S e e  Exponential integral or Type-curve, 

interference 
Linear boundary: See Boundary, single linear 
Linear flow, 35, 40, 309, 365 



- b e t w e e n  parallel boundaries: See Boundary, 
parallel 

- to infinite conductivity fracture: See 

Fractured well 
- t o  horizontal well: See Horizontal well 
Liquid level: 
-, changing, 8, 357, 362-363 
- ~  See Drillstem test, slug period of, or 

Wellbore, storage 
Log-log: 
- derivative curve: 
- - -  analysis, 36-46, 51-52, 112-113,353, 

355-367 
- - -  build-up distortion, 43-44, 97, 135-137, 

146-147, 189-190, 209, 216, 224, 234, 265, 
270,353,374 

- - - h u m p ,  38-39, 45, 50-51, 60, 78, 98, 127, 
186, 198, 203-204, 234, 241,243-245, 247, 
253,256, 260-261,264, 279, 287, 361,367 

- - -va l l ey ,  44, 126-127, 129-130, 141,150, 
152-155, 164-165, 167, 171,174, 177, 186, 
189, 199, 201,203,243, 248-249, 252-253, 
255-257, 265-267, 294, 353, 361,367 

- plot, 25-26, 50 
- - - ,  normalized, 51,354, 358 
- pressure curve: 
- ~  analysis, 26-29, 31, 36, 364 
- -  hump, 362-363 
- straight line: 
- ~ ,  derivative negative half unit slope, 41, 

70-72, 74, 78-79, 171, 177, 348, 365 
, derivative negative unit slope, 239, 241- 

242, 247, 249-250, 365 
, derivative stabilization: 

- -  ~ in bounded system response, 206- 
210, 213,216, 219, 222, 224, 226, 228, 
241,243,246, 250, 256-258, 260-261,270, 
281,365-366 

- - -  in composite reservoir response, 184- 
186, 189, 191, 197-198, 201,203,286-290, 
366-367 

- ~  ~ in fissured reservoir response, I26, 
128, 141,150, 152, 253,256-257, 293,296, 
365 

- ~ -  in homogeneous reservoir response, 
37-39, 45, 48, 50-52, 58, 62, 65, 70-71, 74, 
78-79, 82, 88-90, 93, 95-96, 98, 100, 102, 
104-105, 109, 113,244, 246, 248, 250, 270, 
275,319, 334, 337-338, 365-367 

- - -  in layered reservoir response, 164, 
169-171, 178, 199, 202, 258,260-261,298- 
299 
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- - - - - ,  time of start of, 36, 50, 57-58, 66, 
71-72, 80, 89, 1 lO-111, 126,130, 145,150, 
152-154, 167, 171,195,203-204, 275,277, 
279-280, 293,334-335, 348-349, 361,363 

- - - ,  half unit slope, 40, 55, 57-60, 62-63, 65, 
68, 82, 88-89, 93, 96, 102-105, 109, 111, 
210, 213,216, 220, 222, 228, 259, 262-264, 
266-267, 270, 281,343,365 

, pressure stabilization, 31, 77, 109, 226, 
234, 239-240, 242, 260, 269, 365 

, quarter unit slope, 40-41, 62-63, 65-68, 
105, 248-250, 254, 343,345, 365 

, unit slope, 28, 37-39, 42, 45, 48, 50, 60, 
78, 93, 98, 128, 203,225,228, 255,260- 
261,264-265,270, 281,289-290, 305,338, 
355-357,361,365 

M 
Matrix blocks: 
- geometry, 117, 119 

, cube or sphere, 117, 119, 138, 142, 150- 
155, 157, 295-296 

- - - ,  slab, 104, 117, 120, 138, 142-143, 145, 
149, 154-155, 159, 178, 295 

- permeability, 117, 119, 151 
- porosity, 118 
- See Pressure 
- size, 117-120, 151-154 
- - - ,  multiple, 116, 118, 151-154, 199, 257 
- s k i n ,  116-117, 120-121,137, 148-151,156, 

202 
- t o  fissure flow: See Fissured reservoir, 

interporosity flow 
- volume, 118-119, 162 
Matthews- Brons - Hazebroek: See MBH 
MBH, 210, 237-238 
MDH, 11, 33,235 
Miller- Dyes - Hutchinson: See MDH 
Mobility: 
-, apparent change of, 19-20, 70-71, 82-83, 

