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Preface

A sun, hidden in a single particle.

opens 1ts mouth,
Suddenly creating heavens and earths
as they spin out of its tiny corner

Rumi, Persian philosopher and poet of the 13th century

Thermodynamics is a fascinating subject. A very broad range of
problems are studied through the entropy maximum principle at
constant total internal energy, total volume, and total amount of
species or the equivalent principle of Gibbs free energy minimum at
constant temperature, pressure, and total amount of species. Examples
include the interaction between stars (Milne, 1966), the clouds and rain-
fall (Dufour and Defay, 1963), and the aggregation of molecules (see
Chapter 5). No other subject in physical sciences enjoys such a broad
applicability at different scales, and with more elegance.

In the description and exploitation of hydrocarbon reservoirs, there
are a large number of issues that can only be studied using the rigor of
thermodynamics. Since early in the 1900s, through proper application
of equilibrium thermodynamics, it has been shown that in some hydro-
carbon mixtures, when pressure 1s increased at constant temperature,
the liquid phase may vaporize. This phenomenon is known as retrograde
vaporization, which is contrary to intuition where one expects conden-
sation upon pressure increase. There are a large number of other
problems that are not as well known, some even unknown to those who
work on the subject. For example, when a liquid mixture is held in a
capillary tube, its vapor pressure (that is, its saturation pressure) may
increase even when gas is the nonwetting phase and liquid is the

xi



xii Preface

wetting phase. The widely known Kelvin equation is synonymous with
vapor-pressure lowering, which is valid for pure components. For
certain fluid mixtures, the saturation pressure increases in a capillary
tube. This book is intended to present a step-by-step derivation of basic
expressions and to provide the basic concepts for a large number of
problems, such as condensation and vaporization in a capillary tube
using the Second Law of thermodynamics. The book is also intended to
be a graduate-level text. The examples and problems at the end of each
chapter are designed to make the book a texthook as well as a reference
work.

Chapter 1 reviews basic expressions and simple mathematics for ther-
modynamic applications. The other chapters provide the solutions to a
number of problems and the understanding of these problems. The
following discusses the type of issues and problems that can be solved
from the material presented in each chapter.

Chapter 1 presents the basic expressions of equilibrium thermo-
dynamics. There is one major problem that is posed in this chapter; at
a given temperature, and pressure, when one adds say 4 cm® of pure
component 1 to 20 em?® of component 2, the volume of the mixture can
be less than 20 cm® at the same temperature and pressure. Reservoir
fluids 1n the critical region may show this behavior when some of the
heavier components are mixed with them.

Chapter 21s one of the two key chapters of the book. The presentation
is general for application to a variety of problems in engineering and
science. This chapter can be divided into two parts. In the first part,
the general theory of equilibrium in the presence of gravity and curved
interfaces is presented, and two main problems are covered. The first
problem relates to the effect of gravity on equilibrium. Given pressure
and composition of a fluid mixture at one point, it is desired to calculate
both pressure and composition at any other point at a different height.
The temperature is assumed constant. The second problem relates to
the effect of interface curvature on equilibrium. Suppose a natural-gas
mixture 1s placed 1n a network of nonuniform diameter interconnected
capillary tubes at a pressure well above the upper dewpoint pressure
in a wide container. The dewpoint pressure observed in a large-diameter
container would correspond to the upper dewpoint of a flat gas—liquid
interface. The pressure in the interconnected network is lowered from
the Initial pressure. T'wo items are of interest (1) where will the liquid
form first; that is, whether it will form in the smaller or larger tubes,
and (2) will the upper dewpoint pressure in the capillary-tube network
be higher or lower than the dewpoint in the large-diameter container.
In this problem, it 1s assumed that the process is isothermal and the
pressure lowering is carried out very slowly. In the second part of this
chapter, irreversibility and entropy production are presented on a quan-



titative basis. It 1s shown that whenever there is a temperature gradient
in a system, one may not invoke the criteria of equilibrium. The main
problem in the second part is the calculation of composition variation
in a nonisothermal system taking into account the effects of thermal
diffusion and natural convection.

Chapter 3 contains a simple presentation of cubic equations of state
and their strengths for pure components and mixtures. It is shown that
cubic equations can be used to calculate (1) volumetric properties. (2)
gas and liquid phase compositions, (3) thermal properties, and (4) sonic
velocities. The last two items, thermal properties and sonic velocity,
are related. Three types of problems are solved in this chapter: (1) two-
phase compressibility, (2) two-phase sonic velocity, and (3) heating and
cooling due to expansion for multicomponent mixtures. For the two-
phase compressibility and two-phase sonic velocity, it 1s shown that
the two-phase gas—liquid compressibility can be greater than the gas
compressibility and the two-phase sonic velocity can be less than the
gas-phase sonic velocity. The calculation procedures for these two
problems are provided in detail. The problem of heating and cooling
from expansion is well known, and 1s much simpler than the first two
problems.

Chapter 4 is the second key chapter of the book. The physical meaning
and the criteria for stability and criticality are provided from first prin-
ciples in a step-by-step manner. No such derivations are available in
existing books. Three problems are covered in this chapter. The first
problem is, given overall composition at a fixed temperature and pres-
sure, how many phases will be 1n equilibrium and what are the composi-
tion and amount of each phase. The second problem relates to the
calculation of the stability limit of a given mixture. The third problem
is the direct calculation of the critical state of a mixture with many
components.

Chapter 5 presents the thermodynamics of wax and asphaltene pre-
cipitation. Both solid-solution and the multisolid models are presented
for wax precipitation, It is shown that pressure has different effects on
wax precipitation in a gas condensate than in a crude oil. The main
problem posed for asphaltene precipitation is the pressure and composi-
tion effect. Chemicals to inhibit asphaltene precipitation are also
discussed. Asphaltene polarity adds great complexity because of its
aggregation in the crudes. A thermodynamic micellization model 1s
selected to offer both predictive and explanatory value.

The concepts and theories discussed throughout the book exclude
certain behavior of solids and some fluids. For systems that exhibit
phase transitions of other than order one, the thermodynamic features
are somewhat complicated. There are two kinds of phase transitions:
transitions of the first order for which energy, volume, and crystal struc-
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ture change discontinuously, and transitions of second and higher order
or continuous transitions, in which energy and volume change continu-
ously and the temperature derivatives of these quantities have singula-
rities. The phase transitions of the second kind mark the onset of
superconductivity, superfluidity, the establishment of various types of
molecular order in alloys, etc. Gibbsian thermodynamics have
also been applied to include continuous transitions by Tisza (1951),
who provides a general theory of phase transitions and develops
criticality criteria for solids from the fundamental principles of thermo-
dynamics.
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Notation

All the symbols used in the book are listed here except for those that
appear infrequently or only in one section.
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Helmholtz free energy
(aP/R*T?

surface area

attractive parameter of the EOS
sonic velocity

unit surface area of micellar core given by (4nR?/n,), where Ris
micellar core radius and n, 1s the number of resin molecules

absorbed onto the micellar core

effective cross-sectional area of a resin molecule

contact area of a resin molecule onto the surface of the micellar

core

(bP/RT)

covolume in the KOS

number of components
volume-translation constant
1sothermal compressibility

1sentropic compressibility

number of solid phases

molar heat capacity at constant pressure
molar heat capacity at constant volume
coefficient of pressure diffusion term
coefficient of thermal diffusion term
coefficient of molecular diffusion term
molecular diffusion coefficient

shell thickness 1in a micelle

differential

infinitesimal change

xvii



xviii Notation

Il

partial molar property of component i
thermal expansivity

feed moles

degree of freedom

fugacity

gas gravity; (M/29)

Gibbs free energy

= acceleration of gravity

molar Gibbs free energy

partial molar Gibbs free energy
enthalpy

height

partial molar enthalpy of component i
molar enthalpy

1deal-gas molar enthalpy

component index in a mixture
curvature

Jacobian

diffusion flux of component ¢

entropy flux of component ¢
association constant

thermal conductivity

equilibrium ratio of component i
permeability

Boltzmann's constant, (1.3805 x 10~ 2 J/K)
thermal diffusion ratio

characteristic length of a molecule
mole fraction of liquid phase
molecular weight

average molecular weight

mass

molecular volume ratio of asphaltene to asphalt-free oil
molecular volume ratio of resin to asphalt-free o1l
Avogadro’s number (6.02217 x 10%%)
number of moles

n = total number of moles of a mixture
total number of moles of a mixture
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n; = number of moles of component ¢
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n, = (N Rg . M1, Mgy )

ny = number of asphaltene molecules in the micellar core
n. = number of resin molecules in the solvated shell

P = pressure

P = parachor

P. = capllary pressure
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Notation

pressure at the melting point

number of phases, number of subsystems
heat quantity

energy flux by conduction

gas constant, [8.3144 J/(gmole.K) = 82.0567
(atm.cm®)/(mole.K) = 10.73(psia.ft?) /(lbmole.R)]
radius of micellar core

radius of bubble or droplet

saturation

entropy

partial molar entropy

molar entropy

temperature

fusion-point temperature

internal energy

partial molar internal energy

molar internal energy

volume

volume fraction of gas phase

molecular volume

partial molar volume of component :
specific volume

molar volume

velocity vector

velocity 1n x-direction

width

work

mass fraction

x-axis

mole fraction (often in the liquid phase)
(xq, X9, ..., X,

(X1, X9, X y)

mole fraction (often of the gas phase)
(1 Yoo o030

(yls y?,s L syc—l)
compressibility factor

vertical direction, positive upwards

overall mole fraction

(21,290 ..., 2,)

(2123, Zey)

mole fraction of vapor phase
temperature-dependent parameter of ¢ in the EOS
thermal diffusion factor [for a binary mixture

o0 = kp/(x1%)]

activity coeflicient, symmetrical

Xix



XX

D D 2

AG*
AR°

> >
%

?%%“‘8 S e aw A AT T e X~

RO

£

Notation

o

I | 1 e A (| S A 1

I

i

activity coefficient, asymmetrical
interaction coefficient

solubility parameter

dirac delta function, +1ifj = k,01fj # &k
change in the variable from one state to another state,
standard Gibbs free energy of micellization
enthalpy of dimer formation

entropy of dimer formation

enthalpy of fusion

molar density

contact angle

positive multiplier

chemical potential, per mole, or per molecule
u/ M, per mole

viscosity

Joule-Thomson coefficient

3.14159. ..

osmotic pressure

fluid mass density

entropy production per unit time per unit volume
interfacial tension

stress tensor

stress in the i plane

volume fraction

fugacity coefficient

porosity, often fraction

stream function, v, = —3}/0z

modified stream function, pv, = —8y,,/9z
constant of ¢ parameter of the EOS
constant of b parameter of the EOS
acentric factor

Superscripts

I
II

!

7
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]

SRR

phase 1

phase 11

phase index

phase index

standard state

reference space

flat interface

Infinite dilution

infinite dilution standard state
bubble



Notation XXi

f  melting point, also fusion

G gas

GL gas-liquid

GS gas—solid

(k) kth Legendre transformation
LS liquid-solid

L; liquid phase

Lo second liquid phase

L liqud

S solid

ip  two-phase
V' vapor

—  vector

—~ tensor

Subscripts

/

monomeric state
asphaltene
bulk phase
critical
axis index: as an example, x-axis
component index
axls index, as an example y-axis
phase index
derivation with respect to variable number &
k  second derivative with respect to variable number £
reduced, relative to critical value
resin
derivative with respect to variable x; x can be V, T, P or any other
variable

~ m.,a...‘-—-.."—-.h.r-‘r) o &

V  gradient
V- divergence
Vx curl



Chapter

Review of basic concepts and
equations

Thermodynamics can be divided into subjects which deal with {1} equili-
brium, (2) nonequilibrium, and (3) irreversible processes. All three of
these subdivisions are important in hydrocarbon reservoirs and in the
interpretation of laboratory experiments for the understanding of
hydrocarbon reservoirs. However, equilibrium thermodynamics is by
far the most important and the best understood subject. According to
Tisza (1966), the subdivision of equilibrium thermodynamics can be
carried out further into Gibbsian thermodynamics and the early ther-
modynamics of Clausius and Kelvin. The latter considered the thermo-
dynamic system as a black box, and all the relevant information was
then derived from the energy absorbed and the work done by the
system. The concepts of internal energy, U, and entropy, S, from the
observable quantities are then established. In Gibbsian thermody-
namics, the concepts of internal energy and entropy are assumed to be
known and are used to provide a detailed description of the subsystems
in equilibrium (we will soon define some of the terms used above).

In this chapter, we will mainly consider the Gibbsian thermody-
namics of phase equilibria relevant to problems in hydrocarbon reser-
voirs and use 1ts concepts in the other chapters to solve practical
problems. The thermodynamics of equilibrium processes also provide
the framework for nonequilibrium and irreversible thermodynamics. It
is our intention that the material covered in this book should be self-
contained. The postulational approach introduced by Callen (1985),
and Tisza (1966) 1s, therefore, adopted to make brief the presentation of
basic concepts and equations.



2 Chapter One

Thermodynamics consists essentially of the first, second, and third
laws. However, to obtain useful results, these laws should be combined
with an equation of state (EOS) to provide a knowledge of the fluid prop-
ertles at any point in the system. Since gravity and capillary forces are
important in most hydrocarhon reservoirs, the concepts of phase-cquili-
bria thermodynamics developed in Chapter 2 will include these forces.
However, we assume the absence of elastic, electric, and magnetic
effects. We also exclude chemical reaction.

Prior to addressing various concepts, a limited number of terms often
used in thermodynamics will be defined.

Mole number = actual number of moles of each type of species (i.e.,
number of molecules, if there is no association between molecules
divided by Avogadros number, N, = 6.02217 x 10%). Alternatively,
mole number is the amount of mass of each type of species divided by
its molecular mass. The mole number of species is denoted by 7; or N,

Mole fraction= n;/np, where ny = 3_:_ n;is the total mole number and
¢ 1s the number of different species in the mixture; the subscript T'is
often dropped from 7.

Molar quantity = the ratio of a particular property of a phase divided
by the total number of moles, ny. As an example, the molar volume is
defined by v = V/np . where Vis the total volume.

Wall, enclosure, partition = a physical system idealized as a surface
forming the common boundary of two different systems. The walls
that completely enclose a system are called enclosures. Walls separat-
ing the subsystems of a composite system arce called partitions.

Impermeable wall = awall that is restrictive of matter.

Semipermeable wall = a wall that is restrictive to only certain chemi-
cal species and nonrestrictive to others.

Permeable wall = a wall that is nonrestrictive of matter and cnergyv.
Adiabatic wall = a wall that is restrictive of matter and cnergy.
Rigid wall = awall that does not move or deform.

Diathermal wall = a wall that is restrictive of matter but nonrestric-
tive of energy.

Isolated system = a system enclosed in a completely restrictive enclo-
sure.

Closed system = a system in an impermeable wall.
Open system = system with a wall that is nonrestrictive to matter.

Heat = atransfer quantity associated with energy transferred across a
rigid diathermic wall, @ = AU.
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Composite system = a conjunction of spatially disjoint simple systems
(subsystems or phases).

Subsystems or phases = simple systems or phases that form a compo-
site system. A phase may be homogeneous throughout or may have a
continuous variation of properties.

Extensive variables = variables that depend on the total quantity of
matter in the system or subsystem. Examples are volume. V. and mole
numbers, n;.

Intensive variables = variables that have point values and are indepen-
dent of the size of the system or subsystem. Examples are Tand P.

Equilibrium state = the state in which the properties are determined
by intrinsic properties that are time independent. A more precise defi-
nition is deferred to later.

Next we present the five postulates of thermodynamies. These postu-
lates are mainly adopted from Callen (1985).

Postulate |. The conscrvation of the internal energy. U. of a system, 1s
postulated in the first law of thermodynamics. The internal energy of a
closed system 1s defined in the form as

dU =d_Q+d_W. (1.1)

where dU is the differential of the internal encrgy, U, and ¢_Q and d_W
are the infinitesimal amounts of heat absorbed by the system. and of
the work done on the system across the system boundary. respectively
(see Fig. 1.1). In Eq. (1.1), dU 1s the differential of the state variable U.
€ and W are not functions of state and do not have, in general, differen-
tials d@Q and dW in the state-space. Alternatively, it 1s said that U has
an exact differential, and @ and W do not. (We will soon define an
exact differential.) Note that @ and W depend on the interactions
between the system and its surrounding. For the above system, if the
enclosure 1s rigid and the system is not displaced in the vertical direc-
tion,

AU = Q, (1.2)

where @ is the heat added to the system at constant volume and AU is
the change in the internal energy as a result of heat absorbed by the
system.,

On the other hand if the enclosure is adiabatic, but not rigid, then

AU =W, {1.3)
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equilibrium with respect to U’', V' ni,n; ...,n,, and U”", V" nf,

M i
N,y ..oy M.

Postulate IV. The entropy, S, 1s continuous and differentiable and 1s a
monotonically increasing function of the internal energy, U, of the
composite system.

From postulates II and 1II, we can write the following expressions:

S=8+5 (1.6)
S =8, V,nl,...,n)) (1.7)
S = SU", V', nl, ... 0, (1.8)

where the composite system is assumed to be composed of subsystems
primed and double-primed. Equations (1.6) to (1.8) are based on the addi-
tivity property of the entropy. §" and 8" are first-order homogeneous

. : : i I ! !
,Vionh, oo,
functions of the extensive properties U’, V', n] n, and
U”, v’ af, ny, ..., ng, respectively; i.e.,
S AU, AV iny, ..., A0y = AS(U', V', ny, ..., n.), (1.9)

where extensive variables are multiplied by a positive constant /. The
definition of a homogeneous function will be given soon.

The mathematical expression for the monotonically increasing prop-
erty of S with respect to U can be written as

3S/8U)y . >0, (1.10)

,,,,,

where all the variables are for the composite system. The thermody-
namic temperature T1s defined as

T = (BU/BS)V,nlwnC. (1.11)

Equation (1.11) implies that 7 cannot be negative. However, as we
will see in Chapter 3, there is not such a restriction on pressure; it can
be negative.

The contintiity, differentiability, and monotonic property imply that

S=8U,V,ny,....n) (1.12)
can be uniquely solved for U given by
U=U(S, V,n,,n,,...,n). (1.13)

Postulates II, ITI, and IV define the second law. Finally the third law of
thermodynamics is also defined on the postulational basis.



6 Chapter One

Postulate V. The entropy, S, vanishes as T — 0.

Therefore, similarly to V, and n;, and unlike U, S has a uniquely
defined zero.

Prior to the presentation on equilibrium, we will discuss exact differ-
entials and homogeneous functions.

Exact differentials. Let F(x,, x9, X3, . . .) be a continuous function of inde-
pendent variables x,x,, x3,... except at certain isolated singular
points. The total differential of Fis

dF - (aF/Bxl)xz‘xa dx1 + (aF/sz)xl‘xa"__dxz + Tt (114)

which is called an exact differential. Since F1s continuous, 1t possesses
continuous higher-order derivatives except at isolated singular points.
If F 1s integrated over some path connecting two points A and B in the
Xy, X3, . . . space, then F(at B) — F (at A) depends on the points A and B
and not on the path connecting A and B.

Now consider the differential

where X;, X,. ... are functions of x;, x,, ... The above differential 1s an
exact differential 1f X; = (3p/dx;), . . .
Homogeneous functions. A function of several variables is said to be
homogeneous of degree ! if multiplying each variable by a positive
constant, k, is the same as multiplying the original function by k’. As
an example, consider F(x,¥). This function is said to be a homogeneoys
function of degree [ if F(kx, ky) = k'F (x, y). If | = 1, then F is said to be
a first-order homogeneous function of x and y.

Conditions for equilibrium

The fundamental equation for U in an open system is
U=US,V,n,ng, ....,10,) (1.16)

which in the differ,ential form can be written as

QU = (8U/8S)y ,dS + (0U/3V)g ndV + 3 (0U/0n))g y ndns,  (1.17)

i=1

where n = (ny, ny, ..., n)and n; =(ny, ny, ..., n;_1, %y, -.., N). There-
fore, the n; symbol denotes that all the variables n,, n,, ..., n. are held
constant except for n;.
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The first and second partial derivatives on the left side are given by
(@U/dS)y,, =T | (1.18)
(3U/3V)g,, = —P. (1.19)

Equation (1.18) was established before; Eq. (1.19) can be implied from
dU =TdS +d W and d_W = —-PdV (for a closed system). The coeffi-
cient derivatives of the last term are defined by

Hi = (8U/8n£-)s‘ V.n,» {1.20)

and are called chemical potentials. The chemical potential has a func-
tion analogous to temperature and pressure. The temperature differ-
ence causes heat flow, and pressure difference in the absence of
gravity may result in bulk phase displacement. The chemical potential
difference results in diffusion from the region of higher to the region of
lower chemical potential in the absence of gravity effect (see Example
1.1). The chemical potential concept was introduced by Gibbs (1957).
This concept, as we will see later, facilitates the description of the
phase behavior of open systems. Denbigh (1971) presents the interpreta-
tion that the last term in Eq. (1.17), i.e., 3 i, y;dn;, is a form of work
which can be done by a system at constant volume due to its change of
composition.
Combining Egs. (1.17) to (1.20), the expression for dU 1s given by

dU = TdS — PdV + 3" pdn.. (1.21)

i=1

Note that the coefficients of the independent extensive variables in Eq.
(1.21)— T, V, and u,—are intensive variables. Upon rearrangement,

ds = dg Pav - Z”‘dn (1.22)

In the following, we will use Eq. ('1.22), S§=8U.V,n,...,n), and

the entropy maximum principle from postulate III to derive the condi-
tions for various types of equilibria.

Thermal equilibrium. Consider an isolated composite system consist-
ing of two simple subsystems separated by a rigid diathermic par-
tition. Therefore, dV' =0,dV" =0,dn;=0,dn/ =0,i=1,...,¢, and
d(U' + U") = 0 (see Fig. 1.2).

Mathematically, the entropy maximum principle can be written as

dS =0, (1.23)
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rigid diathermal wall

Uvini=l...c
dU ' =-dU”

v’ =0
dn/=0,i=1,..,¢

Figure 1.2 Isolated composite system with rigid diathermal wall.

where S = § + 8”. (As we will see in detail in Chapter 4, to ensure the
maxima, another requirement has to be met.) Writing Eq. (1.23) for the
two subsystems,

’ dly P '
dS' = ? dV Z(T’) (1.24)
v dU” Pﬂ 1 }uf "
dS" = T T,,dV iZ%(T,,)dni, (1.25)
and from dV' =dV" = dn; =dn’ =0,
di  dU”
— i I —_ :2
dS = dS +dS T + e (1.26)
and since dU’ = —dU", then
i 1
asS = | — — ‘. 1.27
(T, T,,)dU (1.2
From Egs. (1.23) and (1.27),
T =T, (1.28)

which states that the temperatures of the two subsystems should be
equal at equilibrium for a diathermal wall.