113, 169-170, 184, 190, 193-198, 202-203, 
206, 217, 219, 262-265,285-290, 321,327, 
353, 358-360, 366 

- r a t i o  in composite reservoirs: See 

Composite reservoir 
- ratio in layered reservoirs: See Layered 

reservoir 
- in multiphase reservoirs, 322-324 
Model, 5,22, 45, 48, 55, 62, 70, 84, 117-118, 

161, 182, 206, 211,220, 227, 245, 248-249, 
300, 303, 364-365,371-372 
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- b e h a v i o r ,  48, 55, 62, 69-70, 82, 122, 137, 
164, 169, 184, 190, 206, 210, 219-220, 225, 
244, 247-248, 256, 270 

Modit~ isochronal test. 4. 318-320 
Multilateral well See Horizontal well 
Multi-layer reservoir: See Layered reservoir 
Multiple phase 
-, reservoir, 110, 156. 180, 321-329 

, effective phase permeability, in, 321, 
324, 328-329 

- wellbore. 360-363 
Multiple rate 
-superposit ion See Superposition 
-test .  33-34. 311,315-316. 318.352-354 
- -  See Log-log, plot. normalized 
- type  curve, 33 
Multiple well 
- production, 343,363-364 
- t e s t :  See Interference 

N 
Naturally fractured reservoir: See Fissured 

reservoir 
Negative half unit slope See Log-log 
No cross flow' See Layered reservoir. 

commingled 
No flow boundary" See Boundary 
Non-Darcy flow, 4, 99-100, 112, 303, 310- 

312. 314, 321. 344-345 

0 
Observation well: See Interference. test 

P 
PVT, 2, 304, 373 
Parallel boundaries: See Boundary 
Partially open horizontal well: See Horizontal 

well 
Partial penetration 
- e f f e c t  in horizontal well, 86, 90, 92, 96. 

110-103 
- well in, 16-17, 41, 53, 69-79.90, 92, 112- 

113, 169-171, 177. 269. 347-348. 367 
- - -  analysis, 16-17, 41-42, 74-77 
- - -  log-log responses: See Log-log, 

straight line, derivative negative half unit 
slope or derivative stabilization in 
homogeneous reservoir response or unit 
slope 

- ~ -  See Spherical flow 
- -  penetration ratio of, 16, 69-70, 72-75, 

79, 347 
Permeability, 2 
- anisotropy: 
- - - .  horizontal, 53-54, 84, 106-107, 111, 

117. 282-284 .301 ,372  
- - - - ,  estimating, 282-284, 294 
- - - ,  vertical to horizontal, 17, 70-76, 80-82, 

84-85, 89-92, 95,347-348 
- - - - .  estimating, 17, 70.75-77. 93, 95,348 
-, double: See Layered reservoir 
-during vertical radial flow, 82, 86, 88, 94- 

95.97, 99-100, 103.106-109 
- effective phase: See Multiple phase flow, 

reservoir 
-, fissure (double porosity): See Fissure, 

network, permeability 
-. horizontal, 2, 11, 16, 70, 82, 106, 347 

, average, 53, 75, 106, 108-109, 162, 175, 
195-196, 283,372 

, estimating: 
- - -  - -  in heterogeneous reservoir, 122, 125, 

128, 132. 134-135, 139, 143, 146-147, 156, 
167. 172-174, 177, 187-189, 193, 197, 299 

in homogeneous reservoir, 11, 29, 33, 
37, 51.93, 96, 100, 102, 108, 301,324, 
328, 333-334, 337, 341-342, 347 

in reservoir with boundaries, 207- 
209. 213. 217, 222-223,229-230, 236, 242, 
246. 251,280, 

-matrix (double porosity): See Matrix blocks 
-. multiple: See Layered reservoir 
-, relative, 198, 321,324-327 
-, spherical, 17, 72, 79 
- thickness contrast (in layered reservoir): See 

Layered reservoir, mobility, ratio 
-, vertical. 2, 17.69, 75, 79, 82, 84, 88-90, 