Mechanical equilibrium. Now we consider an isolated system consisting
of two simple subsystems separated by a moveable diathermic partition
that does not change shape. Therefore, dV' +dV" =0,dU’ + dU" =0,
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and dn; = dr] = 0. Invoking the maximum entropy principle (Eq. (1.23))
and writing Egs. (1.24) and (1.25) with the above constraints,

1 1\, (P PN\,.,
ds = (?—?—,)dU + (?—W)dV =0 (1.29)

Since UV and V' are independent variables, each of the two coeflicients,
(17" —1/T"yand (P'/T' — P"/T") must be zero. Therefore,

T! — TH
P =P, (1.30)

Note that the equality of pressures can also be derived from the force
balance. The equilibrium with a moveable adiabatic wall 1s an indeter-
minate problem.

Chemical equilibrium. In this case, the partition of the isolated compo-
site system 18 permeable to some or all of the species and the partition
can be either rigid or moveable. The constraint equations are
dU +U)=0,d(V' +V")=0,andd(n,+n/)=0,i=1,...,c when all
species can freely pass through the moveable partition. Similarly to
the previous two cases, we 1Invoke the maximum entropy principle, and
use Egs. (1.24) and (1.25),

11 , (P P NN AU

Since U, V', and n are independent of each other, then the coefhi-
cients of U7, dV’, and dn; must be zero for dS to be zero, which provides
the conditions for chemical equilibrium,

T.l' — TH'
Pf — P/J’
W= i=1,...,c (1.32a)

The flow of species between the subsystems results in the equality of
chemical potentials at equilibrium, and therefore the equilibrium is
classified as chemical equilibrium.
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For a rigid partition, if some of the components can pass freely
between the two subsystems and other components cannot go through
the partition, one can readily show that

Tr — Trr
H’;(T” P"’ nﬁl’ nf2’ e n;) = M?(TI! P”s nT, ngs AR n:_’f)
i=1,...,0 Il<e (1.32h)

The difference (P’ — P’) is the osmotic pressure. In Eq. (1.32b), [ 1s the
number of components that can pass freely between the two subsystems.

Mathematica! properties of Uand S

The additivity property of entropy and internal energy of subsystems
demands that both S and U of the subsystems be first-order homogen-
eous functions of extensive properties which define the subsystem.
From the definition of the first-order homogeneous property for U, one
can write

U8, 2V, iny ang. ..., in) = AU(S, V. ny,ng, ..., 1) (1.33)

where 4 1s a positive parameter.
Differentiating Eq. (1.33) with respect to 4,

(_ag W ( BUN (VY aU) (dﬁ.ni)
8).8 iV.in ds. a4 V iS5 ’i’_‘( df i=1 8Zni iS.iV.in, d).

=U(S, V,n,,....n.) (1.34)

or

alU alU ¢ f U
(ﬁ‘é)s‘ﬁ‘ (m)v—i‘;(m)nl = U(S. V.. nl,...,nc), (185)

11

where for brevity we have dropped the parameters that are held

constant.
For 4 = 1, Eq. (1.35) becomes

olU ol ¢ {oU
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The partial derivatives of the first, second, and third terms on the
left side are T, —P, and y;, respectively. Therefore, the expression for
Uis

U=TS—PV+3Y pun | (1.37)
i=1

Of all the parameters on the right side of Eq. (1.37), only ; does not have

an absolute value, which as expected makes U also not have an absolute

value. The chemical potential’s relative value will be discussed later.
From Eq. (1.37), one can derive the expression for S,

U P < U
S—~~T+( ) ;? : (1.38)

Gibbs-Duhem equation

The intensive properties of a phase—temperature, 7, pressure, P, and
the chemical potentials, y;—are not independent of each other. The
Gibbs-Duhem equation provides the relationship between these vari-
ables. Let us write Eq. (1.37) in differential form:

dU = TdS + SdT — PdV — VAP + 3 pdn, + 3 nidpy. (1.39)
== i=1

Comparison of the above equation with Eq. (1.21) provides the Gibbs-
Duhem equation,

i=1

Equation (1.40) demonstrates that 7', P, and g; of a phase are not inde-
pendent and provides the relation between them. We will use this equa-
tion extensively in Chapters 2 and 4.

For a single:component system, the Gibbs-Duhem equation is written
as

SAT — VAP + ndu =0 (1.41)
or dy = —sdT + vdP, (1.42)

where s and v are the molar entropy and molar volume, respectively. At
constant temperature, Eq. (1.42) becomes

(dy = vdP) . (1.43)



12 Chapter One

Integrating Eq. (1.43) from pressure P’ to a pressure P”,

P
wW(P”, Ty =P, T+ ([ UdP) . (1.44)
P T

Now, for the first time we observe the relation between the chemical
potential and pressure-volume relationship. This implies that the
change in the chemical potential can be determined from an equation
of state, as we will discuss in Chapter 3.

Other fundamental equations

The enthalpy, H, Helmholtz free energy, A, and the Gibbs free energy, G,
are respectively defined as

H=U+PV {1.45)
A=U-T8 (1.46)
G=A+PV=U-TS+PV=H-TS. (1.47)

Later we will see the usefulness of the above fundamental equations.
Combining Egs. (1.45), (1.46), (1.47), and (1.37), one obtains

i=1
|7A = -PV + XC: n; iy } (1.4
i=1
(1.50)

where j; 18 glven by Eq. (1.20). Note that Egs. (1.45) to (1.50) apply to
both closed and open systems. Let us write the differential form of
Eq. (1.45):

dH =dU+ PdV + VdP. (1.561)
Combining Egs. (1.51) and (1.21) provides

dH = TdS + VAP + 3" udn, |, (1.52)

=1 .

from which one may infer that

H = H(S.P,ny, ny,...,n) (1.53)



Review of basic concepts and equations 13

Equation (1.53) in differential form is written as

oH aH ¢ (oH
dH = | — dsS —_— dP — dn,. 1.54
(BS)P.Q * (ap) S.n +Lzzl(3nt) S.P.n; i ( )
Comparison of Egs. (1.52) and (1.54) leads to
oH
4, = ( ) . (1.55)
on; S.P.n;

Similarly, we can write the differential forms of Eqgs. (1.46) and (1.47)
and combine the results with Eq. (1.21) to obtain

i=]

¢
dG = —SdT + VdP + ) u,dn; |, {L.37)

i=1

which imply that

A=AT, V,n,n,y,...,n,) (1.58)
G=GT,P n,ny....,n,). (1.59)
Note that A 1s a function of 7', V, ny, ne, ..., n, and G is a function of
T,P,n,...,n,. Such dependency in terms of measurable variables

makes A and G the natural choices for the processes at constant 7 and
V, and at constant 7T and P, respectively. In particular, G is best suited
for describing the state of a fluid because it has the most convenient
independent variables—all easily measurable.

Writing differential forms of Eqs. (1.58) and (1.59) and comparing the
results with Egs. (1.56) and (1.57) leads to

: A
- (gl_f) _ (___) _ (ﬁg) N (1.60)
8ni 8. V.n, an‘i T V.n; ani T.P.n,

Internal energy minimum principie

The entropy maximum principle can be stated equivalently in terms of
the internal energy minimum principle. In the following, we present
the mathematical proof.
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The entropy maximum principle can be mathematically stated as

BS)
9o 0 (1.61)
(BX U.V.n
a2
and (_(i%) < 0 (162)
X"y vn

where the negativity of the second derivative shows that the extremum
is a maximum. In the above equations, S, U, V,n are extensive vari-
ables of the composite system, and X correspond to the extensive vari-
ables of the subsystems that maximize the entropy, S, at equilibrium,
Note that for a composite system composed of two subsystems primed
and double-primed,

X=(U. V. 10.ny. 2l U V.2l nl. . . .nl) (1.63)

and n=(n,ny,....0n),n=n+n,i=1,...,c (1.64)
Since U = U(S. X)

U U
h UV =|— — . 63
then dU (GS)X_dS + (BX)SCZX (1.65)

According to the partial derivatives rule (to be discussed shortly).

18) 0S5 89S
— ) =~ == . 1.
(%), 2./ (), -

Since (EJS/BU)X = 1/T and at equilibrium (3S8/3X),, = 0 (see Eq. (1.61)),

olU
——} =0, (1.67
(3X)3 0, (1.67)

which states that U has an extremum at equilibrium (in the above and
subsequent equations, V and n are kept constant). We have to prove
that the extremum is a minimum. Let 75 = (3U/3X)s. Since
U = U(S, X), then

L}

n=nU,X). (1.68)
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Writing Eq. (1.68) in differential form,

_ (o on
dn = ( 8U)£dU+ (az) Ud;, (1.69)

and dividing it by dX and holding S constant,

o _ () (V) (o
(EX)S‘ (BU)K(BX)J(&X)U' (70

Using n = (83U /aX)g, (8U/3X);; can be written as

an B f)_ @
(@)U“ GX[(BE)J ; (1.71)

; i[ @) } R RICETD). oF

D¢ (az slu X |(85/3U4 |,
_ (#S/8X%)y  (08/0X),(8*S/9XU)
~ T (8S/aU)y (8S/3U)%

(1.72)

Using (BU/BS))_( = T and Eq. (1.72), Eq. (1.70) can be written as

82U) #S
— ) =n(dn/dU) —T(—~) +T*(8S/aX)(0°S/0X3U).  (1.73)
(852 s ! - 0X*/

At equilibrium, both # and (35/8X),, are zero and (3*S/8X">) is negative
(see Eq. (1.62)). Therefore,

(*U/0X%)g = —T(3"S/3X7)y, (1.74)

(»*U/8X")g > 0. (1.75)

Equation (1.75) together with Eq. (1.67) provide the internal energy
minimum principle. In other words at equilibrium, the internal energy
U must be a minimum at constant S, V, and n,(i =1, ..., ¢). The equili-
brium criteria in terms of the H, A, and G can be shown to be the
following:

® The enthalpy, H, must be a minimum at constant S, P, and
n(i=1,...,¢).
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® The Helmholtz free energy, A, must be a minimum at constant 7, V, and
n{i=1,...,0).

® The Gibbs free energy, G, must be a minimum at constant 7, P, and
ni=1,...,¢).

The mathematical proof for the H, A, and G minima principle is
straightforward. Note that the minimum Gibbs free energy principle is
very convenient to apply because pressure, temperature, and the total
mole numbers of species i are held constant.

Next, we derive the relation between partial derivatives that was
used in the mathematical derivation of the internal energy minimum
principle.

Relation between partial derivatives of implicit functions. lLet y be a
continuous differentiable function of three variables x, y, and z:

n=nxy 2). (1.76)
Then dn = (9n/dx), ,dx + (9n/dy), ,dy + (3n/3z2), ,dz. (1.77)

Let us keep 1 and z constant and divide the remaining two terms by dx,
then

(a’?/ax)y.z + (a’?/dy)tz(ay/dx)r:z - 0 (178)

Equation (1.78) can be rearranged as

(3y/8x),., = —(80/8%), L /D1/0Y). . | (1.79)

The change of variables given by Eq. (1.79) is very useful in thermody-
namics. We have already used it in Egs. (1.66) and (1.72). Next we
derive another relationship between the partial derivatives.

Reciprocity relation. The reciprocity relation or the cross-differentia-
tion identity is very useful in some thermodynamic derivations. Let us
represent the partial derivatives in Eq. (1.77) by

He = (/%) . 1y = (M/)po  H, = (O0/02),, (1.80)

9 9
Then 55(17,5)35_,4, =2 0L),.: | (1.81)
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Chemical potential of a component in
a mixture

We can use the above reciprocity relation to derive the expression for
the evaluation of g;. Consider the expression for dG given by Eq. (1.57)
and apply the reciprocity relation to the coefficients of dV and dn;
terms to obtain

(@V/on)y pn, = @Ou/0P)r, (1.82)
and then define the partial molar volume as
V= (0V/0n)spp - (1.83)

Combining Egs. (1.82) and (1.83) provides

(dy, = VidP)y,, | (1.84)

Equation (1.84) is an important expression in the thermodynamics of
phase equilibrium. It relates the chemical potential of component i in
the mixture to the measurable properties of pressure, temperature,
composition, and volume. For a one-component system Eq. (1.84) simpli-
fies to (du = vdP)p, which was derived earlier (see Eq. (1.43)). The signif-
icance and usefulness of partial molar volume and other partial
quantities are discussed next.

Partial molar quantities

Consider a single phase comprised of various components at constant
temperature and pressure. Let E represent any extensive property of
the phase such as V, U, or G. The partial molar quantity of any compo-
nent i within the phase is defined as

E; = (3E/0n) 7 p .. (1.85)

which gives the change in the extensive property of component i in the
phase due to a small change in the amount of that component while
temperature,” T, pressure, P, and the amount of all other components
are held constant. As an example, let us add a small amount of compo-
nent i, An;, at constant 7 and P to the container holding the phase.
Then the partial molar volume, V;, of component i is given by

V.~ (AV/An) 7 . - (1.86)

Figure 1.3 shows the process for the determination of V.. In Fig. 1.3, An,
moles of component ; are added to the system. The result may be the



18 Chapter One

+AV
—AV
7P TP T,P
1, n,y ",
n, i, + An, n; + An,
H, n. ",
(a) (B) {c)

Figure 1.3 The addition of An; to a system at constant T and P

sketches in Fig. 1.3b or Fig. 1.3c. In Fig. 1.35, after adding An; motles, the
volume decreases by AV. In Fig. 1.3¢, after addition of An; moles, the
volume increases by A V. Either could happen in hydrocarbon mixtures.
For the system in Fig. 1.3b, V; = ~AV/An; and for the system shown in
Fig. 1.3¢c, V, = +AV /An;.

Similarly the partial molar enthalpy is defined as

H; ~(AH/An)p p (1.87)

Since V, U, S, H, A, and G are all extensive properties, then the exten-
sive property, E, when expressed as a function of 7|, P, and n; is a first-
degree homogeneous function in n:

E(T.P,/ny,ing,...,on)=+E(T.P.ny,ng, ....0). (1.88)

Differentiating the above equation with respect to 4 at constant T
and P,

¢ din:
Z}(am) ( ;f) = E(T.P,ny, ng,....n,) (1.89)
t= T P.n,

¢ E
For 4 =1, ET,P,n,g, ..., Z: (gn ) (1.90)
i=1 T, P.n;
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g the definition given by Eq. (1.85), then

[ -
E=YnE, | (1.91)
i=1

refore, any extensive property can be calculated from its partial
ar quantities; V =37, n;V,,G =37, n;G,, etc. The partial molar
bs free energy, G, = (3G/dn;)r p, has a unique feature. From Eq.
i0), and the definition of partial molar Gibbs free energy,

pi =Gy, (1.92)

i1ich can also be obtained from Eq. (1.50).

The partial molar quantities could be either positive or negative
nich 1s particularly important in regards to partial molar volume.
ae physical meaning of negative partial molar volume of component :
that its addition at constant 7 and P results in a decrease in volume.
igure 1.4 shows the plot of measured partial molar volumes of C; and
C; in the Cy/nC; mixture from Wu and Ehrlich (1973). Note that the
artial molar volume of the heavier hydrocarbon nC, is negative. Nega-

400

200 1 —
C I

0-

-200 4+

-400 +

V:, em®/gmole

600 4 nCs

~800 4-

| I 1
T

0 0.045 0.09 0.135 0.18

Xe

-1000

P

Figure 1.4 Measured partial molar volumes of C,; and nC; at 80°C and 57 atm
{(data from Wu and Ehrlich, 1973).
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tive partial molar volume implies that if a small amount of nC; is
added to the system at constant T and P, the volume decreases.
Another example of negative partial molar volume is the C,/C; system
at 100°F and 1,000 psia with a C; concentration of 60 weight percent
i the overall system. The VC in the liquid phase at the dewpoint
at 100°F and 1000 psia is —3.52 ft*/1bmole (Sage and Lacey, 1949).
Partial molar quantities can be expressed both in terms of the
quantity per mole or per unit mass. Therefore, in terms of mass,
Ve, = —0.08 ft* /1b.

Use of the partial molar volumes takes into account the volume
change due to mixing, and there 1s no need to assume that the partial
molar volume is equal to the molar volume of the pure component at
the same temperature and pressure. In fact, the partial molar volume
of some light components of reservoir fluids can be two times that of
the pure component molar volume, and for some heavy components it
can be negative. A significant change in volume due to mixing is a
distinct feature of reservoir fluid systems. The change in volume due to
mixing makes the use of equations of state very appropriate for reser-
voilr fluids because such use readily takes into account the volume
change. It 1s important to note that there is no relation between partial
molar volume and the volume fraction of the component in the mixture.
The error of assuming, partial molar volume = volume fraction, is some-
times seen in the literature.

Figure 1.5 shows the partial molar volumes of C; and C; vs. pressure
in a mixture of C,/C; with x¢, = 0.34 (mole fraction) and at T = 346 K.
The mixture in the entire range of pressure is in the gas state (see Fig.
1.6). The molar volumes of pure C; and C, are also graphed in Fig. 1.5
at T = 346 K and different pressures. The partial molar volumes are
calculated from the Peng-Robinson equation of state (1976), which will
be discussed in Chapter 3. The pure component molar volumes are
from Starling (1973). The large difference between the partial molar
volume and pure component molar volume provides strong evidence of
the effect of mixing on the density.

The relationship between partial molar quantities is analogous to the
relationships between the extensive variables. As an example,

Gi=u=H,-T5; (1.93)

This equation can be obtained by differentiating Eq. (1.47) with respect
to n; at constant temperature, pressure and n;. Next, we will define the
fugacity, which has all the features of chemical potential, but unlike
the chemical potential has an absolute value.
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Fugacity

The fugacity, often represented by the symbol £, has the units of pres-
sure. It is defined from the following relationship:

(dﬂi = RTd 1nfi)T.ﬂ i=1,..., C. (194)

Another relationship is needed to complete the definition of fugacity:

Lim (f,/x;P) = 1. (1.95)

where x; is the mole fraction and f; 1s the fugacity of component i in the
mixture. The ratio (f;/x,P) is called the fugacity coefficient, ¢;:

¢, =fi/x,P (1.96)

At low pressures, as P — 0, ¢; = 1, and 1t is said that the fluid has an
ideal behavior.

Let us derive the expression for calculating ¢; or f,. Subtract
RTd In x,;P from both sides of Eq. (1.94):

(RTdInf; — RTdInx,P =dy; - RTdIlnx;P);, i1=1,..., c (1.97)

or (RTdIng; = dy; — RTdIn P)r,, i=1,..., c. (1.98)

Note that on the right side of Eq. (1.98), the term R7d ln x; 1s dropped
since composition is held constant. Combining Eqgs. (1.84) and (1.98),
one writes

(RTdIng; = VidP— RTdInP)y, i=1,..., c. (1.99)

Drop the subscripts T and n for brevity and integrate Eq. (1.99) from 0 to
pressure P and combine the results with Eq. (1.95):

P -—
RTlng, = J (V, — RT/P)dP. (1.100)
¢

This equation provides ¢; or f; from the volumetric data. However, since
we will later use a pressure-explicit EOS, it is preferrable to have the
integral in terms of volume. For this purpose, the following derivations
may be necessary. The EOS in the form

Z = PV/nRT (1.101)
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can be differentiated at constant temperature and moles:
dZ =(VdP + PdV)/nRT. (1.102)
Multiplying both sides by (nRT)/{PV ) results in
dZ/Z =dP/P+dV/V. (1.103)

Now consider the expression for dA given by Eq. (1.56). From the reci-
procity relation,

~(@P/3) 1y = O/ OV ) 1. (1.104)
Combining Egs. (1.98) and (1.103),
RTdIng, =du; — RT[dZ/Z —dV/V]. (1.105)

Dividing Eq. (1.105) by dV and once more showing the parameters that
are held constant for clarity, one writes

dln o, ot RT (37 RT
RT : = | — - — — 1.106
( aV )T._n (BV) T.n Z (BV) T.n+ |4 ( )
Combining Egs. (1.106) and (1.104) results in
1 [oP 1
dl e — —dinZ. 1.107
n e, |: RT (a??’i)T.L"n,—!— Vi|dV dlin ( 7)

Integration of Eq. (1.107) provides

P .
1 1 /3P
lng, = — | — —InZ. 1.108
e .[0 [V RT (8”-1)7‘, v,n}dv v AR
The integration limits in terms of volume are
=l 1 [oP 1
Vv [RT an,; T.V.n, V

The above equationi provides ¢; or f; in terms of volumetric properties to
be discussed in Chapter 3.

Now let us examine the usefulness of Eq. (1.109) for vapor-liquid equi-
libria calculations. First we will establish that at equilibrium, instead
of the equality of chemical potentials, one may equally write

filT,P,x)y=f(T,P,x") (1.110)
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here x' = (], %5, ..., x,_4) and x" = (x], x5, ..., x/_;). From Eq. (1.94)
ee Problem 1.15),

AT, P, xy = (T, P)+ RTlnﬁ%'iﬁjg—) (1.111)
J.'f P I
nd w(T, P, x"y = (T, P) +RTlné%iTm£;—). (1.112)

At equilibrium p(T, P, x") = p/(T, P, x); then this equation together
~ith Egs. (1.111) and (1.112), provide Eq. (1.110). From the definition of
:ne fugacity coefficient according to Eq. (1.96), one can derive

@ xX; = @) x] i=1,....c (1.113)
Now if we represent the gas phase by prime and the liquid phase by
double-primes, and the composition of the gas and liquid phases by y,
and x;, respectively,

K, =y;/x;=olj0) (1.114)

Equation (1.114) relates the vapor-liquid equilibrium ratio, K;, to the
ratio of fugacity coeflicients. The fugacity coefficients can be obtained
from the volumetric properties given by an EOS. However, as Eq.
(1.109) demands, the volumetric data are required from zero pressure
to pressure P of the system at constant temperature and composition.
Therefore, the EOS should represent the volumetric behavior over the
whole range.

Next we define 1deal and nonideal fluids and the representation of the
corresponding chemical potentials.

Ideal and nonideal fluids

Ideal gas. Anideal gas is defined as the fluid that obeys the equation
PV =nRT. (1.115)
For a multicomponent system, »n is given by
n=n,+ny+ -+ n. (1.116)

Note that the partial molar volume, V;, of component i in an ideal gas
mixture is simply

V,=@V/on)rpn =RT/P  i=1,...c (1.117)
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From Eg. (1.100), we notice that the fugacity coefficient of all the
components of an ideal gas mixture is ¢, = 1, and, therefore, the fuga-
city of component i in an 1deal gas mixture 1s equal to its partial pres-
sure, P,

fi=y,P=P,. i=1,....c (1.118)
Using Egs. (1.94) and (1.118) one obtains
AT, P,y)y=p2(T.P"Y+ RTIn P,/ P, (1.119)

where p)(T, P?) is the chemical potential of pure component i at the
reference state of pressure P and temperature 7. Note that for pure-
component ideal gas at temperature T and pressure P, f(T,P)=P
from Eq. (1.118).