92-93, 98, 100, 106, 161-162, 175, 199, 
268, 346-348, 372 

, average, 75, 84, 107-109, 372 
, estimating, 75-77, 93, 95, 102, 106, 

108-109, 168, 172, 177, 347-348 
- ~  See anisotropy, vertical to horizontal 
Perrine method, 321-324 
Phase segregation: See Liquid level, changing 
Pore volume (reservoir): See Boundary, 

closed 
Porosity, 5 
-, double: See Fissured reservoir 

, average porosity in, 118, 120 
-, multiple: See Matrix blocks, size 
Pressure: 
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-, absolute, 304 
-, average, 2-3, 21, 45, 180, 210, 225, 233- 

234, 236-240, 242, 260, 271, 312, 314, 328 
-, bubble point, 180, 321,360-361,373 
- c h a n g e ,  1-2, 8, 11, 14, 15, 16, 19, 23, 26, 

30-31, 51,354, 356-358, 363 
- - - ,  step, 331,333-334, 337, 340 
-, constant: See average, or Constant pressure 

test 
-derivative: See Derivative 
-, dew point, 180, 321,326-327 
- e r r o r  at start of the period, 354-357, 364 
-, extrapolated, 33, 75, 95-97, 134-135, 147, 

179, 189, 209, 217-218, 224, 236-237, 242, 
247, 252, 271,353-354 

-, fissure, 117-118, 122 
- gauge drift, 273,277, 300, 357-359 
- gauge noise, 242, 268, 277, 299, 302, 359- 

360, 364 
- gauge resolution, 292, 314 
-, initial, 1, 2, 29, 33, 45, 161,178-180, 209, 

217-218, 224-225,243,270-271, 314, 316, 
318, 328, 331-332, 335, 340-341,343, 352, 
368-371 

, average, 179-180 
- integral, 50, 335 
- match, 28-29, 36, 39, 45, 51, 56-58, 65, 74, 

93,123,125, 140, 143, 158, 167, 172, 187, 
208, 271,284, 293, 328, 333-334, 338 

-, matrix, 117-118, 122 
-, pseudo: 

, gas, 303-310, 312, 314-315,343,345 
- - - ,  multiple phase, 321,324-327 
-squared, 306-310, 313-314, 321,327-329 
-trend in the reservoir, 273,277, 300, 302 
-, stabilized, 314 
- - - :  See average 
Principle of superposition: See Superposition 
Production 
-, cumulative, 225, 312, 338, 346, 352-353 
- h i s t o r y :  See Rate history 
- t e s t ,  4, 275-276, 332 
-time, 29-34, 42, 97, 134-137, 146, 189, 

233-236, 276, 315-316, 318, 338, 340, 352 
Productivity, 2, 3, 55, 74, 81, 90, 100, 109, 

111 
- index, 3, 23 
Pseudo pressure: See Pressure 
Pseudo radial flow: See Radial flow 
Pseudo steady state: 
- interlayer flow: See Layered reservoir, 

interlayer flow 

- interposity flow: See Fissured reservoir, 
interposity flow, restricted 

- S e e  Boundary, closed 
Pulse test, 3,273,299-301 

Q 
Quarter unit slope: See Log-log 

R 
Radial composite: See Composite reservoir 
Radial flow, 9, 11, 28, 36-37, 365 
-, hemi: 
- - -  in heterogeneous reservoir, 253,258 
- -  in homogeneous reservoir: See in 

bounded systems 
- in bounded system response, 18-20, 34, 43, 

205-206, 208, 211, 213-219, 221-223,225- 
226, 230-231,236, 240-241,244, 246-251, 
253,255, 257, 260-261,265,267, 269, 270, 
282 

- - -  analysis, 208-210, 213-214, 217-218, 
222-224, 229-230, 235-237, 242-243,246- 
247, 251-252 

, fraction of, 219, 222-234 
, hemi, 19-20, 34, 43,206, 209, 216, 230, 

232, 270, 374 
- - -  - -  analysis, 19-20, 208-210 
- in composite reservoir response, 185 
- - -  analysis, 187-188 
- in circular fracture, 104 
- in fissured reservoir response, 104, 116, 

122, 126, 128, 131,135, 140-141,146-148, 
152, 157-159, 292-294, 296 

-- -analysis ,  131-133, 134-135, 145-147, 
157 

- in homogeneous reservoir response, 9-11, 
14, 16-17, 20, 28, 31, 34, 36, 38-39, 48, 50- 
52, 55, 65, 70-72, 74-75, 77-81, 87, 91, 
113,275, 280, 309, 319, 335,337, 339-340, 
343, 345, 347, 349, 352-353,361,366-367, 
373-374 