Ideal solution. An ideal solution whether gas, liquid, or solid obeys the
following equation:

V(T,P.n) =Y nu T, P). (1.120)
i=1

Equation (1.120) states that when n; moles of component ¢ at tempera-
ture T and pressure P are mixed there will be no volume change on
mixing. This 1s a very serious restriction for certain fluid mixtures and
as we will show over and over; as an example, reservoir fluids do not
obey Eq. (1.120). The partial molar volume of component : from Eq.
(1.120) 1s

V. =vd{T. P). (1.121)
and substitution of the above value into Eq. (1.100) results in
f{T.P,x)=x,f(T.P). (1.122)

Combining Egs. (1.111) and (1.122) (note that f?( T. Pyand f;(T. P)are the
same), one obtains the expression for chemical potential of component
i in an 1deal solution,

T, P, x)=pu(T.P)+ RTInx, i=1....,c (1.123)

Now let us examine the heat of mixing of an ideal solution. In other
words, 1s there any heat of mixing when several different species at
constant temperature and pressure are mixed? In order to answer this
question, divide Eq. (1.123) by T and take the derivative with respect to
T while holding P and n constant:

ad I o
BT (JHII/T)P.E - BT (“z‘/T)P,Q‘ (11‘-‘4)
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From Egq. (1.100), we notice that the fugacity coefficient of all the
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sure, P,
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from Eq. (1.118).
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same), one obtains the expression for chemical potential of component
{ in an ideal solution,

AT P,x)=u(T,P)+ RT Inx; i=1,....c (1.123)

Now let us examine the heat of mixing of an ideal solution. In other
words, 1s there any heat of mixing when several different species at
constant temperature and pressure are mixed? In order to answer this
question, divide Eq. (1.123) by 7 and take the derivative with respect to
T while holding P and n constant:

3 9
E3‘_7,(#1-/1’),3_E - ﬁ(“?/T)P'E‘ (1.124)
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Using the reciprocity relation on the coefficients of the first and third
terms on the right side of Eq. (1.57) provides

(88/3n)7.p o, = (Bp:/8T)p ,, = —S;. (1.125)
Combining the above equation with Eq. (1.93) gives
u; = H; + T(3u;/8T)p . (1.126)
Equation (1.126) can be written as
) .
ﬁ(ﬂi/T) = —H,/T" (1.127)
For a pure substance at temperature T and pressure P,
DTy = ~hy T (1.128)
aT
Equations (1.124), (1.127), and (1.128) give

n:h

AR

(1.129)

-

H(T,P,n)= 5 nH, =
£=1

=1

which implies that there is no enthalpy of mixing at temperature T, and
pressure P. Since AV,,;, = 0, and since the mixing process 1s carried
out at constant pressure, then

AUmix - AHmix - Q = 0. (1130)
Therefore, for an ideal fluid, there is no heat of mixing. Due to nonidea-
lity, mixing of hydrocarbons at constant temperature and pressure
may, however, result in heating or cooling.

Nonideal solution. In the understanding of a nonideal solution, excess
functions are often defined. Excess functions are thermodynamic prop-
erties of solutions that are in excess of those of an ideal solution at the
same pressure, temperature, and composition. For an ideal solution,
therefore, all excess functions are zero. Let us show all thermodynamic
properties by E and all excess functions by EZ; then

E®? = E (real solution at T, P, n) — E (ideal solution at T, P, n).
(1.131)
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The excess Gibbs free energy, excess enthalpy, and excess volume are

defined as
GE = G (real solution at T, P, n) — G (ideal solution at T, P, n),

(1.132)
HE = H (real solution at T, P, n) — H (ideal solution at 7, P, n),

(1.132)
VE = V (real solution at T, P, n) — V (ideal solution at T, P, n).

(1.133)

The relations between excess functions are exactly the same as those of
total thermodynamic functions, '

GF = H* - TS* (1.134)

HE —UF 4+ pVE (1.135)

Similarly, partial molar excess functions are defined in the same
manner as the partial molar quantities,

EF = (E* /3n)7.p.p - (1.136)

Since EF is a first-degree homogeneous function in mole numbers, one
can readily show that,

EE =Y nEF. (1.137)
i=1

Activity coefficient

In the expression for the chemical potential of anideal solution given by
Eq. (1.123), a modification may be necessary to describe nonideal solu-
tions, or real solutions. The modified expression is

(T P, x) = py%T . Py+ RTIn+(T, P, x)x;. (1.138)

where y, is called the activity coeflicient which is generally a function of
temperature, T, composition, x, and pressure, P. The magnitude of v,
depends on the magnitude of x¢ (T, P), which is also unknown. To
complete the definition of y,, we define the condition under which 7,
becomes equal to unity. There are two conventions:

(I) AT, P, xy = (T, P)+ RTIny/(T, P, x)x;, (1.139)

1, —>1 as x> 1 i=1....,c

which means all of the components of a real solution approach ideal
behavior as x; — 1. This implies that all the components 1n the pure
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state are 1n the same state as the mixture (i.e., if the mixture 1s liquid,
components in the pure state at temperature, T, and pressure, P, are
also in the liquid state). The activity coeflicients obeying the above rela-
tionship are known as symmetrically organized.

(IT) pi(T, P, x) = (T, P)+ RT Iny(T, P, x)x; (1.140)

yi—>1 as x;—0 i=1,...,a a<c.

Fori=a+1,...,c Eq. (1.139) applies, and the components are 1denti-
fied as solvents. The components belonging to the indexing of
i =1,..., aare known as solutes. When the solutes are not in the same
state as the solution, the second convention becomes useful. This 1s
often the case for liquid solutions of noncondensable gases. Activity
coefficients defined by convention II are unsymmetrical. The relation-
ship between y; and 3! will be discussed later in Chapter 5. Note that as
x; — 0 the corresponding y; which is shown by 17 has a defined value;
as x; — 0, the corresponding y; which is shown by ;7™ — 1, as defined
above.

Relation between 7, and GE. Let us differentiate Eq. (1.132) with respect
to n; while holding 7', P, and n; constant. The resuit 1s,

G¥ = y; (real solution at T, P, x) — y; (ideal solution at T, P, x).
(1.141)

From (dy; = RTd In f;)7 ,, and Egs. (1.123) and (1.141), one may derive

fi(T! Pa x)

GE — RTIn 227
G nxif?(TaP)

(1.142)

By comparing Eq. (1.111) and Eq. (1.138) (without the prime super-
script),

fAT, P, x) =vy(T, P,x)x;f(T, P)J. (1.143)

Combining Eqgs. (1.142) and (1.143) results in
GE = RTIny,, (1.144)

and from Eq. (1.137)

G =RTY n;Iny, | (1.145)

i=1
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Equation (1.145) shows that the excess Gibbs free energy and the activ-
ity coeflicients are related. An alternative form of Eq. (1.145) is given by

g° =RTS xIny, (1.146)
i=1

-

where g¥ is the molar excess Gibbs free energy. Next, we will examine
the effect of pressure and temperature on y;.

Pressure and temperature derivative of y,. Let us divide Eq. (1.138) by T
and take the derivative of the resulting expression with respect to
temperature while holding P and x constant.

d (u, (T, P, x) 3 (AT, P) d
a (u _ A (4 3 (n-, 1.14
BT( 7 ), Ter\ ) TR nie.  (LID)

Combining the above equation, with Egs. (1.126), and (1.127),

dln -, H,—h, HE
( aTI )P L ;?TQ =-=L | (1.148)

The above equation provides the effect of temperature on the activity
coeflicients. The effect of pressure on 7; can be obtained by taking the
derivative of Eq. (1.138) with respect to pressure at constant 7" and x:

V,=v; +RT a%n:"*' : (1.149)
(}P T'&'

Rearrangement of Eq. (1.149) results in

_ - |
dlny; _Vi—v,  VE
P )., RT —RT

Figure 1.5 shows V; and v; for C,/C, vs. pressure at 346 K. This figure
implies that the effect of the pressure on y; may be very pronounced.
Next, we will briefly discuss the activity coefficient models.

. (1.150)

Activity coefficient models. Prausnitz, Lichtenthaler, and de Azevedo
(1986) provide an excellent presentation of activity coefficient models
and theories of solutions extensively in Chapters 6 and 7 of their book.
Here, we briefly review the basic concepts beyond various activity coef-
ficient models.
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Margules activity coefficient equations. The expressions for the activity
coefficients for a binary system using this model are

A
A 2
ln}'z = ﬁxl, (1152)

where A is a function of temperature. Consequently, Y_/f =0 and
VE =0, and the volume change on mixing is zero, i.e., V¥ = 0,

Van Laar activity coefficient equations. The van Laar activity coefficient
model is based on the assumption that V& = 0 and §* = 0. Therefore,
G% = UZ£. In other words, the model allows for heat of mixing but does
not allow for volume change on mixing. Van Laar used the van
der Waals EOS to calculate G and then Eg. (1.144) can be used to
obtain the activity coefficients. The predicted activity coefficients for a
binary system are

Iny, = 5 (1.153)

and Iny, = = (1.154)

where parameters A! and B' are functions of temperature and proper-
ties of pure components. This model does not account for the effect of
pressure on y.

Scatchard-Hildebrand regular-solution activity coefficients. Hildebrand
(1929) defined a regular solution as the mixture in which components
mix with no excess entropy provided there 1s no volume change on
mixing. Scatchard in an independent work arrived at the same conclu-
sion. The definition of regular solutions (Hildebrand and Scott, 1950) 1s
in line with van Laar’s assumption that the excess entropy and the
excess volume of mixing are negligible. Scatchard and Hildebrand
used an approach different from van Laar’s to calculate G¥. They
defined parameter C as

y
=24 (1.155)

L
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where Au" is the molar internal energy change upon isothermal vapori-
zation of the saturated liquid to the ideal-gas state, and v’ is the satu-
rated liquid molar volume. Note that AuY = uC(T,P°) — u™(T.P)
where P° may be zero pressure. Then the solubility parameter §, is
defined as

o= CY2, (1.156)

The solubility parameter has a clear physical meaning; when the
difference between the solubility parameters of two substances is small,
one can dissolve the other appreciably. The difference in solubility para-
meters 1s a measure of the solubility power. As an example, the solubility
parameter of asphaltenes, heptane, and toluene are, 9.5, 7.5, 8.9
(cal/em®)"° | respectively (see Problem 5.10, Chapter 5). The solubility
of asphaltenes in heptane is very low, and toluene dissolves the asphal-
tenes. In Chapter 3, the expression for the solubility parameter from
the equation of state, will be presented (see Problem 3.10, Chapter 3).

Scatchard and Hildebrand obtained UF from Eq. (1.155) for binary

mixtures. The final results are

v, P L -
Iny, = —I%I;Tﬁ[é] — ) (1.157)
v, @3
7 - - 472
and Iny, = I}Tl [0, — ], | (1.158)

where the subscript L has been dropped from the v and v, quantities. In
Egs. (1.157) and (1.158), &, and @, are the volume fraction of components
1 and 2, respectively. The volume fractions are defined by

X U
dJl —

XU + XgUy

(1.159}

o XoUsy
g — T .
X101 + XUy

(1.160)

Unlike mass and mole fractions, the meaning of which 1s very clear,
volume fractions do not have a clear physical meaning.

For three- and higher-component mixtures, the equation for the
activity coefficients from the regular-solution theory is

Uy

Iny, — —t-
BT RT

(8; — 0)%, (1.161)
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where Au" is the molar internal energy change upon isothermal vapori-
zation of the saturated liquid to the ideal-gas state, and v” is the satu-
rated liquid molar volume. Note that Au' = uC(T, P%) — u™(T. P)
where P° may be zero pressure. Then the solubility parameter &, is
defined as
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The solubility parameter has a clear physical meaning; when the
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v, D2 oo _
Iny, = ;%—Tz[é] — 3,1 (1.157)
vy dPF . .9
and Iny, = ;{71 [0, — 5], | (1.158)
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X1,

$, = (1.159)
XUy + XoUs

B, — 22 (1.160)
XUy + XU

Unlike mass and mole fractions, the meaning of which is very clear,
volume fractions do not have a clear physical meaning.

For three- and higher-component mixtures, the equation for the
activity coefficients from the regular-solution theory is

Y

=7 (3, — 5)’, (1.161)

Iny;
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where
- [ } xgvj,
=3 &5 and ®; = — (1.162)
= 2. XU
J=1

Flory-Huggins polymer solution activity coefficients. When the molecules
of one component are much larger than the molecules of the other
components in the mixture (1.e., polymers in solvents), the assumption
of $€ = 0 may not be appropriate. For such systems it is found that H*
may be assumed to be zero since V¥ is assumed to be zero (i.e.,
UE = 0). From G = HE — TSE, then G¥ = —TS* assuming H® = 0. On
this basis, activity coefficient models are proposed (Flory, 1953). The
activity-coefficient model from the Flory-Huggins polymer solution
theory has been used in the petroleum industry for asphaltene precipita-
tion (see Chapter 5). Prausnitz et al. (1986) provide details of that
model.

Legendre transformation

Let n be a continuously differentiable function of wvariables
X, Xg oo, X0y Xy and X oo n=1(X,. Xy, .. .. X, X ,.X..,) Then dy
can be written as

B c+2 a” o c+2 y .
dy =3 dX; =y C.dX.. (1.163)
S\0X; /¢ i=1

where the coefficients C; = Ci{(X). Let us define [ as

c+2

==2 CXi+. (1.164)
i=1

The differential of the above equation results in
c+2
di = -3Y X,dC;. (1.165)
i=1
Therefore,

[ =UCy, Con ..y Copg) = LBN/3X))x . - - O0/8X,40)x ] (1.166)

Note that in the above transformation, the variables X, X,, ..., X .,
are transformed into (d7/0X))x .(/0Xs)x,.. . and (/39X 1))x .,
respectively. This kind of transformation, which is very useful in trans-
forming some nonlinear differential equations to linear differential
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equations (Courant and Hilbert, 1962), 1s called the Legendre transfor-
mation. Geometrically, the surface in the X;, X,, ..., X 5, n-space.
which is a point set, is transformed into tangent-plane coordinates.
For example, in the case of a curve in a 2-D space, instead of #(X) repre-
sentation, one could have y(dn/dX), where instead of X, (dn/dX), the
tangent, i1s the independent variable. Figure 1.7 shows »(X) and
1(dY/dX) in the point and tangent spaces. In the above transformations.
there is no need to transform all the independent variables into their
derivative variables. One could change only one or two variables in
the group of ¢ + 2 variables. In this case, the transformation 1s called
the first and the second Legendre transformation with respect to the
particular variables.

Let us go back to the internal energy and perform Legendre transfor-
mation on its independent variables, and write

U: U(X]_,XQ,....XC+2). (]]67}
The first Legendre transformation on the first variable 1s written as
Ub = UM™NC,. X, ..., X. . )=U-CX,. (1.168)

The second Legendre transformation with respect to the first and
second variables is

U = U0, Cy. X . ... X,.)=U-CX; — CX,. (1.169)

Figure 1.7 Depiction of ¥ vs. X, and dY/dX.
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Finally, the total Legendre transformation of Uis
e+2
Uer? = ge(C,, Gy, ..., Cop) = U - Y CX,;. (1.170)

=1

The kth Legendre transformations of U and its differential are

&
U =U -y CEXJ’ (1.171)
=1
k c+2
dUM = -3 XdC, + Y CdX, |. (1.172)
=zl i=k+1

Let us write the first and second Legendre transformations for
U=U(S, V.n,, ..., n.).

UV =U-TS=A (1.173)
U =U~-TS—(-P)\V=U-TS+PV =G (1.174)
dUY = —8dT — PAV + ¥ juydn; = dA (1.175)
i=1
dU? = —SdT + VAP + Y wdn; = dG (1.176)

=1

Therefore, A and G are the first and second partial Legendre transfor-
mations of U. The total Legendre transformation of U is

U U= TS~ (=P)V = Y pn; = U= TS+ PV = 3" ym; (1.177)

i=1 =1

C
dU*? = ~SdT + VdP — Y n;dy; = 0. (1.178)
i=1
Equation (1.178) is the Gibbs-Duhem equation.

Let us denote the kth Legendre transformation for a thermodynamic
function ¥@ by y*; ¥¥ could represent the kth Legendre transforma-
tion of any of the four thermodynamic functions U, H, A, and G that
we have defined. We can then write

yO =yOX, X,. ..., X, 05) (1.179)
yB =By, Co .., Ch Xt - X.9) (1.180)
k c+2
i=1 i=k+1

Note that Eq. (1.181) is the same as Eq. (1.172).
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From Eq. (1.181), fori > £k + 1,

C = '™ /0X)e, 00Xy Xy X X (1.182)

¢+

Writing the expressions for dy*=1, dy®=2 dy*=3 dy® and dy®, one
readily establishes

C (ay”“ ”) (a- J““—Z*)
B - — . -
31X}, Co G Xy X 80X, CpoCh o X Ky oo Kos

(ay“ ]) (e‘a&"“-’)
3X, Cr XX Xpag e X 90X, X Xp 1 Xy X o

(1.183)

The above set of equations will be used frequently in the manipulations
of Legendre transformations in Chapter 4.
In Eq. (1.182), whenti =¢+2and kh =c+ 1,

Coz = @YV /0X 0o, e (1.184)

Let us assume that " = U(S. V.n,..... n.). Then from the dU expres-
sion, C, =T.C, = —-P, Cy = py. ..., and C..; = n. .. For a single phase
according to the Gibbs-Duhem expression (sce Eq. (1.40)), ¢ + 1 inten-
sive variables T, P ... .. it _; define the svstem. Therefore C._, 1s
fixed, and there could be no variation of C,__, with respect to X ;i 1.e.,

Covtonr = FVTF X 0)e, ¢ =0 (1.185)

[ AN 4

The above relationship will be used in establishing the criteria of phase
stability in Chapter 4.
Next we will discuss Jacobian transformations.

Jacobian transformation

Jacobians, which are simply functional determinants, have long been
used to simplify derivations of functions in thermodynamics (Crawford,
1950; Carroll, 1965). Our interest in Jacobian transformation is for its
great simplicity and usefulness in transformation of the various deriva-
tions of the Legendre transformation of thermodynamic functions.
Without the Jacobian transformation, the interrelation between the
derivations of Legendre transformation become very complicated.
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Let us define the general (¢ + 2) dimensional Jacobian J as

_ X2y, Zy, . L)

S = X, Xoy ooy Xopo)
(0Z,/0X,)  (84,/8Xy) -+ (8Z,/8X.2)
= : : : ; (1.186)
(0Z042/0X1) (8Z.42/0Xs) -+ (8Z,49/0X 15)
where dependent variables Z,, ..., Z. , are functions of independent
variables X, ..., X.,,. In the above determinant, we have dropped the

variables that are held constant in the derivatives. As an example,
(3Z,/3X;) should be written as (2,/0X))y, x_,,» where variables X, to
X. ., are kept constant. There are well-known rules in the manipulation
of determinants. These include (1) sign rule, (2) reduction properties,
and (3) transformation properties. As an example, the sign of .J will
change when a neighboring pair of Zs or Xs are interchanged. The
reduction property is useful for the type of derivatives we have in
mind. Whenever a common variable occurs between Zs and Xs, a reduc-
tion takes place. As an example if Z, = X, and Z, = X,, then from Eq.

(1.186),

B(Zl, Zz, ZB’ ey Z(,‘+2) . B(Xl. X-_)‘, Z3, PR ZC+2) _ B(Zs, FE Z('.Jr,g) ‘

Xy, Xo, Xy -+ Xepo) X, X, X5 Xopn) 0 Xs - X)) |y, x,
(1.187)

Note that in Eq. (1.187), X; and X, must remain constant. In. Eq. (1.187),
the order of the Jacobian has been reduced from (¢ 4+ 2) to ¢. The above
process can be reversed, going from order ¢ to ¢ + 2, which 1s also true
from Eq. (1.187). The transformation properties of Jacobians is useful
in the manipulation of Legendre transformation derivatives and can
be utilized by the introduction of a new set of independent variables
Y =(Y,, Yy, Yora),

NZy. Zy. .\ Zoo)
A7y Zyr . Zoyy) _ AV, Yoo Yory)
Xy, Xy, X)) XL Xy Xopg)

' WY, Yo, ..., Y0

(1.188)

which is simply the ratio of the two Jacobians.

Now we will use the Jacobian transformation to provide a relation-
ship between the derivatives of higher-order Legendre transformations
to the derivatives of a lower-order one. Let us denote the derivative of
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y% =1 with re(skp(;:)ct to )% \lz\)rhile holding C), Cy, ..., Co_y, Xppq, o -» Xoin
constant by i 1.6, Yy = (ay{k_l}/an)Cl....,Ck--l'Xk+lv---vXc+2 . The second

derivative with respect to X, is shown by yﬁ_l), which 1is
(@y*D0XP)c, ...Co Ky X, From Bq. (1.183),

yfki__”:(_ackfaxk)cl.,..,ck_,_X,m x . (1.189)

""" c+2

From Eq. (1.187), and the sign rule of determinants,

(k—1) B(CI, CQ, ey Ck—l’ Ck*Xk—f-l! . ..,Xc+2)

Yy = , (1.190)
Kk HCy, Coy oo, Cryy Xy Xty -y Xop0)
which can be also written as
HCq2, Crer, Xidlc, ¢y Cog Koy Ko
According to Eq. (1.188),
JA1 HCyoze Cry. Cr)/HCp_gs Xy 1, Xi) (1.192)
# HCr_g- Croy. Xp)/HCp_oe Xy s X0y oy X Ko
Equation (1.192) can now be written in a determinant form,
(ackuz) (ack—z) (3@:—2)
0Cy -z K1 Xy 90X Choz. Xy 02Xy Choz Xy
(aCk_l) (E}C;‘._l) (BCA‘_I)
aCkFQ Xy X an_l Chon Xy an v Xp
(o) G, (G6)
-}s{}"_l) 8Ck_2 Xk---l-Xk HX}“_I Ck-?-xk aX}‘ C};--Q-X}f—l (1 193)
SRR 3Ck-2) (3Ck—2) (3Ck—2) '
9C; s Ky X, 9Xj1 Cyon X IX) Cpn Xg
( I

(ack_]) aC;,_ ) (BCk_l)
ack“g‘ Xk;.l'Xk an_l Cron. X, BXk Cy2. X511

) 5o, )
9Ck—2 Xp1. X, 30Xy Choo. X, 0, Cr- 2. X3

On the right side we have dropped the variables
C,,Co ... Cya. Xy q, ..., X\ which are held constant. One could
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readily establish the values of various elements of the two determi-
nants. We will first write those that are either O or 1.

(8C,-2/8Cy0) = 1,(0C,_5/0X}_1)c, , x, = (8Ck_2/0X})c, , x, =0
(8X,/0X,) = 1, (0X,/3C;_5)x, | x,
= (3C,_/8X; 1)c, , ,
= (0Cy_2/0X})c, , x,, = (0X3/0X; 1), , x, =0

The derivative of a function with respect to itself is 1 and the derivative
of a function while the function itself is held constant is zero. With the
above entries, yi‘i_l} simplifies to,

() G2)
an"'l Cr0 Xy, an Croa-Xiy

() ()
(k—1) _ 09X Ky—2: Xy 0., Cra Xy

kk
(ack,_l)
0Xy.1 Chs. Xy CyCo Cog Xy X

(1.194)

Note that we have shown the parameters that are held constant on the
right side of Eq. (1.194). Now we can use the expression for dy*~2 to

obtain the elements of the above equation. The reason for using dy!*~?
is that Cy, ..., Cy_; are held constant for all four elements (see Eq.
(1.183))
k—2)
(0Ck-1/0&Kk 1)C,.CprCoy Cos Koo Koy = yf@_]‘kq

k-2)

(BC,_1/0X1)C, 0o Cos Coas X Ky oo Ko =y§e—1,k
(1.195)

(k—~2)
(0C:/8X,_1)c,.Cpo Coan Con KXo = Yhodiot

o A R2)
(ack/an)Chc2w-'Ck—.'}vck—2'Xk—1'Xk+1w-rXc+2 =Yk

From the reciprocity relationship (see Eq. (1.81)), ygf,:_z)l = yf_ﬁr Substi-
tution of the above results in Eq. (1.194) leads to

-1 k-2 k—2) 2, (k-2
R A 2 ar A | (1.196)

In Chapter 4 we will provide an alternative derivation of the above
equation, and discuss the fact that yg;l) goes to zero before yﬁ_z} goes
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to zero. Equation (1.196) is a useful relationship between the derivatives
of y*~1) and the derivatives of -2, For k = 3, then

2 1 1).2 1
Y = v — OS5 (1.197)

If y@ = U, then y) = A and y® = G. Eq. (1.197) provides the relation-
ship between the derivatives of Gibbs free energy and the Helmholtz
free energy.

Maxwell’s relations

Maxwell’s relations can be readily obtained from the Jacobian trans-
forms. However, we will obtain them by applying the reciprocity rela-
tions to the differential expressions of dU, dH, dA, and dG, given by
Egs. (1.21), (1.52), (1.56), and (1.57). The full set of Maxwell’s relations is:

(9T /3V)s,, = —(0P/3S)y, (1.198)
—(35/3P)p, = (0V/3T)p (1.199)
(AT/3P)s , = (IV/3S)p , (1.200)
(3S/3V)p.,, = (3P/3T)y.,. (1.201)

Note that in Egs. (1.199) and (1.201), on the right side the variables are
only P, T, V,and n, all directly measurable. We will use these relation-
ships in Chapter 3 in the derivation of the expressions for specific heat
quantities cp and cy.

Examples and theory extension

Example 1.1 Prove that any substance in a mixture tends to pass from the
region of higher to the region of lower chemical potential. Assume the effect
of gravity to be negligible.

Solution Consider a composite system (shown below) consisting of two
subsystems primed and double-primed. The partition could be either rigid or
moveable and permeable to component i. Suppose the temperature and the
pressure are the same in both subsystems,

1 i AU +U")=0
T T dn;+n)=0 1=1,..., ¢
P | P dV' + V") =0
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The change of the entropy of the composite system, dS, is given by
dS =dS +dS”.

From Eq. (1.22),
48 = = L1/ T)4; = ).

If the system has not reached equilibrium, then dS > 0. Assume dn; < 0 then
dn} > 0 which implies that component i is flowing from the primed subsystem
to the double-primed subsystem. Since dS >0, and dn <0, then
(p; — u?) > 0; ! > p7. Therefore, diffusion of component i will be in the direc-
tionof u; > u’'.

Example 1.2 It is often useful to write the expressions for thermodynamic
functions in terms of the variable set (n;.n,,...,n,;,n) instead of

(ny ny, ..., n. 1, n.) where n =3 | n; Inthe new variable set,

r—1
dU = TdS — PAV + 3 (u; — p,)dn; + u.dn

f=1

c—1
and dG = —8dT 4+ VdP + Y (y; - p.)dn; + p dn.
i=1
From the above two equations, derive the expression for du and dg.

Solution For molar quantities, we simply fix n = 1; therefore

c—1
du = Tds — Pdv+ ) (u; — p.)dx;
i=1

c=1
and dg = —sdT +vdP + > (i; — p)dx,
i=1

where x;, = n;/n is the mole fraction of component i, and therefore  ;_, x; = 1,
: -1
te,x, =1-Y . x.

Example 1.3 Reservoir fluids are unique in comparison to the fluids that
chemical engineers are used to. The unique features of reservoir fluids are
due to components such as C; and C,. Let us consider a mixture of 95 gmoles
C, and 5 gmoles of nC; at 80°C and 74.5 atm. Let us add 2 gmoles of nC; to the
mixture at the same pressure and temperature. Calculate the volume change
(decrease!) due to the addition of 2 gmoles of nC,. Partial molar volume data
are available from Wu and Ehrlich (1973). Later in Chapter 3, we will show
how to predict these values from an equation of state:
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Data (from Wu, and Ehrlich, 1973):

V,(80°C, 74.5 atm, x¢, = 0.05) = 2.3 x 10° cm®/gmole
Vi, (80°C, 74.5 atm, x¢, = 0.05) = —8.1 x 10* cm®/gmole
V,(80°C, 74.5 atm, x, = 0.068) = 2.21 x 10° cm®/gmole

Ve, = (80°C, 74.5 atm, x¢, = 0.068) = —7.1 x 10° em®/gmole

Solution From V = Z?:l n; V., one can calculate the volume before and after
addition of 2 gmoles of nC. to the mixture. Note that after adding 2 gmoles of
nC; the composition of the mixture changes; before addition xo, = 0.05, after
addition x; = 7/102 ~ 0.068.

Viefore = (95)(2.3 x 10%) + (5)(—8.1 x 10%) = 17,800 cm?

Vaper = (95)2.21 x 10%) + (T)(—7.1 x 10?) = 16,025 cm®

Therefore from the addition of 2 gmoles of nC; at constant temperature and
pressure, the volume decreases by 1,775 cm®.

Let us now calculate the volume of pure C, and pure nC; and compare 1t
with the original mixture— all at the same temperature and pressure. The
pure component data are

v, (807C. 74.5 atm) & 2.3 x 10° em?®/gmole (from Starling, 1973)

ve (80°C, 74.5 atm) = 1.6 x 10% cm®/gmole (from Katz, et al., 1959)
Viure ¢, = 95 x 2.3 x 10% = 21,850 cm®
Viure ¢, = 5 x 1.6 x 10% = 800 cm’
The total volume before mixing = 22,650 cm®

The total volume after mixing = 17,800 cm?
Therefore, the volume change due to mixing is 4.845 cm?®. There is a volume
decrease of about 22 percent due to mixing.

Example 1.4 Derive the following expressions for the entropy and Gibbs free
energy of mixing at constant temperature and pressure for an ideal gas
mixture:

c
AGmix - +RT Z n; lnyi
i=1

ASpix = —RY nijlny,

i=1
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Solution The expression for the AG,,;, 1s

AGo = G(T, P.n) ~ 3. ng(T. P) = 3" nudT. P y) — 3" n,g(T. P).
i—1 1=1

=1

where g,(T, P) is the molar Gibbs free energy of pure component : at tempera-
ture T' and pressure P,

The chemical potential of component i in an ideal gas mixture and in an
ideal pure gas can be written as

AT, P.yy= (T, P")+ RT Iny,P — RTIn P°.
pd T Py =p(T.P"Y + RTInP -~ RTin P’

Combining the above equations,

AGmi.&: = +RTZ ny 11‘1_}’&' .

i=1

Note that since In y; < 0, then AG,,,;, 18 negative. We can relate AG ;. to AS,,;.
through

G(T.P.n)=H(T,P,n) - TS(T. P, n}

G(T,P)= H(T.P)— TS(T. P) = 3" n;hdT. P) = T'S_ nys,(T. P).
=1 =1

L

where G(T, P) is the Gibbs free energy of various components before mixing
and G(T, P, n) is the Gibbs free energy after mixing.
Substracting the above two equations,

AGmix = AHmix - T‘Asmix
or Asmix = (AHmix - AGmII)XT

From Eq. (1.130), AH,,;, = 0; therefore,

&Smix =—-R Z n; lnyi
=1

Note that the entropy of mixing in an ideal gas mixture is positive since In y; is
negative.

Example 1.5 | The Helmholtz free energy of a mixture at temperature T and
pressure P can be expressed as

A = J (P = nRT/V)AV — RT S n,In(V/mRT) + 3 ny(u — Ts") |
v i=1 1

I=

where u? is the ideal gas molar internal energy at temperature Tand s? is the
molar entropy of pure component { at temperature Tand pressurc P = 1 atm.
Derive the above expression.
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Solution The expression for dA at constant temperature and composition
(see Eq. (1.56)) 1s given by (dA = —PdV)p , Let A represent the Helmholtz
free energy of the mixture at 7, P, and n. Then

P 1%

A—A"= —J PdV:—J PdV.
pe Vo
The above equation can be written as
o v
A_Aoz—J PdV—J PAV.
Ve oo

Note that from V?to cc (i.e., from P’ to pressure zero), the fluid is an ideal gas.
Therefore, the first term on the right side can be computed for an i1deal gas.
Let us add and subtract j (nRT/ V)V to and from the above equation;

A_AO:-J PdV_J (nRT/V)dV-l—J (nRT/V)dV—l—J PdV.
Ve 1% 14 v

The term [X(nRT/V)AV = [V RT/V)dV + [3(rRT/V)dV and. there-
fore,
‘(}
A—-A"=pRTIn VYV - J (P—~nRT/V)dV

o0

U0 TS. U{J S naud, and SO = ASY. 4370 ngs? (see Example 1.4),

l i’ mix
where u ' and ¥ are the 1deal gas molar internal energy and entropy of pure

component i at Tand PU respectively. From Example 1.4,
C c
SP=—-RY nijlny;+ 3 n;s
=1 i=1

The next step is the derivation of an expression for nRT In (V?/ V). At total
pressure of PY, the partial pressure of component i is P? P‘? Vi = nRT.

r [
RT S n,InV/(n,RT)=RT S n,In V/(P°VY)
=1 =1

=nRTIn(V/V®) ~ RT S n,In P

i=1
From the above equations,
4]
J (P—-nRT/V)YdV — RTZ n;ln V/in,BT)
i=1

+Zn(u — TSO)+RTZH Iny, — RTan}nP?.

i=1 =1

The last two terms on the right side are RT 3", n; In P° since P?/y; = P°. For
P? =1 atm,

= J (P—nRT/V)AV — RT Y n;In V/(,RT) + 3 nyu® — TsO).
Vv =1

i=1

Note that the reference pressure for the ideal gas entropy is, therefore, 1 atm.
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Example 1.6 Derive the expression for the mixture entropy, S, given by

S= j [(nR/ V) - (BP/HT)V‘n]dV +RY mIn V/(nRT)+ Y s’ |
g ) =1 i=1

Solution From Eq (L 201) [dS = (aP/3T)y ,dV]y, and, therefore,
S(T. P, n)— ST, P'.n) = [%(3P/3T)y ,dV = [V(8P/8T)y ,dV. The inte-
gral on the right side can be written as S —S° = “[VU((}P/(]T)‘ AV +
J (9P/3T), ,,dV. Adding and subtracting [, (nR/V)dV to and from the
right Slde §- 8= [[UnR/V)— (8P/dT)y JdV — [ (nR/ V)V +
LU(BP/BT)V dV.

But fv (nR/VYdV = h (nT/V)dV + [w(nR/V)dV thCILfOI'G S8 =
L [(nR/V)— (3P/3T),, J,']1:£‘l/'—|~“[‘.,U (dP/3T)y , — (nR/ VAV — j‘ (nR/V]dV

In the above equation, the second term of the right side is zero, and the third

term is —nR In V?/V. The second term is zero because from volume VY to oc,
the ideal gas describes the fluid; PV = nRT, and (3P/3T), , =nR/V.

S-8 = [ [(nR/ V) — (aP/aT) 1_.-.n]dV —aRIn VYV,
JV -

From Example 1.3, nRIn V%/V = ~R>,_ n,InPP —R>_ n;In V/(n;RT)
and from Example 14. 8°=3%""_ ns? — R>: , n;Iny, Combining the above
three equations and assuming P° = 1 atm, the sought expression is obtained.
Note that here, similarly to the previous example, P° = 1 atm corresponds
only to the ideal gas state for entropy.

Example 1.7 Derivation of Raoults law Suppose a multicomponent mixture
is in the gas-liquid equilibrium state. Under what assumptions, can one
write,

5 PYT) = 3, P

In the above equation, x; and y; are the liguid and vapor phase mole fractions,
respectively, and P is the pressure. P}*(T) is the vapor pressure at temperature
T for pure component i.

Solution At equilibrium, one can write
fHT P.x)y=f"(T. Py

For an ideal solution fX(T,P,x)= xf;{um(T, Py and fHT, Py =

ysfp‘f,,,e;(T P). For an ideal gas f, . (T, P)= P, since ¢,,,.,(T,P)=1. Now

purei
assume that the liquid phase of pure component ¢ at 7 has a vapor pressure

PENTY, at Pty fL (T, PS‘”)_fV (T, Pi*) and if the gas phase is

puret purel
ideal, then fp‘:;rei(T Psa") = P#(T). If we assume that the effect of pressure on

f,’.ﬁ:re; is negligible, then f& (7, P)= PiY(T). All these assumptions lead to

purei
the derivation of Raoult’s Law.
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Example 1.8 Liquefied petroleum gases (I.LPG) are mixtures of propane (C;)
and n-butane (nCy). Use Raoults law to determine the bubblepoint and
dewpoint pressures of a mixture of 50 percent C, and 50 percent nC, (equimo-
lar mixture) at 150°F. The wvapor pressure data are Pfi‘(lSO"”’ F) =
350 psia, P‘E‘(lBOOF) ~ 105 psia.

Solution At the dewpoint,

Zx£:1

feory

From Raoults law derived in Example 17, x; = y,P/P{*(T) and, therefore

Pa'eu-‘ - 1/ EE:} .}':'XP?M(T)-
At the bubblepoint,

r
Z Yi= 1
i=1

Y= xiP;m(T)/Ps Pt’mhble - Z xipfrﬂ(q‘)_

i=1

From these two equations, Py, ., = 227.5 psia and P, = 162 psia. These
calculated results are very reasonable, When the hydrocarbon species are of
the same size, Raoult’s law performs well. However, when they are of different
size and properties due to nonidealities, Raoult’s law performs poorly.

Example 1.9 Gibbs phase rule (flat interface) Derive the phase rule
F =c¢+2— p, where Fis the number of degrees of freedom, ¢ 1s the number of
components, and p 18 the number of phases. Assume the interface between the
phases 1s flat.

Solution The criteria of chemical equilibrium of multicomponent systems
with c components and p phases are (see Egs. (1.322))

T 2 e
Pll) — P(2] . = P[pl
Q@ i
Hy = Hp ==y
(1) 02 _ 1)
He' = K¢ __J“tg

There are (p — 1) temperature and (p — 1) pressure equations. The number of
equations for the chemical potentials is ¢(p — 1). Therefore, the total number
of equations 1s (¢ + 2)(p — 1). For each phase the intensive variables are related
by the Gibbs-Duhem equations (see Eq. (1.40)). Therefore, the number of inde-
pendent intensive variables of each phase is (¢ + 1): T, P, and g, o, ..., fto_y.
The degrees of freedom, F, is defined as the difference between the number of
independent intensive variables of the system [which is p(c + 1)] and the
number of equations between these wvariables [which 15 (¢ + 2){(p — 1)]
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Therefore,

F=plc+1)—(p—1}c+2)=c+2—p

The ahove relationship can be used to describe the state of a particular phase
of a composite system; it provides the number of independent intensive vari-
ables for specifying the system. Since chemical potential of a phase is a func-
tion of temperature, pressure, and mole fraction of components 1 to (¢ — 1),
then one may use (¢ — 1) mole fractions instead of ¢ chemical potential for
every phase.

[.et us now give two examples of the phase rule. In the first example, consider
a two-component system consisting of three fluid phases; therefore,
F=24+2-3=1.1If we specify the temperature, the system is then defined;
we are not free to specify both temperature and pressure of a three-phase
two-component composite system. In the second example, we consider a two-
phase two-component system; ¥ = 2. If we specify the temperature and pres-
sure, each of the phases are specified. In other words, if we change the
amount of each of the two components, as long as the system is in two phase,
the composition of each phase remains unchanged.

The phase rule presented above is valid if all the components are present in
all phases. It should be modified when some of the components are absent in
one or more phases, We will see in Chapter 2 that the above phase relationship
should be modified when the interface between the phases is curved. A modifi-
cation 1s also needed when there is influence of gravity on equilibrium.

Example 1.10 Derivatives with respect to mole numbers and mole fractions
Derivatives with respect to mole numbers and mole fractions and the relation
between them often result in confusion. This example 1s designed to avoid
such a confusion. (a) Consider the simple derivatives (dw,/dx,) and (3w, /dn;)
for binary and ternary systems (w 1s the weight fraction, x is the mole fraction,
and n is the number of moles). Derive the expressions for (w,/dx;) and
(dw,/dn;). (b) What is the relationship between (df;/on))y p,
(E}fi/anj_)'l'_}’.n}.....n),_].nj‘].,...n{. -ne and (afixaxj)'}".f"xl,...‘XJ,__l.,r).ﬂ......rl.
n=3y, ., n.

Solution (a) Let us consider first the binary system.

pat e et

7 The subscript

e hy g R

where M, is the molecular weight of component 1 and M is the average molecu-
lar weight.

dw, MM — x M, (0M/dx,)
dx, M2

(E1.10.1a)
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The key term is the derivative (BM /3x,); from

M = lel + x2M2 = lel + (l — xl)M2

M, - M
o, 1 2

Note that in the above derivative x, cannot be held constant since x; + x5 = 1.
Combining the expression for (3w, /9x;) and (M /9x,),

dw, MM —x M\ (M, — M,) M, M,
ax, M2 M2

Now let us calculate (dw,/dn,). Here dw,/dn,l,, and dw,/dn,|, (where
n = n, + ny) are not the same. The latter derivative is related to (3w, /9x,), but
the former is not.

From

the derivative with respect to n, at constant n, is

M| -
ne—| +M =M,,
an,
fy
and, therefore,
any| n

R

Note that since n is not constant we cannot write aM /8x, ln, = My — M. The
derivative of nM at constant n is given by

oM an,
— =M, + My—=| .
”anl ¥ 28n] n
Since n = n, + ny then (dn,/9n,),, = —1, and, therefore,
oM
—| =M, - M,.
”anl ' 2

Since n is constant then n(dM/an,)|, = aM/ox,.
Now let us consider a ternary system. One first can write
% M,
M T

121
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where M = x; M, + x,M, + x3M,. The expression for dw,/dx, is given by Eq.
(E.1.10.1a). The main task 1s finding the derivative aM/3x,. In a ternary system
X, + x5 + x5 = 1; therefore, x;(=1 — x; — x;) is not an independent variable,
Hence,

M

and

w,| MM - x,M{(M; ~ M3) (1 — x,)M, My + x, M, M,

8xl X5 M2 M‘Z

The calculation of (w, /dn,),, , is based on ny(= n — n, — n,) not being an inde-
pendent variable. From

nM = n M, + ngMy + ngMy = n M, + n,M, + (n — n, - n,)M,.

aM
— =M, - M
nanl 1 I3
.,
oM
ar E = Ml - Mi

X2

which is the same as given by Eq. (E1.10.2a). The expressions for (3w, /dn,)
and (dw, /dn,), ,, are readily calculated.
(b) The fugacity of component i in a mixture can be expressed by,

fL :fI(Ts Ps x]_! xQ, PR x(.___]_).

ny . Hg

The differential of f; at constant Tand P is

c—1 af;
df; = > —| dx, (E1.10.1b)
where x;, = (xy, X9, ..., X4_1, Xpi10 - -+ » Xe_1)- The mole fraction of component & is

a function of mole numbers of all the components
Xp = Xp{ny, Ny, ..., N).

The differential of x, is expressed by
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where n; = (ny, ny, ..., 0y, Ny, .00 0). Substituting dx;, from the above
expression into the expression for df;,
c—1 8f < axk
df; = ZG—L 2| dny.
k=1 0K g |y 11 OF g,

Now divide the above equations by dn; while holding (n,.n,, ...,
R 1, Rigs o5 No) CONStant

g
(;i) 5
i k=1 OXg
nj

The derivative (3x/8n;), can be readily calculated from

(a&) (31.10.2b)
x; Hnj n

5

Xy = k=1....,¢
ny+ne+---4+n,
;. .
el | R _n—’; for j#k (E1.10.3b)
an; N n
0x,, n—n, .
R for j =k (E1.10.4b)
an; n?

Combining Egs. (E110.2b) to (E1.10.4b) provides the relation between mole-
number and mole-fraction derivatives of fugacity of component i

o, 1y, of | 1af
fi _ S Lo (E1.10.5b)
dnj'.n =1 1 Bx;‘, x; n ij-jxr

In a similar manner by writing x;, = x,(n,, fo. ..., n._;., n} in differential form.

and further manipulations, we obtain,

afz' - 1 afz'
Bn}- T n 8x),-

) -1 ]

Note that according to Eq. (E1.10.5b), we need an array of fugacity derivatives
with respect to mole fractions to calculate a single mole-number derivative.

Example 1.11  Net heat of transport of component i In thermodynamics of
irreversible processes, the net heat of transport of component i 1s defined by,

Q: =Q,—H,

where @, is the energy transported across a given reference plane per mole of
diffusing component i, in an isothermal process. Show that @ corresponds to
the absorption of heat,
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Solution We will follow Denbigh (1951), and consider a certain bounded
region at constant temperature and pressure. Suppose dn; moles of component
i diffuse across the boundary. The energy flow across the boundary will be
&,dn;. In order to keep the pressure and temperature of region constant, 4.
heat may be absorbed by the system from the surrounding and d_W work may
be done by the region. The change in internal energy is

dU = —Q,dn, +d.Q —d_W.

The change in internal energy is —Udn and the change in volume is
~V, dn;, where U, and V, are the partial molar internal energy and partial
molar  volume, respectively, and d.W = —PV.dn,. Therefore. d.Q =
(Q; — U PV)dn FromH, _L +PV

d_Q =(Q; — H)dn, = Q:dn,.