- -  analysis, 11, 28-29, 32-33, 36, 52, 60-61, 
67, 70, 75, 93-94, 96-97, 280, 310, 323- 
324, 328, 340-342 

- - - ,  pseudo, 14, 55-56, 58, 60-62, 65-68, 
82, 85-89, 93-100, 102-103, 105-107, 109, 
111,148, 267, 269 

- in layered reservoir response, 164, 167, 
170-175,297, 370 

- - -  analysis, 173-174 
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- vertical, 82, 85-86, 88-90, 93-100, 102- 
104, 106, 108-109, 113, 148, 269 

- -  analysis, 93, 95, 97 
- - - .  hemi. 90.94-96. 109 
- time of start of, 27-28, 49, 51.58.66. 93. 

124, 131-132. 145-146. 152. 168. 172. 275. 
277. 280. 335,337. 340, 342. 345.361 

Radius' 
- of investigation. 9. 11-13. 18-20.61. 194- 

196. 267.281. 354. 372-375 
- o f  influence of the fissures. 254. 292 
-. wellbore: See Wellbore 
Rate" 
-, critical, 332 
- d e c l i n e  analysis: See Constant pressure test 
- dependant skin: See Skin. or Non Darcy 

flo\v 
-. equivalent multiphase. 321-322 
-. estimation. 335-337 
- -  See Log-log. normalized, or Rate. 

history, simplification 
- history. 5.30-31.33.42-43.52-53. 156. 

305. 325. 352-354. 363-364 
- - -  simplification. 353-354 
- layer. 174. 176 
- sand face. 7.28.38.60. 67-68. 174. 176. 

196. 277-278.325 
Real gas deviation factor. 304 
Real gas potential: See Pressure. pseudo 
Relative permeability' See Permeabilit\' 
Reservoir: 
- area" See Boundary, closed, size 
- cross flow" See Interlayer flow 
- limit test, 20-21, 56, 305,312. 354 
- shape: See Boundary, closed 
- storage, 203,260 
Restricted interporosity flow: See Fissured 

reservoir, interporosity flow 
Retrograde gas condensate, 321. 326-327 

S 
Sand face rate: See Rate 
Saturation, 5, 321-322. 327. 373 
-, gas, 156, 180, 324. 326. 373 
-, oil, 180, 325-326 
-, water, 5, 196-198 
Sealing fault: See Boundary, single linear 
Semi-log: 

- approximation, 11-12, 28, 31, 34, 86-87, 
124, 139, 277, 280, 314 

- p l o t ,  11, 44-45, 52, 75, 94, 113, 122, 124, 
129-132, 139-140, 144-146, 153-154, 165- 

167, 170-171, 173, 185-186, 191,341, 345, 
364, 366-367 

build-up, 31-34, 75, 95-97, 134-135, 
147. 180. 189. 209-210, 217, 224, 235-238 

, drawdown, 11.20, 229-230 
- -  in the case of reservoir boundaries, 208- 

211,214, 219, 222-224, 226, 230, 241,246, 
250-251 

- -  straight line. 11, 20, 36, 75, 86-87, 95, 
96, 132, 139, 146, 173-174, 179, 187-188, 
208-209, 219, 222-223,246, 250-251,280, 
310. 323,328.341-343,345 

Semi permeable: 
- fault: See Fault 
- layer (wall), 83, 108-109, 162, 168-169, 

171. 175, 178, 346, 348-349 
Shape factor. 214. 227-229, 232-233,236, 

314 
Shut-in: See Build-up 
Simulation plot: See Test history plot 
Skin. 3, 9-10, 25, 48-49, 51-53, 61, 64, 71, 

91. 112-113. 164. 179, 183, 188, 346, 373 
-. anisotropy. 54.80-81, 84, 86. 95, 112 
- estimating: 
- - - - i n  homogeneous reservoir: 
- - -  with a horizontal well, 86-88, 91-93, 