Or, @ = d_§/dn;, which 1s the net heat that must be absorbed per mole of
diffusing component i to keep the pressure and temperature of the region
constant.

Problems

1.1 Derive the criteria of: (1) thermal equilibrium: (2) mechanical equilibrium;
and (3) chemical equilibrium from the internal energy minimum principle.
These criteria were derived from the entropy maximum principle at the begin-
ning of this chapter.

1.2 Show that the heat added to a closed system at constant volume results in an
increase of the internal energy, U, while the heat added at constant pressure
results in an increase in the enthalpy.

1.3 Consider the following two liquids separated by a membrane that is perme-
able to component . Assume that these liquids are an ideal solution. Derive the
following expression for the osmotic pressure

n=F — P = —(RT/f;i)lnxi.

where v; 1s the average molar volume of pure component i and x, is the mole frac-
tion of component i in the liguid mixture.

Pure comp. mixture
{ contalning

at T, P comp. i
Liquid at T, P’
liquid

1.4 Consider a mixture of C,/C,; with a composition of x¢, = 0.34and x¢, = 0.66
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(mole fractions). Caleulate the volume of 1 kg of this mixture at 346 K and 60 bar
using (1) the partial molar volumes of Fig. 1.5 and (2) pure component data of
Fig. 1.5 and vy, = 3 (o1 XiUpyrei- What is the percentage difference between the
two and which is more accurate?

15 At constant T and P the Gibbs-Duhem equation simplifies to
Y iy mdy; = 0. Analogous to chemical potential y; are partial molar properties
such as V;, H;, and 8,. Show that for all partial molar quantities such as V;, H;,
and S;, at constant 7'and P one can also write

S ndV; =0, Z n;dH; =0, and 3 n,dS; = 0.
i=1 i=1 i=1

1.6 The partial molar volumes can be calculated from the experimental data of
Vi(x,) of binary mixtures from

‘_/1 = U — xg(av/axz)T.P
Vy = v — x(3v/8x;)7 p

where v is the molar volume of the mixture. Derive the above relationships.

1.7 Show that the partial molar enthalpy in a binary mixture can be calculated
from

Hl =h— xz(ahfaxz)T.P

Hy = h — x,(8h/9xy) 1 p.

where h 1s the molar enthalpy of the mixture.

1.8 A student was preparing a cylinder of natural gas for his use in the labora-
tory. In the course of preparing the gas cylinder, he observed some unusual beha-
vior. The cylinder free from liquid at 75°F, and 2005 psia, was cooled to 32°F. As
a result of lower temperature, some condensation took place and he removed
about 500 cm® of liquid from the cylinder. He then brought back the temperature
of the cylinder to 75°F, the initial temperature. But the pressure increased to
2060 psia, 55 psi higher than before liquid removal. How would you explain this
observation?

1.9 Derive the following expressions:
o0 ¢
, U:J [P — T(P/3T)y AV + 3 nad
v = i=1

H= J [P — TGP/3T)y JdV + PV + 3 nud
v - =1

i

= J [(8P/an)r.y . — RT/V]dV — RTIn V/(n,RT) + RT + 1 — Ts}.
v

Note: In the derivation of y; one can use y; - u? = [3(A — A%)/8n)]p v .
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1.10 From u, = (3G/9n;)y p,, », use the dacobian transformation, to show
that
b —H = (aG/anl)T.P.ng.,..,nc_l.n = (ag/axl)T.P,xz,,...xc_l‘
where n == Y7 | n,.

1.11 Show that along an isotherm:

P 0
J Vi-dP:J 3P/ 7y dV.
0 v

Hint: Use V. =(@V/on)r pn = —W8P/n)y v, 1/I(GP/3V)r p 5] to derive the
above relationship.

1.12 Derive the Gibbs-Duhem equation in the followirg forms:
c—1
~SdT + VdP — > nd{(u; — p) —ndp, =0
i=1
c—1
~sdT +vdP — > x;dp; — ) —dp, =0,
i=1

wheren =Y _ n,.

1.13 (a) Show that for excess properties, the Gibbs-Duhem equation takes the
following form,

_SEAT + VEAP + ¥ n,dGE = 0.
i=1

{b) Show that at constant 7 and P, the activity coefficients are not independent
from each other,

(i ndlny, = O) :
i=1 T.P

1.14 Derive the following expression for the activity coefficient of component i
at infinite dilution y$° (that 18, 7; as x; — ),

Y = O e i

where both ¢, and ¢,,,; are at temperature 7, and pressure F. Hint:
Use RTInf,/fX(T,P)=RTInyx;, where f[XT,P)={,,; from which
RT In(e;x;)/¢° = RT Iny;x; can be readily established.

1.15 Derive the following expression

f(T, P, n)

(T, P.n)=u(T,P)+ RT In"s 22—
14 nj) = i ) (TP



54

Chapter One

Hint: You may combine the following equations:

fi(Ts Ps _?_1_)
AT, P, n)

f(T.P° n)=x;f(T. P°)
p T, P’ n) = 1;(T, PPY+ RT Inx;

o )
AT, Py = 1;(T, Py + RT In (T o)

p (T, P,n)=u{T, PP, n)+ RTIn

in your derivation. Note that P° is chosen to be a low enough prebbure at which
the fluid has an 1deal behavior.

1.16 Derive the Maxwell relations from the Jacobian transforms.
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Chapter

General theory of phase equilibria
and irreversible phenomena in
hydrocarbon reservoirs

Generally, in phase-equilibria calewlations of hvdrocarbon FOSCTVOITS,
the effects of gravity and the curvature of the interface between the
phases are neglected. Under cortain conditions and for certain classes
of problems, however, compositional variation in hydrocarbon reser-
voirs may hecome important because of the gravitational field and the
effeets of interface curvature on phase propertics and composition.
The main significance of both gravity and interfuce curvature in hydro-
carbon reservoirs is due to the multicomponent nature and nonideal
behavior of reservoir fluids. which makes them distinet from fluid
mixtures commonly encountered in many disciplines. In some hvdrocar-
bon-reservoir applications. we cannot invoke the Gibbs criterion of
equilibrium because of nonzero entropy production, even at the station-
ary state. As an example, when there is a temperature gradient in a
subsystem or a composite svstem, d€; caunot become zero to establish
equilibrium. On the other hand, as we will see shortly. we can have a
bressure gradient within a subsyvstem and still have equilibrium.

In this chapter, we will first derive the criteria of equilibrium both in
2 gravitational ficld and for a com posite system with a curved interface
between subsystems. Then, we will derive explicit expressions for the
effect of interface curvature on the saturation pressure in single- and
multicomponent mixtures, Next, irreversible thermodynamics will be
introduced in connection with the stationary state in hydrocarbon
reservorrs, Then, the effeet of a temperature gradient on CoOmMposition
variation both with and without natural convection will be formulated.

55
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Equilibrium condition under the influence of
gravity

The work term in Eq. (1.4} of Chapter 1 includes only the expansion or
compression contribution; d_ W = —PdV represents the work of expan-
sion (or compression) done by the system on the surroundings. Now
consider a mass m undergoing both expansion (or compression), and
change in position in the vertical direction (see Fig. 2.1). In order to
raise mass m to some height dz, a certain amount of work must be
done; d_W = mgdz, provided there is no change in the volume of mass
m. When there are both change in the volume of mass m and displace-
ment in the vertical direction by the distance, dz, the work term ig
simply

d_ W= -PdV + mgdz. (2.1)
The expression for dU for a closed system is given by

dU = TdS — PdV + mgdz. (2.2)

One may derive expressions for dH, dA, and dG in a gravity field as

dH = TdS + VdP + mgdz (2.3)
dA = —8dT — PdV + mgdz (2.4)
dG = ~SdT + VdP + mgdz. (2.5)

Now let us apply the Gibbs criterion of equilibrium: dG must vanish
at equilibrium. As a result, the independent terms on the right side of
Eq. (2.5) must vanish. Pressure, P, and vertical position, z, are not inde-
pendent. Therefore at equilibrium,

dT =0 (2.6)
and VAP 4+ mgdz = 0. (2.7)
/Z#*“\\
V"”dV { K= =——- } -—r---a-
T z
dz +ve

Figure 21 Schematic of work

performed due to gravity for a
Vv N & single-component fluid.
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Equation (2.6) states that the temperature 7 must be the same every-
where in the system. Since p = m/V, then Eq. (2.7) becomes

dP = —pgdz, (2.8)

which is the expression for the hydrostatic head.

In the above derivations, we defined our system to be closed, a defini-
tion that is applicable to single-component systems. For a multicompo-
nent fluid, when the mass m 1s displaced from z to z + dz, at the new
position we expect transfer of components across the wall of volume of
fixed mass m, and we have to take various other work terms into
account. We will first move mass m from z to z + dz; because of the
change in pressure, there will be a change in the volume of mass m.
The corresponding work terms are similar to those of a single-compo-
nent system: — PdV and mgdz. At z + dz, because of transfer of various
components across the system, there 1s the chemical work (see Chapter
1), which is given by wu;dn; for each component i (see Figure 2.2). The
work associated with the corresponding mass displacement, dm; for
component i 1s zgdm,. Since m; = n;M;, where M, i1s the molecular
weight of component i, zdm; = M,zdn;. For all the components, the
work when the system is brought to z + dz 1s

d-W' =3 (u; + M;zg)dn,. (2.9)

i=1

Adding Eq. (2.9) to Eq. (2.2) provides the expression for dU when mass
m 1s displaced from z to z 4+ dz for a multicomponent fluid:

AU = TdS — PdV + mgdz + 3, + M.2g)dn,. 2.10)
=1

Note that for a single-component system, the last term on the right side
of Eq. (2.10) is absent (see Eq. (2.2)).

,
I e N o
V+dV \ )Ig } A
~ 1 //
-1

: z

! az +ve

: J Figure 2.2 Schematic of work

performed due to gravity for a
o ke N ___¥ multicomponent fluid.



58 Chapter Two

The corresponding expression for dG is

C
dG = —SdT + VAP + mgdz + > _(y4; + M,zg)dn;. (2.11)

i=:1

At equlibrium, dG must vanish. Since z and P are dependent,
then

dT =0
ﬂi'i‘MigZ:O izl,...,c
VAP + mgdz = 0. (2.12)

The first and third expressions in Eq. (2.12) provide the same results
as previously for the single-component system. The second expression
provides the Gibbs sedimentation expression,

(d,ut = _Mlgdz)'f 1 = 1., e, G (213)

The equilibrium concept of gravity segregation leads to the expres-
sion that, in a multicomponent fluid column under isothermal condi-
tions, the chemical potential of the ith component, y;, is a function of
position, z, according to the above differential equation. Equation
(2.13) provides both composition and pressure as a function of depth,
as we will see next. From (dy; = RTd Inf;) and Eq. (2.13),

(RTdInf, = —Mgdz)y i=1,...,c. (2.14)

Equation (2.14) can be derived using a different approach by minimizing
the total Helmholtz free energy of the system when it has a continuous
variation (Aavatsmark, 1995; Wheaton, 1991).

Integrating Eq. (2.14) from a reference depth of zero to 2,

M.
fi:ffexp[—ﬁgz] t=1,....c (2.15)

Equation (2.15) provides the fugacity of component i in a given phase as
a function of position; given composition and pressure at the reference
point, one can calculate both the composition and pressure at any
point in the vertical direction.

Fi=fi(T, Py, 52, Y1) — [T, Py, 53, .., ¥o1)

M.
xexp(—R—%gz) =0 i=1,...,c, (2.16)
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subject to the constraint equation,
[
> yi=1 (2.17)
i=1

The unknowns are pressure and composition at the desired depth.
Newton’s method can be used to solve the above system of nonlinear
equations. Note that in Egs. (2.16) and (2.17), there is no need to write
the expression for hydrostatic head. One may relate the pressure and
composition at any point to those at the reference point from Egs.

(2.16) and (2.17).

Conditions for pronounced compositional
variation

Let us write dyi; from Eq. (2.13) in terms of the independent variables,
P.y(yy. .. Yotk

i c—1 4 a4,
du;, = ((—”3) dP + 3% ial dy; | . (2.18)
P/, , J
R ”

=A%
T

Combining (dy; = f/idP)T‘y, Egs. (2.13) and (2.18) and the hydrostatic
expression given by Eq. (2.8), one obtains

c—1 4 3,,. dy: -
Z(dﬂ[) (_&%) — (V.= M)y i=1...c—1  (219)
B.T

j=1

Note that in Eq. (2.19a),i=1,...,c—landnoti=1..... ¢ as in Eq.
(2.13). Eq. (2.13) gives y; and P; Eq. (2.19) gives only dy,/dz but not
dP/dz. The above equation can also be written as

O /dyr /3y ... 0y /8y dy,/dz
Oup/dyy  up/ys ... e/, dy,/dz
Ote_1/3yy Otie_1/0¥2 ... Opte1/0¥eq dy._i/dz
Pffl — M,
pVy—M
—g P (2.19b)

pVe,— M.,
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For the sake of brevity we have dropped the subscripts of 7, P, and y;
from the elements of the matrix above. According to Eq. (2.19b), compo-
sitional variation in a multicomponent column could be pronounced
when (1) the term (pV; — M)) is large or (2) the determinant of the
matrix above i1s small. The term (p V; — M,) for asphaltene micelles in a
crude o1l could be very large; the micelle molecular weight could be of
the order of several thousand and even over 20,000, as we will discuss
in Chapter 5. The molecular weights of other species, especially lighter
components, range from 16 to perhaps 800. The determinant of the
matrix in Eq. (2.19b) becomes very small near the critical point, and
becomes zero at the critical point as we will show in Chapter 4. (For
the special case of a two-component system, the results will be shown
later in this chapter.) Therefore, compositional segregation and satura-
tion-pressure variation in an oil column can be very pronounced when
asphaltene materials are present. Compositional variation in a gas
column 1s enhanced when a gas condensate fluid is in the critical region.

Figure 2.3 shows schematically the variation of pressure and satura-
tion pressure with depth in both the o1l leg and the gas cap. Saturation
pressure variation of Fig. 2.3 is due to compositional grading. Kingston
and Niko (1975) report considerable bubblepoint-pressure variation for
the Brent and Stafford reservoirs of the North Sea. The bubblepoint
pressure gradient in the o1l zone is reported to be 3.6 and 4.0 psi/ft,
respectively, for these reservoirs. Some field data show even a greater
bubblepoint-pressure decrease with depth, greater than 5 psi/ft.

Figure 2.4 shows another schematic of the variation of pressure and
saturation pressure with depth. Note that there 1s no gas—o1l contact.
At the top, there 1s the gas phase, and at the bottom, there 1s the liquid
phase. In such a case, the critical temperature is less than the reservoir
temperature at the top and more than the reservoir temperature at the
bottom; the reservoir pressure is higher than dewpoint pressure at the
top it is also higher than the bubblepoint pressure at the bottom. Oil-
field examples of such a behavior are given by Neveux and Sathikumar
(1988) and by Espach and Fry (1951).

Figure 2.5 shows the variation of the molecular weight and the mole
percent of C,, of the East Painter Reservoir (Creek and Schrader,
1985). Figure 2.6 depicts the variation of the amount of C, as a function
of depth. Figure 2.7 shows the variation of total production gas—oil
ratio (GOR) as a function of depth.

Equilibrium condition for curved interfaces

The interface between different phases (e.g., gas and o1l) may not be flat.
As an example, in a capillary tube, the interface between phases may
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Depth

l Gas phase
Pressure
GOcC >
Liguid Phase

Reservoir Pressure

__________ Saturation Pressure

Figure 2.3 Schematic of depth vs, pressure and saturation pressure in the gas cap
and oil column with a distinct gas—oil contact (GOC),

'

be curved. In the derivation of equilibrium condition, the effect of inter-
face curvature should be taken into account. Qur approach to account
for the effect of interface curvature is to modify the expression for the
work term. :

Consider the two systems sketched in Figure 2.8. The work of expan-
sion 18 d_.W = —PdV for the system on the left. For the system on the
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Depth

l Pressure

v

Reservoir Pressure

Saturation Pressure

Figure 2.4 Schematic of depth vs. pressure and saturation pressure for a
near-critical fluid.

right, as the bubble expands, the work expression contains two terms:
d_W = —-PdV + od A, (2.20)

where PdV is the contribution from expansion (or compression) and
od A is the work required to increase the bubble surface area by dA (¢
is the surface or interfacial tension). Explicit derivation of Eq. (2.20)
will be presented shortly. Including ocd A in Eq. (1.21) of Chapter 1, the
expression for dU 1s obtained:

dU = TdS — PAV + Y wdn; + odA. (2.21)

=1
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Figure 2.5 East Painter field variation of mole percent and mole-
cular weight of C,, with depth (adapted from Creek and Schra-
der, 1985).
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Similar expressions for dH, __dA, and d( are given below.

o

dH = TdS + VAP + " pydn; + od A (2.22)
=1
i=1
dG = —SdT + VAP + 3" pdn, + od A (2.24)
i=1

Now consider a composite system consisting of a gas bubble (shown by
superscript prime or by b superscript) and the surrounding liquid phase
(shown by superscript double-primes or by L superscript) sketched in
Fig. 2.9. The expression for dU of each phase depends on how one assigns
the interface. If we assign the interface to the gas bubble, then

AU = TS — PPAV® + 3 ibdnb + od A" (2.25)
i=1
dU" = TtdSY — PVt 4 3 uldnt (2.26)
=1

Alternatively, if the interface 1s assigned to the surrounding liquid
phase and not as part of the gas bubble, the od A® term should be part
of dUL and not part of dU%. The interface could also be treated as a
distinct entity; it can represent the surface phase or even a line phase
when three phases with curved interfaces share a common line.
However, for convenience and simplicity, we regard the interface as
part of either the gas bubble or the surrounding liquid. Such a simplifi-

A

gas bubble I T

})I)
) ) ;/#f
| liquid
_
liquid droplet —
|
£as

Figure 2.9 (Gas bubble Figure 2,10 Liquid droplet
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cation 1s justified as long as the thickness of the interfacial region
between the bulk phases 1s negligible in comparison with the radn of
the interface. Physically, the boundary between the two bulk phases is
a heterogeneous region with a thickness of a few molecular diameters.
Other considerations should be taken into account for highly curved
interfaces.

In order to establish the criteria of equilibrium when the interface
between the phases i1s curved, let us consider the system of Fig. 2.9 at
constant volume and constant temperature. The pressure inside the
gas bubble 1s P’ and the surrounding liquid pressure 1s P”. The volumes
of the gas bubble and the surrounding liquid phase are V' and V",
respectively. The expressions for the differential Helmholtz free energy
of the bubble and surrounding liquid for a single-component system are

dA' = —PdV' + odA + gdn’ (2.27)
dA" = —P"dV" + i"dn’ (2.28)

and the differential Helmholtz free energy of the total system, dA, then
18

dA =dA'+dA" = -PdV' — P'dV" +odA + i'dn’ +1'dn”.  (2.29)
SincedV' = —d V", and dn’ = —dn”,
dA = —~(P ~ PYdV' +ad A + (i — 1" )¥dn'. (2.30)

The necessary condition for the system to be at equilibrium is that dA
must vanish. V' and 4" are not independent of each other; therefore,
from Eq. (2.30),

WP = )/'(P")
P — P =odAdV'| . (2.31)

If we assume that the gas bubble has a spherical shape of radius r,

dA = 8nrdr (2.32)
dV' = dnridr. (2.33)

Combining Egs. (2.31) through (2.33),

P-P =P =2/r | (2.34)

Equation (2.34) is the well-known Young-Laplace equation of capillar-
ity, which provides the condition for mechanical equilibrium of a
curved interface.
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For a multicomponent system at constant temperature,

dA'= —PdV' 4+ 3 pdn; + odA (2.35)
i—1
dA" = -P'dV" + 3" pldn! (2.36)
i==1
and with V' + V" = constant and n} + n] = constant ({ = 1, ..., c),

dA =dA + dA” = —(P' = PV +od A" + 3 (¢, — 1)dn.
i=1
Again, the necessary condition for the system to be at equilibrium is
that dA must vanish. From the first two terms, Eq. (2.31) can be
obtained, and from the last term,

pT.P.on'y=u(T.P".n") |. (2.37)

Equation (2.37) shows that for a curved interface, the chemical poten-
tials of each component on both sides of the interface should be equal
to achieve equilibrium. The chemical potentials, however, are evalu-
ated at different pressures; the pressures on different sides of the inter-
face are related by the second expression in Eq. (2.31). In Eq. (2.20), the
work required to increase the surface area of the bubble was expressed
by 6d A. Defay and Prigogine (1966) derive this work term 1n a straight-
forward manner. Consider the system shown in Fig. 2.10, where a spheri-
cal liquid droplet of volume V' and surface area 4’ is surrounded by its
vapor. The total volume of the system, V. isequal to V' + V" where V"
1s the volume of the vapor surrounding the liquid droplet. Suppose
part of the droplet vaporizes and the piston moves upward to expand
the system to volume V +dV. The work done by the system is, there-
fore,

dW=-P'dV=-PdV +V")=-PdV' — P'dV". (2.38)
Let us add and subtract P'dV’ from Eq. (2.38) and rearrange:
dW=—(P' —P)YdV —~ PdV"— PdV'. (2.39)

By using the Young-Laplace equation of capillarity, —(P" — P} =
2a/r, the expression for d.W becomes

d.W=-PdV - P'dV" + od A. (2.40)

where dA = dV'/2r, The first two terms on the right side of Eq. (2.40) are
the work of expansion of the droplet and the surrounding liquid. The
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third term, od A, is the work required to increase the surface area by
dA. '

Effect of curvature on saturation pressure:
condensation and vaporization in porous
media.

Equations (2.31) and (2.37) reveal that the interface curvature affects
the equilibrium. We wish to derive an explicit expression for the effect
of curvature on the saturation pressure in porous media. Consider the
simple system sketched in Fig. 2.11a. In this figure, the diameter of capil-
lary tube 1, d; 1s less than the diameter of capillary tube 2, d,. The
volume of the space above the capillary tubes where the piston is
located 1s very large compared to the volume of capillary tubes 1 and 2.
Now suppose a superheated gas at temperature T and pressure P is
charged to the system. The saturation pressure of the fluid at tempera-
ture 7' with a flat interface is Py . If the pressure is raised by isothermal
compression, the fluid can condense. The question is where would the
liguid form first? To answer this question, we need to derive the expres-
sion for the effect of curvature on saturation pressure.

Consider a gas—liquid system where the liquid wets the solid surface.
Based on mechanical and chemical equilibrium, one can write

PY — Pt = 94/r (2.41)
W=ut  i=1... e C(2.42)

In the above equations, P% is the pressure in the gas phase, PL is the
pressure in the liquid phase, ¢ is the interfacial tension at the gas—
liquid interface, and r is the interface radius. Note that in Eq. (2.41), if
we assume that the liquid completely wets the solid substrate, t.e.,
contact angle 0 = 0, then r = d/2. For 0 > 0, r = d/2 cos 8 {d is the tube
diameter).