95.97. 100 
- - -  with a vertical well, 11, 29, 33, 45, 

52, 61, 64, 71-74, 80-81,310, 324, 326- 
328. 334. 337, 339. 341-342, 364, 373 

- - -  with boundaries. 208, 214, 217, 223, 
230, 236, 242 

- - -  in heterogeneous reservoir, 125, 132- 
133, 140, 146-147, 157, 168, 172, 174, 179, 
187-188, 193 

- geometrical, 112-113 
- -  due to horizontal or vertical reservoir 

boundaries. 72-73.87-88, 91-92, 212-215, 
224 

- - -  See Shape factor 
- -  due to horizontal permeability 

anisotropy, 54-55 
- -  in fractured well, 57, 61, 63-64, 67 
- -  in heterogeneous reservoirs, 10, 156- 

157, 171. 174, 179, 188, 194 
- - - - i n  horizontal well. 85-94, 96-98, 100- 

104, 109. 111 
- -  of partial penetration. 69, 71-74, 77 
- - -  of slant, 80-81, 
-, global: See Skin, total 
- in conductive fault, 249 
-, infinitesimal (or mechanical or wellbore), 

9-10, 48, 53, 70-71, 74-75, 79-80, 84, 112, 
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163, 187, 193, 197, 214, 223, 227, 230, 
232, 240, 242 

- -  in horizontal well, 86-87, 91-93, 95-97, 
99-101,103 

, uniform, 83, 86, 99-101 
- - -  in layered reservoir, 160, 164, 168-174, 

176, 178-179, 297, 299 
- in fissured reservoir: See geometrical 
- in fractured well: See geometrical 
- in multiphase reservoir, 321,324, 326-329 
- in observation well, 277-280, 299, 301 
- in radial composite reservoir, 10, 183, 187- 

188, 1 9 4 ,  1 9 7  

-, matrix: See Matrix blocks 
-, pseudo: See rate dependant 
-, rate dependant, 4, 52, 100, 112, 303,310- 

312, 321,343-344, 346, 354 
- -  See Non Darcy flow 
-, total, 64, 71, 74-75, 81, 112, 174, 197, 215 
- -  in horizontal well: 
. . . .  during horizontal radial flow, 85, 87, 

92-93, 96, 100-104, 109, 111 
- - -  during vertical radial flow, 84, 86, 93, 

95 
-, wellbore: See Skin, infinitesimal 
Slab matrix blocks: See Matrix blocks 
Slanted well, 5, 53, 79-81 
Slug test: See Drillstem test 
Smoothing: See Derivative 
Software, 43, 47, 51-52, 58, 70, 88, 93, 97, 

99, 129, 142, 164, 183, 187, 190, 193,208, 
213,224, 235, 238, 271,299, 301,337, 
343,354 

Solution gas drive, 324-326 
Spherical flow, 16-17, 35, 41, 70-71, 76-79, 

100, 103, 169, 171, 177, 269, 309, 347, 
349, 367 

- analysis, 17, 40, 41-42, 70-71, 74, 76-77 
-, hemi, 71, 74, 76 
Stabilized derivative: See Log-log, straight 

line 
Stabilized flow, 3-4 
Standard conditions, 307 
Steady state, 6, 22, 77, 109, 326, 365 
Storativity: 
-, change of, 122, 185, 248, 367 
- in composite reservoirs: See Composite 

reservoir 
- in fissured reservoirs: See Fissured reservoir 
- in interference and pulse tests: See 

Interference, test 
- in layered reservoirs: See Layered reservoir 
Stratified reservoir: See Layered reservoir 

Superposition, 
-, space, 206, 239-240, 343 
-, time, 30-36, 43, 94, 97, 134-136, 209, 235- 

238, 326, 375 
- - - ,  limitation of, 34, 43-44, 197, 326 
- ~  ~ See Log-log, build-up distortion 
- - - ,  multiple rate, 33-34, 42, 238, 336, 343, 

345, 352-354 
- ~  with other flow regimes, 35, 60, 218 

T 
Temperature, 5, 307-310, 361 
Test: 
- design, 136-137 
- history plot, 45-46, 53, 217, 224, 243,265, 

270, 301,337, 354, 357-358, 364, 368-371 
- period, 7, 25, 51-52, 225, 354, 364 
Theis: See Exponential integral 
Thickness, 5, 16, 55, 69, 83, 92, 109, 160, 

266, 372-373 
-, apparent, 73, 84-88, 91, 96 
-, perforated: See Partial penetration, 

penetration ratio 
Tidal effect, 300 
Time, 
-, Agarwal: See effective 
-, effective, 31-32, 42 
-, elapsed, 2, 8, 11, 14-15, 17, 21, 25, 36, 43, 

97, 277, 353,356-357 
-, equivalent Homer production: See Homer 
-er ror  at start of the period, 354-357, 364 
- match, 26, 29, 45, 56, 93, 125,280, 284, 

333,337-338, 361 
-, pseudo, 305 
Total compressibility: See Compressibility 
Total system flow: See Fissured reservoir 
Transient: 
- gas well test: See Gas 
- interlayer flow: See Layered reservoir, 

interlayer flow 
- interposity flow: See Fissured reservoir, 

interposity flow, unrestricted 
- rate: See Constant pressure test 
- state, 6 
Turbulent flow: See Non Darcy flow, or Skin, 

rate dependant 
Type-curve, 47 
-, build-up, 31, 43, 56, 133-134, 146, 226, 

271 
-, pressure, 26-28, 49, 51, 57, 63, 70, 121- 

125, 137-140, 274, 333,335,338-339 
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-, derivative, 36-39, 45, 50-51, 57, 64, 112- 
113, 121, 126-129, 140-142, 183,228, 274, 
334-335,338 

- -  build-up distortion: See Log-log, 
derivative 

-, interference, 274-275.291. 295 
- -  See Line source 
-. rate, 341 

U 
Unit slope: See Log-log 
Unrestricted interposity rio\v: See Fissured 

reservoir, interposity flow 

V 
Variable rate test: See Multiple rate test 
Vertical interference test: See Interference 
Vertical permeability," See Permeability' 
Vertically fractured vcell See Fractured xvell 
Viscosity,, 
-, oil, 5,372-373 
-, gas, 304-305,328 
Volume factor: See Formation volume factor 

W 
Warren and Root: See Fissured reservoir. 

interporositv rio\v, restricted 
Water 
-compressibility': See Compressibility 
-drive,  6.22, 69, 77.81, 107. 109. 181. 238. 

265, 268-269 
- o i l  ratio, 328 
- zone, 77, 107, 109, 285,346 
Wedge: See Boundary, intersecting 
Well: 
-, acidized: See Well. stimulated 
- c o n d u c t i v i t y ,  70, 82-84, 99 
-, damaged, 9-10, 49-50, 59-60.74.90.92. 

100-101, 122, 131, 133, 137. 157. 179-180. 
188, 277, 279-280, 305,327, 342, 354, 360 

-, fractured: See Fractured well 

- location: 
- -  in bounded systems: See Boundary, 

closed or intersecting or parallel 
- -  in interference tests: See Interference, in 

homogenous reservoir, with boundaries or 
with permeability anisotropy 

vertical. 69, 71-74. 76, 82-83, 85, 90-92, 
94. 96. 103-104. 347-349, 363 

- stimulated, 9-10, 49. 74, 101, 122, 137, 
155-157, 180, 188, 200, 202, 279 

Wellbore 
-geometry, 3.5.69-70, 77, 79, 82, 101-104 
-radius. 5.85, 87.91.99. 112, 373 

. equivalent, 11.48-49, 53-54, 61, 64, 84, 
86.341 

- storage, 7-8, 28, 37-39, 48-49, 51, 59-60, 
63.66. 78-79.82.93, 122, 125-127, 140, 
156. 207, 261,270, 289, 357, 365 

- -  afterflow. 7 
- - -  and skin. 26-29, 36-39, 47-53, 84, 121- 

128, 137-142, 164. 169, 333-334, 338-339 
- - - - .  on interference responses, 277-280, 

301 
- ~ ,  changing, 52, 337, 360-361,367 
- - - ,  changing liquid level, 8, 332-335,337, 

362-363 
- -  duration, 28.50-51, 58, 60, 71, 93, 126- 

128, 131, 136, 155, 173,207, 277, 301, 
335. 337, 361 

- - - .  estimating, 8, 28-29, 52, 57, 93-94, 125, 
131. 140. 143, 145, 167, 172-173, 187, 193, 
208. 242, 309, 337, 339 

- volume. 8, 49, 93,334, 336 
W O R :  See Water oil ratio 

Z 
Z factor: See Real gas deviation factor 
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