For an equilibrium displacement by change of r, Egs. (2.41) and (2.42)
are written as

d(P% — Py = d(20 /1) (2.43)
duf =du*  i=1....,c (2.44)

Under isothermal conditions, the Gibbs-Duhem equation for gas and
liquid phases can be written as

<
— vdPY + S xdpt =0 (2.45)
=1

=

G ipC |, <
—0%dPY 4+ Y y,dpf = 0. (2.46)
&

1=
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Figure 2.11 The influence of curvature on the vapor pressure of a pure
substance and the dewpoint pressure of a hydrocarbon mixture: (@)
system in the single-phase gaseous state. (b) For a pure substance, as pres-
sure increases, gas may condense and the condensation will occur first
in Tube 1, {¢) For a hydrocarbon gas mixture with retrograde condensa-
tion behavior, as pressure decreases, liquid may form also in Tube 1
(liguid wets the substrate).
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Subtracting Eq. (2.46) from Eq. (2.45), assuming that for the gas phase

the composition y; is constant, which is valid at the dewpoint

(l.e.,

d,u VGdPG ), and using Egs. (2.43) and (2.44) and the relationship

UG - ZL lyEVG

2d(o/r) _ 2d(c/r) |
l:l - ixif/ia/vf‘] [1 — ixlf/f; ix,,l—/f]

=1 i=1 i=1

dPC =

(2.47)
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The above equation provides the effect of interface curvature on the
dewpoint pressure at constant temperature. Let us now turn our atten-
tion to a pure substance, for which Eq. (2.47) simplifies to

gpC . 2d(e/r)

=10 A

The above simple equation, which appears in many texts, reveals in very
clear terms that the vapor pressure decreases as the interface curvature
increases, provided the liquid wets the solid substrate. The denominator
is negative since for pure substances v® > v, and d(o/r)=
(6/M),_p — (6/7)],—oc = 0/R 1s positive (for a flat interface, r = ).
Therefore, for the process of condensation sketched in Fig. 2.11a, since
dPC < 0, the condensation for a pure substance will first occur in tube
1 with d; < d,, as shown in Fig. 2.11b.

Now let us examine Eq. (2.47). For hydrocarbon mixtures in the criti-
cal region, the denominator can be positive, [1 — (3L, x; VE)/v"] > 0,
and therefore dPC > 0. Consequently, the dewpoint pressure may
increase as the interface curvature increases. For the system sketched
in Fig. 2.11a, if a natural gas is introduced into the system at T>T,,
{(where T, is the critical temperature of the natural gas) in the course
of expansion at constant temperature, the liquid might also first form
in tube 1 (see Fig. 2.11¢).

For a pure substance, the dewpoint and bubblepoint pressures are the
same when the gas-liquid interface 1s flat, and therefore Eq. (2.48) can
be used to study the effect of curvature on the saturation pressure,
whether we approach the saturation pressure from the gas or liquid
side. The substrate is assumed to wet the liquid, and the pressure in
the liquid phase is less than that in the gas phase. For mixtures,
dewpoint and bubblepoint (for a given composition) are different for a
flat interface between the gas and liquid phases. Equation (2.47) applies
to the dewpoint only. The expression for the change of bubblepoint pres-
sure, i.e., vaporization, can be obtained from

dPG — 2d(a/r) . 2d(r7/r)

¢ - - c - . C -
[1 —vb/ yiVI'L:| |:1 — Y ¥ VHy/ yiVILi|
' 1 =1 -1

=

(2.49)

i= I=

This equation is obtained by holding the composition of the liquid
phase x; constant (i.e., du? = VEdPL). Since for a hydrocarbon mixture
in the critical region, v® might be less than 3¢, y; VL, dPY can be
posttive, which implies that the bubblepoint pressure can increase
with an increase in curvature, Based on the above, when we lower the
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pressure of an undersaturated near-critical oil mixture in a porous
medium, the tight pores may provide nucleation sites where liquid will
form first. In Fig. 2.12, when the pressure of a compressed near-critical
lquid is lowered, the gas bubble will first appear in tube 1 and then in
tube 2 at a lower pressure, provided the liquid wets the solid; for 6 = 0,
the gas should form spherical bubbles.

Next we will derive simple expressions for the vapor pressure of pure
substances as a function of interface curvature.

Vapor pressure of pure substances. For a pure substance at low and
moderate pressures away from the critical point, often v© >> v¥. There-
fore Eq. (2.48) can be approximated by

—v%dPC = 20 d(a/r). (2.50)

If we further assume that the gas phase can be described by the ideal gas
law, PCu¥ = RT, then

~RTdIn P° = 2vtd(a/r). (2.51)

We can integrate Eq. (2.51) from r = oc to any r. The vapor pressure at r,
P, 1s related to the vapor pressure of the flat interface, P™, through

RT In(P*/P%) = 2 J vEd(o/r). (2.52)

r=oC

P>PF
| 2
% Figure 2,12 The influence of
curvature on the bubblepoint of a
| ] hydrocarbon mixture.

oS
o
[ %]
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If we further assume that the liquid molar volume does not change
with pressure,

(2.53)

20 vk
PO — poexp| -2 Y
exp[ r RT]

Equation (2.53), known as the Kelvin equation, reveals that the vapor
pressure, PY decreases with increasing interface curvature. So far, we
have assumed that the substrate is liquid-wet or that the new phase
forms as a bubble. For a droplet or when gas is the wetting phase, the
effect of curvature on saturation pressure is formulated shortly. When
the radius of a bubble or droplet becomes very small (say r < 107° cm,
for a pure substance), the interfacial tension may become a function of
the radius (Defay and Prigogine, 1966). However, the derivation of Eq.
(2.53) was not based on the assumption of the interfacial tension being
independent of r.

Figure 2.13 provides a schematic of liquid- and gas-wet systems.
Bubble and droplet formations are also sketched in parallel analogy
with liquid-wet and gas-wet systems, respectively.

Effect of wettability. Our attention to the effect of curvature on the
saturation pressure was directed to a bubble or, equivalently, when
the liquid wets the solid surface. This is often true in hydrocarbon reser-
voirs in which gas 1s the nonwetting phase and o1l 1s the wetting phase.
However, in some other systems, gas may be the wetting phase and o1l
(or the liquid) may be the nonwetting phase. Even in rocks, liquid
mercury 1s the nonwetting phase and air 1s the wetting phase. In such
cases, the Young-Laplace equation of capillarity for a tube should be
written as
200 ogcosl

P, =pPCf_pl_"— : (2.54)
r d

where d i1s the tube diameter and ) is the contact angle. Note that when
gas wets the substrate or for a droplet, gas pressure i1s less than the
liquid pressure because when ¢ > 90°, cos ) < 0. For a droplet, or when
# = 180°, one writes

2d(a/r)
dPC = 1 2.55
ot~ 1 %29)
where r is the radius of the droplet. Equation (2.55) indicates that the
vapor pressure of a pure substance increases as the interface curvature

1ncreases.
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a—t—— liquid - gas
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Figure 2.13 Parallel analogy between wettability, a bubble, and a droplet.

Effect of porous medium on phase behavior. Several authors have
studied the effect of the porous medium on the phase behavior of reser-
voir fluid systems. Russian authors Trebin and Zadora (1968) report a
strong influence of the porous medium on the dewpoint pressure and
vapor-liquid equilibrium (VLE) of gas condensate systems. The porous
medium used by these authors was a silica sand mixture (0.300 to
0.215 mm diameter) ground by a special cutter—pulverizer. Three differ-
ent packings with permeabilities of 5.6, 0.612, and 0.111 darecies and
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porosities of 34, 31.4, and 29.8 percent, respectively, were used. The
calculated surface areas for these packings were 563, 1,307, and 3,415
cm?/cm?, respectively. Figure 2.14 shows the effect of the porous media
on the liquid content of the produced fluids. This figure shows that as
the surface area of the porous media increases, the dewpoint pressure
increases. Trebin and Zadora report a 10 to 15 percent increase in the
dewpoint pressure in the porous media of the type that was used in
their work. When these authors increased the temperature, the effect
of the porous media on VLE was decreased.

Tindy and Raynal (1966) measured the bubblepoint pressure of two
reservoir crude oils in both an open space (PVT cell) and a porous
medium with grain sizes in the range of 160 to 200 microns. The bubble-
point pressures of these two crude oils were higher in the porous
medium than in a PVT cell by 7 and 4 kg/cm?, respectively. Specifically,
the bubblepoint pressure of one of the two crude oils measured at 80°C
in a PVT cell was 121 kg/cm? and the bubblepoint pressure at the same
temperature in a porous medium of 160 to 20 microns was 128 kg/cm?.
On the other hand, when these authors used a mixture of methane and
n-heptane, they observed no differences in the saturation pressure.
Sigmund et al. (1973) have also investigated the effect of the porous
medium on phase behavior of model fluids. Their measurements on
dewpoint and bubblepoint pressures showed no effect of the porous
medium. The fluid systems used by these authors were C;/nC; and
C,/nCs. The smallest bead size used was 30 to 40 U.S. mesh. In Example
2.3 presented at the end of this chapter, the effect of interface curva-
ture on dewpoint pressure and equilibrium phase composition will be
examined. '

Irreversible phenomena

In all of our derivations for equilibrium, we have made the fundamental
assumption that the process is reversible. For an isolated system, the
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process is reversible when dS = 0: the entropy of the system does not
change with time. A consequence of the reversibility assumption for
all the equilibrium cases that we have studied (i.e., thermal, mechani-
cal, and chemical) is that the temperature is the same throughout the
composite system. In other words, the necessary condition to achieve
equilibrium 1s the uniformity of temperature in the composite system.
Under nonisothermal conditions, the process becomes irreversible and
equilibrium cannot be achieved. Therefore, the Gibbs criterion of sedi-
mentation (or segregation), (du; = —~M;gdz),, cannot be invoked when
there is a temperature gradient in the system. In hydrocarbon reser-
voirs, there 1s often a temperature gradient of 1 to 4°F per 100 ft in the
vertical direction. In some reservoirs, there is also a horizontal
temperature gradient of 1 to 5°F/mile. These temperature gradients
may have a strong influence on composition variation. The main
purpose here is to briefly introduce the subject of thermodynamics of
irreversible processes and to present the fundamental relationships for
describing nonisothermal processes.

Let us examine the time variation of the entropy of a composite
system (entropy change for the composite system from time ¢ to ¢t + dt),
dS:

dS = (dS), + (dS),, (2.56)

where (dS), is the change in entropy supplied to the composite system
from the exterior and (dS); is the change in entropy produced inside
the system (during time interval df). An alternate statement of the
Second Law (Postulates 11, III, and IV of Chapter 1) 1s that (dS); must
be zero for reversible processes and positive for irreversible processes.

(dS), =0 for reversible processes (2.57)

(dS), > 0 for irreversible processes (2.58)

According to the Second Law, the entropy production within the
system, (dS);, cannot be negative. On the other hand, the entropy
supplied to the system, (dS),, can be positive, zero, or negative. For an
1solated system, (dS), = 0, and therefore

dS = (dS);. (2.59)

Equation (2.59) implies that for a reversible process in an isolated
system, dS = 0, and for an irreversible process, dS > 0. The mathemati-
cal expressions are

dS = 0 1solated system, reversible process (2.60)

dS > 0 1isolated system, irreversible process. (2.61)
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In Chapter 1, the entropy supplied to the system was defined by the
relationship (dS), = dQ/T for a closed system, where d@ is the heat
supplied to the system at constant temperature 1. Since the process
was assumed reversible, then

dS =dQ/T,(dS); = 0 closed system. (2.62)

In summary, equilibrium thermodynamics addresses reversible
processes for which there is no entropy production within the system.
In thermodynamics of irreversible processes, the entropy production,
(dS);, is formulated and then is related to the irreversible phenomena
that may occur in the system.

Let us write the expression for the rate of entropy production in a
system of volume V-

V
(dS/dt);, = J odV, (2.63)

where ¢ 1s the entropy production per unit volume and time and it can be
called the entropy production strength. There is no meaning to the
destruction of entropy.

Entropy production strength. We will derive the expression for .
Consider a small volume element AxAyAz within a given system. The
entropy balance for this volume element can be stated as

Rate of Entropy Change = Net Entropy Influx
+ Rate of Entropy Production.

Let s denote the specific entropy (that is, entropy per unit mass), ana JS
the entropy flux per unit time per unit surface area; then

a
—[psAxAyAz] = JiAyAz|; 4, + JiAXAZY .

ot
+ JIAxXAY|E 4, + 0AXL (2.64)
In the above equation J3, J7, and J§ are the total e ..., “uxesinthex,
v, and z directions, respectively, and p is the mas~ = .<* -. Dividing by
AxAyAz and taking the limit as Ax — 0,Ay = 0, -t v -» 0, and writ-
ing the result 1n vector notation,

aps - .
e V.- ()40 (2.65)
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Equation (2.685) is similar to any other balance expression, with the

difference that there 1s a source term representing the production of

ertropy. A different form of the above equation can be presented in
- of total derivative of s:

p%z = -V - (J® — psv) + 0. (2.66a)

£q. (2.66a), the total entropy flux J® consists of three parts: (1)

T, (2) Y i, SiJ;. and (3) psU which represent the contributions

.. conduction, diffusion, and convection, respectively (§°"¢ is the

1y flux by conduction, J, is the diffusion mass flux of component :

- .-+ described later in this chapter, and §; = S;/M;). Therefore, Eq.
a) can be written as

d =cond ¢ .
pd—j - V. (q + 3 SiJE) +o (2.66b)

I total derivative (ds/d¢) represents the variation of s with respect to
time and position; s = s(¢, x. y. z). The partial derivative (ds/dt) repre-
sents the variation of s with respect to time at a fixed position. For any
scalar quantity such as s,

ds dps ~
-2 _ 2 . ] 2
0 ; Py + V- psv (2.67)

The above equation can be obtained by combining the mass balance
expression (dp/dt) = —V -(p?¥) and the expression (ds/dt)—
(ds/3t) + v - Vs. Combining Eqgs. (2.65) and (2.67) results in the expression
given by Eq. (2.66a). Now recall the expression for dS from Chapter 1,

TdS = dU + PdV — S (u,/M,)dm,. (2.68)
i=1

. e S, U, and V are the total entropy, internal energy, and volume,
«wpectively, and m; is the total mass of component i. Note that in the
above equation, the chemical potential is defined as y; = (0U/dn))g v , ;
the molecular weight of component i, M;, appears to make the chemical
potential stay the same as defined in Chapter 1. The extensive quantities
S, U, and V can be expressed in terms of specific quantities (quantity
per unit mass): S = ms, U = mu, and V = mv, where m = ) _;_, m;. If we
assume m = 1 in Eq. (2.68) and divide by di,

ds du dv & _ dw;

i=1
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where fi; = u;/M; and w; 1s the mass fraction of component {. Equation
(2.69) is based on the assumption of equilibrium; it is assumed that at a
local level, the process is still an equilibrium process. When the
volume element becomes large, the equilibrium assumption may not be
valid. In irreversible thermodynamics, it is shown that for most trans-
port processes, the equilibrium assumption is justified at the local.
level (de Groot and Mazur, 1984; Haase, 1969).

The continuity equation for species i and the energy balance are then
used to provide the expression for ¢. For the volume element, one can
readily derive the mass-balance expression |

d _
pdbi_—V-Ji i=1,....c (2.70)
In the above equation, J; is the diffusion mass flux of component i.

The expression for energy balance 1s taken from Bird ef al. (see Table
18.3-1 of Bird et al., 1960). These authors provide the details of the deri-
vation of the energy-balance expression

C

~Vv. (‘“’"d ff{fji) ~G+PS) VO -3, & (2.71)
=1 ]

du
Par =

-

In the above equation, in addition to the energy flux by conduction,
qm”d the energy flux by interdiffusion, (3°;_, H; J)), is also taken into
account (H; = H,/M;), but the energy flux by concentration gradient
(1.e., Dufour-effect) 1s neglected. Note that the sign of the last term is
reversed from Bird et al., (1960); this 1s done to be consistent with our
section on the effects of gravity on equilibrium, where we have assumed
the upward direction to be positive. In Eq. (2.71), the symbol =" repre-
sents a tensor; both 7 and & are tensors. The stress tensor t has nine
components T, Tyy, Tou Tays Tazs Tyxs Tyzr Top @0 75, whereas the velocity
vector U has three components Uy, Uy, and v,. The unit tensor d has also
nine components; it can be represented by a 3 x 3 matrix with diagonal
elements unity and nondiagonal elements zero (Appendix A of Bird et
al. (1960) provides a brief and useful description of vector and tensor
operations). Note that Vo in Eq. (2.71) 1s the dyadic product of vector V
and vector v; it is a tensor with nine components, dv,/3x. dv,/dy,
dv,/dz, dv /8x dv, /dy, dv, /02, du,/dx, du,/dy, and dv,/dz. The double-dot

operation “ represents the scalar product of two tensors,

"‘\LL

3 3
=Yg @7)

where i and j take on the values of x, ¥, and =.
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The term P3 :V© in Eq. (2.71) can be simplified considerably,
PS : Vi = P(V - D). (2.73)
From the continuity equation, (dp/dt) = —p(V - U). Therefore,
= . dp
Po Vi = —(P/p) . (2.74)

Since p = 1/v, where v 1s the specific volume,

dv _
(1/p)dp/dt) = _p(dt) (2.75)
and Eq. (2.74) simplifies to
P Vi =P (2.76)
dt
Combining Eqgs. (2.71) and (2.76) gives
du —‘cond ¢
p ="V +ZHJ —7 Vu~Pp -3 d; (2.77)
i=1 =1

The above form of the energy equation i1s combined with Eqs. (2.69) and
(2.70) to provide the expression for ds/dk,

PTf; V.acondwv,(zﬁiji) VUt Y AV J)—ZJ
(=1 i=1
(2.78)

The first term on the right side of Eq. (2.78) can be part of the following
relationship,

— 1 —~con con
V(@M T) =5V 37 - (Tg)(q ) (2.79)

The second term on the right side of Eq. (2.78) can be written as:

*V'(iﬁijz‘—iﬁiﬂfi+iﬁ£ji) ( ié Zc:ﬁiJi)—
(2.80)

Combining the above three expressions, and using,

v Z(H;J)—ZJ V#,-,+Z#(V J))

i=1
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and a similar expression for V. (T Y_;_, S;J i),
.o—‘fl—s =-V. [(q“’"d/T) + Z(S J, )] —(1/T% [ wond 4 > S, J,} VT
— TR V6~ (D) S IV + &), (2.81)

From the comparison of Egs. (2,.66b) and (2.81),

C

= —(1/T% [ cond _zéijf].vzﬂ_u/rﬁ:vv

TV, (Vi + 8) L @8
i=1

| —

Note that the entropy production strength, according to the above equa-
tion consists of three terms. The first term arises from the temperature
gradient, the second term is due to velocity gradients (see Eq. {2.85)
below), and the third term is from the gradient of the chemical potential.
Equation (2.82) mmplies that at stationary states (states in which the
variables are independent of time), when temperature 1s time-indepen-
dent but has a nonuniform value, ¢ is nonzero. We have shown that
entropy production within the system 1s due to (1) temperature gradi-
ent, (2) velocity gradient, and (3) chemical potential gradient. One can
also show that the terms on the right side of Eq. (2.82) are positive. Let
us show that the second term 1s always > 0.

In order to prove that (=7 : VU)1s positive, we need the expression for
various stresses. For Newtonian fluids, the expression for stresses are
(see Bird et al., 1960)

= 4 S (VD) i=1,2.3 (2.83)

du;  0U; X L
rij:'rﬂ_—-,u(vl-fr—{) 1=1,2,3 7=1,2,3,i#£7, (2.84)

where i and j take ont the values of x, y, and z.
Combining Egs. (2.72), (2.83), and (2.84) results in the following sum of
the squares:

2
2 gey 1 3.3 aUI‘ aU) 2 - -

i=]1j=1 i
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where §; =1 for i = j, and 6; = 0 for i # j. Therefore, it is established
that the (—7 : VU) term is always > 0.

Let us also examine Eq. (24.82) for a convection-free system at 1sother-
mal conditions, where v =0, and VT = 0. For the system to have no
entropy production (that is, to be at equilibrium state), Vi, = —g.
Since in a gravity field g, =g, =0 and g, =g, then dji;/dz = —g or
du; = —-M,gdz, which is the same as Eq. (2.13). With the above back-
ground, we now switch to the expression for the total diffusion flux,
which can be derived from the thermodynamics of irreversible
processes.

Let us start by writing the expression for the mass flux, m;:

fﬁi = pLUia + ji‘ (286)

where p is the total mass density, w; 1s the mass fraction of component i,
U is the mass-average velocity, and J; is the total diffusion mass flux
(nonconvective) of component i. In the above equation, the first term
on the right side 1s the convective mass flux, and the second term is the
diffusive flux. Total diffusion flux, to our knowledge, has not yet been
accounted for in any of the numerical simulation models for hydrocar-
bon reservoirs.

The expression for the total diffusion mass flux in a binary system for
component 1 is given by Bird et al. (1960), and Ghorayeb and Firoozabadi
(1999):

Jy = (—1*/p)M, My Dy
dlnf, Mux, (V, 1 . _
— - eV In 1 2.87
< {(alnxl)mwﬁ Rr\ag VP HRYIRT L (280)

where 7 is the total molar density, p is the mass density, D5 1s the mole-
cular diffusion coefficient of components 1, and 2, f is the fugacity, kp
1s the thermal diffusion ratio of component 1 and M is the molecular
weight. We assign the positive sign to ky when component 1 moves to
the hot region. For component 2, the thermal diffusion ratio is —k;.
Three different diffusion processes are included in Eq. (2.87). The first
term represents molecular diffusion. The second term is for pressure
diffusion, which under the influence of gravity leads to gravity segrega-
tion. The last term represents thermal diffusion (Soret effect) which is
the tendency of a convection-free mixture to separate under a tempera-
ture gradient. An interesting feature of Eq. (2.87) is that in the absence
of a temperature gradient, it simplifies to the Gibbs segregation equa-
tion, which we will soon demonstrate. As one can see from Eq. (2.82),
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with thermal diffusion and even with negligible convection, the segre-
gation equation du; = —M,gdz does not hold because equilibrium is
not established.

In hydrocarbon reservoirs, the temperature distribution is often
available from temperature measurements. Then for a 1D or a 2D space
with two components, there are two unknowns at each point, x, and P
(x, 1s not an independent variable since x, = 1 — x;). For a 1D space,
because of the absence of convection, the problem becomes very
simple. Let us derive an explicit expression for dx,/dz at steady state
(i.e., stationary state) for a two-component system for a 1D problem.

Thermal diffusion and gravity segregation in 1D. The combined effect of
thermal diffusion and gravity segregation in the 1D vertical direction
at steady state is governed by J;,=0. Using Eq. (2.87) and
dP/dz = —pg, one obtains

(2.88)

D_ﬁ__(alnxl) l:gx1 - dlnT]
T.P

dz ~\ain7, ). |grP Vi~ M) R

An alternative form of Eq. (2.88) can be obtained by using

»‘()_Zzlx /Zrlxv

dxl ?J]nx] )/ifz. IX“_/ ) g d]I’lT
- = kjv I (289)
dz dlnfy /5 p 1/(3;] V) + 1/(~¢2 N RT dz

The hydrostatic-head expression is given by

dP _[PM] (2.90)

4z |ZRT\®

where the substitution p = (PM/ZRT) has been made. Egs. (2.89) and
(2.90) are two first-order differential equations and their solution
provides x; and P. Pressure and composition at a reference depth
should be given. A numerical method, such as the Euler scheme, can
be used to solve these two equations.

In Eq. (2.89), (3Inx,/3Inf,)r p, V1, Vs, and in Eq. (2.90), Z, all can be
obtained from an EOS, which will be discussed in Chapter 3.
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When the temperature gradient is negligible, the last term in Eq.
(2.88) drops out, and since

1/ ox
Olna/dinfire =2 (alnlfl) )

dx, ax, F- —

Equation (2.91) is the fugacity form of Eq. (2.19a) when the number of
components 18 two. For a near-critical two-component fluid mixture
(dx,/38Inf))r p 1s large, and therefore, (dx,/dz) is also large (see the
next section).

Before we move on to study the effect of the temperature gradient on
natural convection and thermal diffusion in hydrocarbon reservoirs.
we will briefly discuss the thermal diffusion ratio, &

Thermal diffusion ratio, k. Thermal diffusion ratio, k4, is a measure of
thermal diffusion. The sign of &, determines the direction of thermal
diffusion. Another defined parameter for thermal diffusion is the ther-
mal diffusion factor, %, which 1s defined as

x1x2

(2.92)

o =

for a binary mixture. The parameter « is nearly independent of composi-
tion for low-pressure gases. There has been some confusion in the litera-
ture in representing the direction of x either in experiment or theory.
For example, the experimental data of Rutherford and Roof (1959) for
the mixture C;/nC, show that C; (component 1) goes to the hot region
when « > 0 and nC, (component 2) with « < 0 goes to the cold region.
In contrast, in the theoretical models of Rutherford (1963) and Kempers
(1989), the component with o > 0 goes to the cold region. In order to
avoid this confusion, as was stated earlier, component 1 with 2 > 0 is
assigned to segregate to the hot region.

In 1ow~preésure gaseous mixtures and ideal liquid mixtures, « has
been found to be small. On the other hand, in nonideal liquid mixtures,
% may be large; it becomes very large in the near-critical region for
both near-critical gas and hiquid phases. At the critical point, however,
it has a limiting value. In this respect, « and the molecular diffusion
coefficient, D, have opposite trends. Molecular diffusion is pronounced
for low pressure gaseous mixtures and becomes small as the critical
region is approached.
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In the absence of convection and in the horizontal direction (that is,
no gravity effect), Bq. (2.88) simplifies to

dx;  {9lnx dinT
E“(alnfl)k?’ dx (2:93)

where x; is the mole fraction of component 1 and x represents dis-
tance in the horizontal direction. Combining Eqgs. (2.92) and (2.93)
resulis in

dx, ” dinT

=2 = Py x .94

de = 0 T (2.94)
where «F = a(glli;;) (2.95)

Note that the factor (3lnx,/dInf))y p is included in the expression for
ot 1f x*P 15 assumed to be constant, then Eq. (2.94) can be integrated
between the hot and cold regions to provide

{“exp = In[(x, /2)"/(xs/2) )/ In(TH/ T) ] : (2.96)

where H and Crepresent, respectively, the hot and cold regions in a two-
chamber cell. Equation {2.96) is the expression that has been used to
infer experimental thermal diffusion factors from measured concentra-
tion and temperature data. In order to use ¥, however, we need to
multiply 1t by (d1n/f,/d1n x; ) for substitution into Eq. (2.87) or Eq. (2.88).

There are a number of theoretical models for the calculation of o for
binary mixtures. These models often rely on equilibrium and nonequili-
brium properties of mixtures (Shukla and Firoozabadi, 1998). The
general expression for « for a binary mixture is

o = M (2.97)

Ofty
x —_—
Hoxy T.P

where )} is the net heat of transport of component i (see Example 1.11 of
Chapter 1, and Shukla and Firoozabadi, 1998). In Eq. (2.97), the numera-
tor is in terms of nonequilibrium properties and the denominator is in
terms of equilibrium properties. The complexity is the evaluation of
the net heat of transport, &, in the numerator. Note that « in Eq. (2.97)
1s also factored with (3lnx,/8Inf;). Therefore the results from Eq.
(2.97) can be compared to measured values from Eq. (2.96).

&
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tat is,; There are very few experimental data for « of binary hydrocarbon

mixtures at high pressures; the available data are limited to the C,/C;
system from Haase et al. (1971) and the C,/nC, system from Rutherford

2.93) and Roof (1959). Figures (2.15) to (2.19) show the data and the theory.

The solid line in these figures is from a new model by Shukla and Firoo-
zabadi (1998). The comparison between theory and data for the C,/C4

18- system suggests that there is a major discrepancy in the critical
-93) region. To highlight the critical region, Fig. 2.20 presents the pres-

94)

5)

sure—-composition plot of C,;/C; at 346 K. The composition x; = 0.34
(mole fraction) with pressure range P = 50 to 70 bar, lies in the critical
region. In order to further illustrate the effect of the critical region on
a, Figs. 2.21 and 2.22 show the calculated results for (31nf,/91n x;) and
In f;; (31nf,/9Inx;) is a measure of nonideality and 1s unity for an ideal
mixture and it is zero at this critical point for a nonideal binary mixture.
Apparently, critical condition effects are not properly taken into
account by models that are used to calculate «.

The agreement between prediction results and data are better for the
C,/nC, mixture. For this system, unlike for the C,/C, system, the fluad
is on the left side of the critical point on the P-T plot, implying liquid
state. For both the C,/C; and C,/nC, systems, x > 0, which implies
that methane segregrates towards the hot region.

Next we will discuss thermal convection and then formulate the
problem of composition variation in hydrocarbon reservoirs with
natural convection and diffusion.

i)

T=346K, x, = 0.34
40y

® Data
—— Theary

30

Thermal DViffusion Factor

ol
30 10 sn &0 b 80 a0 160

P, bar

Figure 215 Comparison of thermal diffusion factors from theory and experiments for the
C,/C, system {(adapted from Shukla and Firoozabadi, 1998),
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Figure 2.16 Comparison of thermal diffusion factors from theory with experiments for the
C,/C, system (adapted from Shukla and Firoozabadi, 1998).

Thermal convection

One major goal of this section is to understand what drives flow in ther-
mal convection at steady state; it may not be the buovancy as one may
believe. The benefit of buoyancy is that it will @if it is large enough)
cause instabilities and these instabilities will cause a horizontal density

15 _‘

30

T=346K, P =75bar

20

Thermal Diffusion Factor

02 0.25 0.3 0.25 04 0.45 0.5 .55 0.6 .65

Figure 2.17 Comparison of thermal diffusion factors from theory and experiments for the
C,/C; system (adapted from Shukla and Fircozabadi, 1998).
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Figure 2.18 Comparison of thermal diffusion factors from theory and experiments for the

C;/nC, system (adapted from Shukla and Fircozabadi. 1998),

gradient. Let us consider a single-component fluid in a two-dimensional
cross-sectional (x, z) reservoir. We assume that the process has been
going on long enough to have reached steady state. The reservoir bound-
aries are closed to flow and there is a steady-state temperature field

imposed on the system.
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Figure 219 Comparison of therma! diffusion factors from theory and experiments for the

C,/nC, system (adapted from Shukla and Firoozabadi, 1998).
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Fugacity of C, in the C,/C; system (adapted from Shukla and Firoozabadi,
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Figure 2.22 Fugacity of C; in the C,/C; system (adapted from Shukla and Firoozabadi.
1998).

The flow is governed by the continuity equation:
V- (pv) =0, (2.98)

where the velocity 1s given by Darcy’s law,

0 = —(k/W)(VP + pBV2). (2.99)
aP
. =P
|’ 9z bmii i 8
-«
8P| _,
e il _0 % beawin !
OX Loz
______ ""'"""'"_“"_""_"“1| H
ap |
v =_p )
Jaz i=-H/2 § :I
! X
s W >,

Figure 2.23 Geometry and boundary conditions for the 2D single-
component fluid system used in the study of thermal convection.
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Note that in Eq. (2.99), v i1s not the true velocity; the true velocity is
given by U/¢ where ¢ is the fractional porosity. Figure 2.23 provides
the boundary conditions of the 2D geometry. The boundary conditions
are derived from the assumption that fluid does not cross the bound-
aries; i.e., the normal component of velocity is zero.

By combining the continuity equation, Eq. (2.98), and Darcy’s equa-
tion, Eq. (2.99), one obtains,

FP FP 3 1 1
ax2+az2+g55*“[p—/ﬁ]*(’/“)__[F]_(pm[ +pg}

(2.100)

In the derivation of Eq. (2.100), it is assumed that the permeability is
independent of x and z. In order to solve the problem of thermal convec-
tion in a simple manner, one may use the Boussinesq approximation
(see Chapter 2 of Chandrasekhar, 1961), neglect the variation of p/u in
the continuity equation, and retain the density variation in Darcy’s
equation. Riley and Firoozabadi (1996) have examined the Boussinesq
approximation by using the perturbation technique and found that the
neglect of the right-side terms of Eq. (2.100) is an excellent approxima-
tion. (In the perturbation technique, one can check the solution and
then the error. The solution from the neglected terms 1s inserted in the
equation terms. The approximate solution is then improved by solving
the equation with values of the neglected terms from the original solu-
tion.) Using the Boussinesq approximation, Eq. (2.100) transforms into

*P PP op

. 2.101
8x2+822+gdz 0 (210D

Now let us examine the (3p/0z) term. In general, for a single-component
fluid, p = p(T', P), and therefore

8,0 ap aP ap oT
8z 0P 3z ' 8T az

(2.102)

The effect of pressure In density variation does not contribute to ther-
mal convection (see Problem 2.17), and therefore we write

Bp dp oT

9z dT bz (2.103)

The temperature dependence of the density can be approximated using
the Taylor series,

o(T) ~ p(T) + j; (T - 1°), (2.104)
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where 79 is the reference temperature. From the definition of ther-
mal expansivity, e=(1/VXdV/dT) and e=1/(V/m)d(V/m)/dT =
1/(1/p)d(1/p)/dT = —(1/p)(dp/dT) (we have divided the numerator
and denominator by the mass of volume m), then dp/dT |0 = —pe,
where p° is the density at temperature 7°. Therefore, Eq. (2.104) can be
written as

p(T) = p°[1 — o(T — TY). (2.105)

Now let us choosc a temperature variation in a hydrocarbon reservoir
according to

nni{x + W/2)

T=T"-BR
W cos W

+ Cz, (2.106)

where parameter B influences the horizontal temperature variation and
parameter C influences the vertical temperature variation. The
constant n 1s an odd number; we will discuss 1ts effect on the shape of
the temperature variation in Example 2.11. Instead of Eq. (2.106), one
may use the simpler expression,

T=T"+2Bx+ Cz. (2.107)

The factor “2” i1s included so that the two temperature profiles, from
Fgs. (2.106) and (2.107), will have the same overall horizontal tempera-
ture change for the same value of B. Equation (2.107) describes very
well the temperature variation in hydrocarbon reservoirs; it 1s also a
solution to the energy equation where heat transfer is by pure conduc-
tion, i.e., the solution to V2T = 0 (see Example 2.10). The advantage of
using the cosine temperature distribution is that cos(nr(x + W/2)/ W)
is orthogonal to the eigenfunctions of the problem,
cos(mn(x 4+ W/2)/ W). This reduces the number of infinite sum cosines
to two terms, m = 0 and m = n.

From Egs. (2.103), (2.105), and (2,106), dp/0z = —p%eC, and then Eq.
(2.101) transforms into

#P FP
8.762 + ‘5—?2' geC = (, (2.108)
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and the boundary conditions are

oP oP
T W2 = o le=wy =0 (2.109)

a Z= ""'H/‘E ! g 2—""H/2

0
= —p g[1+eBWcos W

+ eCH/z] (2.110)

P
oz =H/2 = P81 2
na(x + W/2)

= —pog[l +eBWcos 7

- eCH/Q]. (2.111)

The solution of the above partial differential equation, Eq. (2.108), and
the boundary conditions, Egs. (2.109) to (2.111), are readily obtained:

P(x, z2) = P’ — p°gz + pPgeC2%/2
B pOge W? B sinh(nrz/ W) . Smr(x + W/2)
nmn cosh(nnH/2W) © W '

(2.112)

In the above equation, P° is the pressure at the originx = 0and 2 = 0.7°
and p? are also the temperature and density at the origin. The Darcy
velocities in the x and 2z directions are obtained from
v, = —(k/p)(8P/0x) and v, = —(k/p)(3P/dz + pg):

_ kolgeWB sinh(nnz/W) | nn{x+ W/2)

— o 113
Vx u  cosh(nzH/2W) o W (2.113)
and
kplgeWB [ cosh(nnz/W) nn(x + W/2)
_ coshinmz/ W) REXT Y (92114
s u (cosh(nnH/2W) 1) ST (2.114)

Note that in Egs. (2.113) and (2.114), only the parameter of the horizontal
temperature variation, B, appears. The vertical temperature variation
parameter, C, is absent. In other words, the above two equations reveal
that v, and v, are independent of the vertical temperature gradient
and the vertical density difference; the thermal convection is propor-
tional to the magnitude of the horizontal density gradient.

Now let us write the flow equation in terms of the stream function. In
rotational flow in fluid mechanics, the stream function is often used
instead of pressure. The stream function, i, is the complement of pres-
sure, P. The value of the stream function is constant across a streamline;
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there is no flow across a streamline. The stream function is defined by
(L, 1973):

v, = —y/0z, and v, = +or/ox. (2.115)

Note that the stream function automatically satisfies the continuity
equation, V - 0 = 0, for the Boussinesq case where p is assumed constant
in the continuity equation. The equation that defines the stream func-
tion 1s from the curl of velocity (Lu, 1973); the curl of velocity is called
the vorticity. The vorticity provides a measure of rotational flow. The
curl of velocity, V x v, 1s given by (see Borisenko and Tarapov, 1968)

_ 9 3
Vx0=—(0))— —(v,). .
X U az(vx) ax(Uz) (2.116)

Substituting for v, = —(k/p)oP/dx and v, = —(k/u)8P/z + pg), assum-
ng x4 and k constant, and combining the results with Eq. (2.115),

Py Pk Op

LA , 2117
dx?  9z% U 9x ( )

The expression for dp/dx 1s dp/dx =~ (dp/dTY 3T /3x), where the pressure
dependence of p does not contribute to convection (see Problem 2.17).
Using Egs. (2.105) and (2.106),

(9p/3%) = —(p%e)(nnB) sin T ;VW/ 2) (2.118)
Combining Egs. (2.117) and (2.118),
Py P k : W/2
o (;) (germBsin LD g 1)

The boundary conditions for Eq. (2.119) are ay/dz =0 and &¢y/dx
= 0. Therefore Ylx=-W/2 2)=y{x=W/2, 2)=y(x,z2=-H/2),
Ww(x, z = H/2) = constant. In other words, the boundary of the system is
a streamline. We may assign ¥ = 0, since one may choose any value for
this streamline. Therefore, the boundary conditions of Eq. (2.119) are

Ylx=-W/2,2)=f(x =W/2,2) =y(x,2=—-H/2) = y(x,z = H/2) = 0.
(2.120)

The solution to Eas. (2.119) and (2.120) 1s also in the form of Fourler
series with only one term,

kpogesz( cosh(nnz/W) 1Y g (PR W/2)
punn cosh(nnH /2W) S W

(x, 2) = + ) (2.121)
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The velocities on the streamline can be readily calculated from Eq.
(2.115); the results are the same as from Egs. (2.113) and (2.114). The
advantage of stream function formulation is that streamlines are
provided.

Example 2.11 at the end of this chapter provides numerical results for
vertical and horizontal velocities in a 2D cross-sectional reservoir.
Comments on the vertical and horizontal velocity profiles will be made
in that example.

The final topic of this chapter i1s natural convection and diffusion 1n
porous media with the objective of studying composition variation in
hydrocarbon reservoirs. The understanding of irreversible phenomena
facilitates such a study; the use of the Gibbs sedimentation equation,
du; = —M,gdz, which has been used by some authors in the hterature,
is not justified because of entropy production.

Natural convection and diffusion in porous
media

In the formulation of thermal convection in porous media at steady
state, 1t was demonstrated that the horizontal gradient of temperature
drives the thermal convection. In fact, the driving force for both ther-
mal convection (that is, the convection due to thermal gradient) and
natural convection (that is, the convection due to both thermal gradient
and composition gradient) is governed by (dp/dx) at steady state. The
expression for (dp/dx) is given hy

dp op\ 0T\ <t/ Bp\ {ox;

dx (BT) (Bx) + g(axi) (81:)' (2.122)
When there is only bulk flow and diffusive fluxes are zero, the tempera-
ture gradient (07/8x) is the sole contributor to density gradient
(dp/dx). With diffusion, the second term on the right side of Eq. (2.122)
becomes effective. The two terms on the right side of Eq. (2.122) may
have the same sign, or opposite signs and may have different magni-
tudes relative to each other. Therefore, convection may enhance compo-
sition variation due to the effect of the second term. Such a behavior 1s
not in line with the common belief in the literature that convection
always reduces composition variation in hydrocarbon reservoirs.

We now present the equations that describe the combined effect of
convection and diffusion in porous media. Let us assume that there are
two components In the mixture, and that there i1s a single phase, either
gas or liquid; the geometry is a two-dimensional rectangle (that 1s,
x — 2). It is also assumed that the temperature field is known. In hydro-
carbon reservolrs, temperature data can be measured with modern
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tools. At steady state, one may write the continuity equation for compo-
nents 1 and 2:

V. (pw,0+d,) =0 (2.123)
V. (pwyi +dg) =0, (2.124)

where o is the total diffusion mass flux. Adding Eqgs. (2.123) and (2.124)
results in the continuity equation for bulk flow given by Eq. (2.98),
since Jl + Jz = 0 (see Problem 2.15). Since one of the three equations
among Eqs. (2.98), (2.123) and (2.124) is a linear combination of the
other two, we may use Egs. (2.98) and (2.123). The velocity in porous
media is given by Darcy’s law (see Eq. (2.99)).

The diffusive mass flux of component 1 is given by the expression

J, = C¥x,, T. P\Vx; + CP(x,, T, P)WVP + CT(x,. T, PWT. (2.125)

which is an alternative form of Eq. (2.87). The coefficients of the above
expression are

, dw dlnf _
x 1 1
et § 1 2.126
C :0 dxl D12(81nx])T‘P ( )
dw X, f— M
P p i, Sl Sl 2.127
¢ p dx, L2RrT ! e ( )
- dw ko
T 1 7 ,
= —p—— —|. 2.128
¢ pdxl D"Z(T) (2.128)

The mole fraction x; and the mass fraction w, are related to each
other by

w, = <, f}iw_l PRy (2.129)

The boundary conditions for the 2D problem are
Jy=v,=0atx==x2W/2 (2.130)
Jy.=v,=0at x=+H/2, (2.131)

where H and W are the height and width of the reservoir (see Fig. 2.23
for geometry). We also need to specify pressure and composition in one
point in the reservoir, say at the origin at, x = 0 and z = 0 because the
boundary conditions are of Neumann type (that is, derivatives are
provided at the boundary). The problem formulation is then completed.
The unknowns are pressure P and composition x,, similarly to the 1D
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case, which does not allow for convection. The above system of equa-
tions in its general form has been solved by Riley and Firoozabadi
(1998) using a method of successive approximation. In that work, the
equations are first transformed into Poisson’s equations. Riley and
Firoozabadi studied the effect of convection on horizontal composition
variation in a two-component mixture. Let us review some results from
the work of these authors for the binary system C;/nC;. The pressure,
temperature, and composition at the origin (x =0,z = 0) are fixed:
P =110 atm, T° = 339 K, and x} = 0.20. The dimensions of the reser-
voir are;: H =150 m and W = 3000m. The horizontal and vertical
temperature gradients are 97 /0x = 1 K/300m, and 97'/0z = —2 K/30m.
Note that the geothermal temperature decreases towards the surface
of the earth. The fluid viscosity is assumed constant 1n the reservoir,
it = 0.2 cp—independent of pressure, temperature, and composition.
Throughout the reservoir, the C,/nC, mixture remains a liquid for all
cases studied by Riley and Firoozabadi. The fractional porosity of the
reservoir ¢ = 0.20, and the permeability 1s varied to examine its effect
on composition variation. Constant diffusion coefficient Dy, =
1.02 x 10~ m?/s was used in all the calculations. The thermal diffusion
ratio k, = 82,600[x,(1 — x;)/RT] was estimated from the work of
Rutherford and Roof (1959), with R having units of atm-em?®/mol - K,
and 7 in K. No adjustments were made for the factor (3Inf;/dlnx,) in
k7. The Peng-Robinson equation of state (1976) was used for the estima-
tion of volumetric and thermodynamic properties.

A contour plot of the methane mole fraction is shown for £ = 0 (that
18, no convection) in Fig. 2.24. The contour interval 1s 0.1 mole % in
this and subsequent contour plots. This figure shows that the constant
composition contours are essentially straight lines. The horizontal
composition variation is .91 mole % at z = 0. Figure 2.25 shows the
composition contours for £ = 0.2 md. The surprise 1s that with a small
permeability and the introduction of convection, the horizontal compo-
sition variation increases. The expectation 1s that convection would
decrease the composition variation. Figure 2.26 shows that by increas-
ing the permeability to 10 md, the trend of compositional gradient is
reversed. Figures 2.27 and 2.28 also show that the horizontal composi-
tional gradients are decreasing with increasing permeability. Figures
2.26 to 2.28 also reveal that the curves have a negative slope near
z = 0, indicating that-the vertical concentration gradients are reversing
sign in this region. The compositional changes in Figs. 2.26 to 2.28 are
0.55, 0.21, and 0.06 mole% which are roughly proportional to 1/k. There
are other features in all the compositional contours: (1) they become
more vertical; (2) except near the side boundaries, the curves seem to
have the same shape and spacing, indicating (dx,/0x) being constant;
(3) the curves develop a subtle “S” shape, which indicates that the verti-
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Figure 2.24 Methane mole fraction contours: £ = 0 md {from Riley and Firoozabadi,
1998).

cal compositional gradient is not monotonic. Fig. 2.29 provides the
variation of horizontal composition gradient of methane vs. permeabil-
ity at the origin (x = 0, z = 0). The trend was also evident from contour
plots in Figs. 2.24 to 2.28

Figures 2.30 and 2.31 show the vertical and horizontal velocities for
k =10 md. Figure 2.30 indicates that the vertical velocity is nearly
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Figure 2.25 Methane mole fraction contours: k& = 0.2 md (from Riley and Firoozabadi,
1998).
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Figure 2.26 Methane mole fraction contours: 2 = 10 md (from Riley and Firoozabadi.
1998).

zero except close to the vertical boundaries. Figure 2.31 reveals that the
horizontal velocity v, varies linearly with 2. (An explicit approximate
expression for v, will be derived shortly.) Figure 2.32 depicts the velo-
city contours where the features are the same as those in Figs. 2.30 and
2.31.

Now that the features of the solution are available, we can make
appropriate assumptions to derive an approximate analytical expres-
sion for v,. Let us define a stream function that can accommodate
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Figure 2.27 Methane mole fraction contours: & = 30 md (from Riley and Firoozabadi,
1998).
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Figure 2.30 v, vs.zatx = —37.5.0,and 375 m: & = 10 md.

compressible flow. The modified stream function can be defined in terms
of mass flux:

pu, = —dy,. /dz, and pv, = + 9, /ox, (2.132)

Defined in this way, the stream function \,, satisfies the continuity
equation, Eq. (2.98).

Let us take the curl of pv and write it first in terms of the modified
stream function and then in terms of v:

I 3 Py, Py
V x 05 — N __TYn_ TVm 2.133

- dv, Ov dp ap
— x_ e Xy . 2.134
and V x pv '0|:82 ax] + U, 2y " Ve (2.134)
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Substitution of v, and v, in the expressions in the brackets from Darcy’s
law (Eq. (2.99)) and after simplification results in

= . 2.135
21 9x + 202 9z  2p% Ox ( )

The last term on the right side 1s very small when compared with the
second term on the right; the second term is very small when compared
with the first term; therefore, Eq. (2.135) can be simplified to

VX pu =~ = (2.136)

Combining Egs. (2.133) and (2.136),

ngm+32wm . kgdp®
92% dx2 2 ox

(2.137)

Since 9%y, /dx* = 9/3x(pv,) and since pv, ~ 0 except around the side
boundaries,
Fy,  kgdp?

~ 2 2.1
322 24 9x (2.138)

Also note that v, = 0 at z = 0 (see Fig. 2.31). Therefore, the integration
of Eq. (2.138) provides the following simple expression for horizontal
velocity:

v, kedp (2.139)

ppox |

Note that we have divided the Darcy velocity by fractional porosity in
the last step to have true velocity. The (8p/dx) term was previously
expressed in terms of (37/dx) and (9x;/3x) (see Eq. (2.122)). Equation
(2.139) applies to both thermal convection, where the convection is
driven by (97'/3x) as well as natural convection where flow is driven by
(87 /0x) and (3x;/0x). As was stated before, convection may weaken or
enhance composition variation. Figure 2.33 provides a simple explana-
tion of the change in composition due to convection. In this figure, the
diagram on the right (Fig. 2.33a) shows the composition variation vs.
depth with zero convection at x = 0 assuming that C T — 0, and that C?
and C* are not functions of temperature (see Eq. (2.125)). The thin line
shows zero vertical compositional grading. Now allow for small values
of puv, (proportional to 2) as shown by thick line B. Assume that puv, is
identically zero. Because of convection, the composition profile A
cannot stay the same, otherwise the material balance for component 1
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Figure 2.33 The effect of convection on horizontal composition variation {adapted from
Riley and Firoozabadi. 1998).

1s violated since Jj_q;{zz pw,v,dz is not zero. There will be more of compo-
nent 1 moving to the right than to the left. In order for this not to
happen, either the composition must redistribute vertically (see line C)
or LH%Z pwiv dz + [_HH% J, .dz = 0. The second integral represents the
contribution of horizontal diffusion (that is, horizontal composition
gradient).

We would like to make the concluding comment that in ternary and
multicomponent systems, a different trend in composition is expected
to develop. In Figs. 2.24 to 2.28, the amount of C, decreases as we move
to the top of the reservoir. This behavior, which implies that the heavier
component, normal butane, floats on the top, 1s caused by the sign of
ky being positive, methane segregates to the hot bottom region. In
multicomponent hydrocarbon systems, methane may have a higher
concentration at the top. The topic of diffusion in multicomponent
mixtures and the detailed derivation of diffusion flux expression from
the entropy production given by Eq. (2.82) and the Onsager Reciprocal
Relations (1931a and b) are presented by Ghorayeb and Firoozabadi
(1998, 1999).
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Chapter Two

Examples and theory extension

Example 2.1

(a)

(b)

(c)

(d)

Consider an isothermal column of an ideal liquid mixture of thickness A.
Suppose the composition at the bottom of the liguid colurmn is x° =
(%, 23, ..., 2% }). Derive the following expression for the composition at

the top of the liquid column:

o (pv; — M) .
= X- — - 1 ey - I ,
xl xl exp[ RT g}l] i L (C )

where x; and x? are the mole fractions at the top and bottom of the column,
respectively, po; is the average of the product of the mass density and the
molar volume of component { along the liquid column, and M is the molecu-
lar weight of component i.

Consider an isothermal column of an ideal gas mixture of thickness A.
Suppose the composition at the bottom of the gas column is
¥ =1 ... 92 ) Derive the following expression for the composition

at the top of the gas column:

| LMD - -
¥, =¥ exp[ BT ghjl t=1,..., (¢ — 1),

where M is the average molecular weight of the gas mixture along the gas
column.

Calculate the mole fraction of C; at A = 1000 and 5000 ft for a mixture of C,
and nC;. Atz =0, x‘a = 0.50 and P? = 2000 psia. Assume T = 100°F.
Calculate the mole fraction of Cy at A = 1000 and 5000 ft for a mixture of C,
and N, Atz = 0, y%] = 0.50 and P? = 2000 psia. Assume T = 100°F.

Solution (a) For an ideal-liquid solution,

w (T, P x) =T, PY+ RT Inx,. i

Il
“P—‘
S

The derivatives of u; with respect to x; and x;, ] # i, are

{(Ou;/8x;) = RT/x; t=1,..., ¢

(Buifox) =0 i#].

Now let us write Eq. (2.19a) for an ideal-liquid solution,

e=1{ 8. dx,
2. 96 & = (pv; - M,)g i=1,..., c—1.
P.x, dz ‘

j=1\9%;

In the above equation, v; is the molar volume of component i at temperature
Tand pressure P (that is, V; = v, for an ideal-liquid solution).
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Combining the above three equations,

RT\ (dx; |

Integrating the above equation from z = 0to z = A,

50, — M,
xi:x?exp[%gh] i=1,...,¢c—1.

{b) For an ideal gas mixture,
p AT, Py)= (T, PY+ RTIn Py, — RTIn P°.
Taking the derivatives of y; with respect to y, and y;. ¢ # J,
(A, /0y;) = RT/y, i=1,....,e—1
G /oy) =0 i#].

For an ideal gas mixture, V., = RT/P and p = (PM/RT). Combining Eq.
(2.19a) with the above equations,

RT\ (dy, Ty .
(.}u)(dz)_(M_Mi) i=1,...c—1

Integrating the above equation from z = 0to z = A,

(¢} The specific volumes of C; and nC; at 100°F and 2000 psia are (Starling,
1973)

v, (100°F, 2000 psia) = 0.03157 ft*/lbm
Unc, (100°F, 2000 psia) = 0.02283 ft°/1bm,

The mass density of the mixture of C3 and nCs(xp, =0.5) is then
Pmix = 39.212 lbm/ft?. Since R = 1545 (ft.1bf)/(lbmole. R) and g/g, = 1 (Ibf/
lbm), then
(pvg, — Mc,) (_éi
RT

Therefore, for A = 1000 ft, x¢, = 0.506 and for A = 5000 ft, xo, = 0.53,

)h = 1.2 x 107" h(ft).

Ee

(d) The average molecular weight of the gas mixture at the bottom of
the column is M = 221bm/lbmole. Therefore, (M — M¢)/RT(g/g)h =
6.9 x 1078A(ft).

At h = 1000 ft, y., = 0.503 and at & = 5000 ft, yo, = 0.517.
Note that in the above two examples, there is very little variation of compo-
sition with height.
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Example 2.2 Consider a mixture of methane and normal butane in a gravita-
tional field. Use the PR-EOS to compute the composition of the C,/nC;
system at intervals of 1000, 2001, 3000, 4000, 5000 and 7000 ft below the refer-
ence depth for the following cases.

(a) At the reference depth, C, and nC, compositions are 27.27 and 72.73 mole
percent, respectively. Pressure at the reference depth is 1300 psia. Tempera-
ture throughout the liquid column is assumed to be 220°F.

(b) At a given reference depth. C; and nC, compositions are 88.88 and 11.12
mole%, respectively. Pressure at the reference depth is 514 psia. Tempera-
ture throughout the gas column is assumed to be 160°F

Solution From Eq. (2.15),

o
filP, ) :ﬂ’fPOJ‘f)exp_"'E%gz_
P ) = P Sy exp) - ;’*’; gz

where the subscripts 1 and 2 represent methane and normal butane, respec-
tively. We need to use the expression for fugacity of component { in a mixture
from Eq. (3.32) of Chapter 3 for the PR-EOS. In the above equations, the right
side 1s known and the two unknowns P and v,. on the left are to be found
from the two nonlinear equations. One can use Newton’s method for the sohu-
tion. The procedure 1s to calculate the right side at every position z and
then obtain P and y;. The results of the calculation are shown in Figs. 2.34
and 2.35.

Example 2.3 Consider a binary system of C, /nC;, with the following composi-
tion at 100°F:

x¢, = 99.894 mole% and x,. = 0.106 mole%

(a) Compute the dewpoint pressure of the above system in a PVT cell
(measured P; &~ 1450 psia).

{(b) What would be the dewpoint pressure of the above fluid system for droplets
of mean radii of 10, 1, 0.1, and 0.01 microns?

(c) What are the equilibrium liquid-phase composition of the above cases?

Data
I¢,mc,, At 100°F and 1500 psia = 9.76 dyne/cm. Assume the interfacial ten-
sion to be independent of the interface curvature in this problem.
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Figure 2.34 Compositional grading: C,/nC, (liquid), T = 220°F.
Solution At the dewpoint,
fAT, Pl o) = (T, PY L 2)) i=1,2
PY — Pt =2q/r

2
Z x; = 1.
i=1

107

The fugacity expression (see Eq. (3.32) of Chapter 3) is used to calculate the
fugacities. Newton’s method can be used to solve the above system of nonlinear
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Figure 2.35 Compositional grading: C,/nC, (gas), T = 160°F.

equations to obtain P*, PY and x, at a given Tand z,. Numerical results from
the problem are shown in Fig. 2.36. Note that there is hardly any increase in
dewpoint pressure when r > 0.1 microns. When r < 0.1 microns, dewpoint
pressure increases with an increase in curvature. Similarly, the effect of inter-
face curvature on the liquid phase composition is negligible when r > 0.1
microns. The results presented in Fig. 2.36 suggest that the porous medium
unless it is very tight, may not have a significant effect on equilibrium. The
implication from this problem is that when condensation takes place, the
liquid phase may first form in smaller pores in porous media.
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C,/nC), system (99.894 mol% C}) at 100" F.

Example 2.4 Use Eq. (2.53) to calculate the vapor pressure of a bubble and a
droplet of water for radii of 107%, 107", 5 x 107% and 2 x 107% cm at 20°C.
Assume the interfacial tension of water-vapor to be 72 dyne/cm.

Solution The expressions for the vapor pressure of a pure substance for
bubble and droplet are

. 20 vt
pl = p* e
e % ]

20 v-
Pé = p> .
exp[+ r RT]

respectively. Note that the curvature of a bubble or a droplet is related to its
diameter by 1/r = cos0/d where 8 1s the contact angle. For a bubble, f =0
and cos# = 1. For a droplet, # = 180° and cos f = —1.

Using the above two equations with v" =18 cm®/gmole and R = 82.06
(atm.cm*)/(gmole K), the following results are obtained:
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TABLE 2.1 Vapor pressure ratio, P%/P>, of water at 20°C

r, cm ) 107% cm 1075 em 5% 107¢ cm 2x 10~%cm
Bubble 1 0.999 0.989 0.979 0.948
Droplet 1 1.001 1.010 1022 1.055

Note that the vapor pressure of a bubble is less than the vapor pressure for a
flat interface. On the other hand, the vapor pressure of a droplet is more than
the vapor pressure for a flat interface. In the above solution, we have assumed
that the interfacial tension is independent of the curvature, even at r < 107°
cm, For a bubble, the interfacial tension increases as the curvature increases,
whereas it decreases for a droplet as the curvature increases (Defay and Prigo-
gine, Chapter XV, 1966). However, this trend is only true for pure components;
for mixtures, the effect of curvature change on the interfacial tension may be
different (see Example 3.6, Chapter 3)

Example 2.5 The work required to create a gas bubble of radius r for a pure
substance is given by

W = (1/3)s.A%,

where W is the work, ¢ 15 the interfacial tension, and AP is the surface area of
the spherical bubble. Derive the above equation.

Solution In order to create a gas bubble in a liquid phase, one needs (1) to
displace the liquid by the gas bubble and (2) to create the interfacial area of
the gas bubble (see Eq. (2.20) and Fig. 2.37a). Therefore, the work required to
create a gas bubble consists of two parts:

Vb
W = —j APV + 6 A°,

where AP is the difference in pressure in the gas bubble, P?, and the liquid
surrounding the gas bubble, PL; AP = P® — PL. Assuming that P? — PL is
constant,

W = —(P? — PLYV?  5.4°,

where V? is the volume of the gas bubble. Since for a spherical gas bubble,
Pb _ Pl = 92qg/r (see Eq. (2.34)) and V? = (1/3)rAb, then

W = (1/3)0A®

The above fundamental equation 1s of importance in nucleation theory. Nuclea-
tion is a phenomenon of interest in many engineering applications, including
metallurgical processes and solution-gas drive in porous media for oil produc-
tion (Firoozabadi and Kashchiev, 1996).
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Figure 2.37 Homogeneous and heterogeneous bubble nucleation.

Example 2.6 Consider the creation of a new gas phase that consists of a
segment of a spherical bubble as shown in Fig. 2.376. Derive the expression for
the work required to create the new gas phase, given by

Whet = Wd)het

and Dret = (2 — cos 0)(1 + cos 6)7,

where 0 is the contact angle measured through the liquid phase.

Solution The solution to this problem is similar to Example 2.5, with the
difference that the presence of the solid should be considered (see Fig. 2.37).

The work required to displace the liquid is the volume of the spherical
segment, V¥ multiplied by —(P? — PL) The volume of the spherical segment
shown in Fig. 2.37 is

VP = Y%nr}2 + 3cos0 — cos®0).

There are now two distinet surface areas created; one 1s the interface between
the gas and the liquid, given by

AL = 27r%(1 4 cos 9),
and the other interface is between the gas and the solid, given by

AYS = 7721 — cos? 0).
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The work terms are given by

W,,, = =Y4nr3(2 + 3cos 0 — cos® ) (PP — PLY + 2rr*(1 + cos O)o

+ 7r¥(1 — cos® B)(c¥S — gy,

In the above expression, the first term on the right represents the work of liquid
displacement by gas, the second term represents the work of creating the
surface area between the gas and the liquid, and the last term represents the
work of creating the interface between the gas and the solid. ¢ is the gas-
liquid interfacial tension, and ¢%* and ¢%° are the interfacial tensions between
the gas and solid and liquid and solid, respectively. The gas--solid and liquid-
solid interfacial tensions from a simple force balance are related through

98 _ LS = s cosd.

Combining the above equations and the results from Example 2.5,

‘ Whet - quhe!

where [c,bh‘_,, =12 — cos 0)(1 + cos ) |.

In nucleation theory, W,,, is the heterogeneous nucleation work as compared
with the homogeneous nucleation work W, The heterogeneous nucleation
refers to the fact that the gas bubble forms at the interface of a liquid and a
solid phase. Note that ¢,,, 1s simply W,,,/W, which varies in the range of 0
and 1.

Example 2.7 Derive the following relationships for thermodynamic functions
U, A, and G of an open system with a curved interface:

U:TS—PV+O'A+ZHL‘LIL

i=1

A=-PV+oA+3 ny,
i=1

G=0Ad+ i n;p; and o = (G - i nﬂui)/.A.

i=1 i=1
Show that the interfacial tension, o, is given by

o0=0U/3A)s v, = BA/3A) 1y n = (8G/0A)p p 5.
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Solution The internal energy of an open system with a curved interface is
given by (see Eq. (2.21))

dU = TdS — PAV + 3 pdn, + cd A
=1

and, therefore, U = U(S, V, ny, ny, ..., n., A). Note that for an open system
with a curved interface, the extensive variables §, V., ny, ..., n, and A define
the system. The bulk phase, which excludes the interface, is still defined by S,
V, and ny,....n.. The intensive variables T, P, y;, and ¢ are conjugates to the
extensive variables S, V, n;, ny. ..., n, and A. Writing the total differential of
U(S, V, ny, ny, ..., 0, A) and comparing the results with the above equation,

o = (3 /3 A)s v ,.

which defines the interfacial tension as the change in internal energy when the
interfacial area, A, of a closed system is changed at constant S and V. Since ¢
is intrinsically positive, the internal energy U increases as the interfacial
area Increases.

From the property that U is a first-order homogeneous function (sce Chap-
ter 1),

UAS, AV ing. oo ang AAY = AU(S, V ny, .o e A),

where A 1s a positive parameter (see Eq. (1.33) of Chapter 1). Differentiating the

above equation with respect to 4 and performing the algebra similarly to Eqgs.
(1.33) to (1.35) of Chapter 1, one obtains

‘7U: TS — PV + 0 A+ in”ui
i=1

The expressions for A, G, and the corresponding expressions for a'are obtained
in a similar manner. In the Problem section, the expressions for A and G are
asked to be obtained using the Legendre transformation.

Example 2.8 Derive the following Gibbs-Duhem equation for an open phase
with a curved interface:

do = —(S/A)dT + (V/ AP — 3 (n,/ A)dy;. (E.2.8)
=1

Note that the Gibbs-Duhem equation for a bulk phase does not depend on the
interface; it 1s the same whether the interface is flat or curved. In other
words, the Gibbs-Duhem equation of the bulk phase, b, is always

¢
~-S%dT + VidP — Zl nidy, = 0.
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Solution The internal energy of an open phase with a curved interface when
the interface is counted as part of the phase is given by

U=TS— PV+od+ Y nu
=1

Writing the total differential of the above equation and comparing the results
with the equation for dUV in Example 1.7, one obtains

do = —(S) AT + (VAP — 3 (n,/ A)dy,

I=1

The ahove equation provides the relationship between the intensive variables
. T.P, py. ... 1, of a phase with a curved interface when the interface is
counted as part of that phase.

Example 2.9 Gibbs Phase Rule for curved interfaces  Derive the phasc rule for a
composite system of p phases and ¢ components with curved interfaces:
F = ¢+ 1 where Fis the number of degrees of freedom. If some of the interfaces
are flat, then ' = ¢+ 1 — I, where I is the number of flat interfaces between
the bulk phases.

Solution The Gibbs Phase Rule for a flat interface between the phases, which
was established in Example 1.9 of Chapter 1, 1s based on the assumption that
the PdV work 1s the only mode of work. As we have seen in this chapter, the
equilibrium conditions for systems with curved interfaces and under the infiu-
ence of gravity are different from the equilibrium conditions of svstems with
flat interfaces and negligible gravity., For systems with curved interfaces and
also with gravity effect, the Gibbs Phase Rule should be modified. In this exam-
ple, we will only consider the effect of the curved interface.

The criteria of equilibrium of multicomponent systems with ¢ components
and p phases with curved interface between phase 1 and the other phases are
(sce Fig. 2.38)

T o2 ot
PU _ pa 1.2 gil2)

) ople) el 7i1p)
pw — g0 g

1) 1 1 1 [#1]
dHh e, po o Ay == P pe P Py

c—1

Ju{L.U(Tm,Pm,x(lh, o ,xf_fi) = ... = PTP P x{f) ..... x(:,n_}l .
where o'/ and J17) are the surface tension and the mean curvature of the
interfaces between phase 1 and phase j (j =2, ..., p), respectively. There are
(p — 1) equations for temperature, (p — 1) equations for pressure relationships,
and c(p — 1) equations for chemical equilibria. The total number of equations
are, therefore, (p — 1)(c + 2). The intensive variables for phase j(j = 2,....p)
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Phase |
Figure 2.38 Sketch of phases
with curved interfaces.
are 7" p', ;i(;”[i =1..... ¢), and o'/, For phase 1, the intensive variables are
T P and ‘ui.“(.i =1..... ¢). Note that we have assigned the interfaces to
phases j.= 2. ..., p. which is consistent with our derivation of Egs. (2.25) and

(2.26). In phase 1, only (¢ + 1} intensive variables among a total of (¢ + 2) inten-
sive variables are independent (see the Gibbs-Duhem Eq. (1.40) of Chapter 1).
Of the (¢ + 3) intensive variables TV, PV, ;z?'. and ¢'/ for phasesj = 2,....p,
only (¢ + 2) intensive variables are independent (see Example 2.8 above). There-
fore, the total number of independent intensive variables of the composite
system is: (p — 1)}{c + 2) + (¢ + 1). The number of degrees of freedom is given
by the expression F = number of independent intensive variables — number
of independent equations. After substitution in the above expression,

F=c+1

If there are I flat interfaces between the phases, one can readily show that

F=c+1-1|

In the above two equations, the intensive variables are temperature, pres-
sure, chemical potential, and interfacial tension. As we saw in Example 1.9 of
Chapter 1, instead of the chemical potentials, one may use the mole fractions
as intensive variables. It is also more convenient and meaningful to use the
interface curvature 1nstead of the interfacial tension as the intensive variable.
For a pure substance, as the interface curvature changes, the interfacial
tension also changes. For an isothermal process of a single-component system
when the curvature of the bubble in a bulk liquid phase at constant pressure
changes, the interfacial tension also changes because of (1) curvature change
and (2) gas-phase pressure change. Similarly, for a bubble in a multicomponent
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system at constant temperature, when the bulk liquid phase is held at constant
pressure and composition, if the interface curvature changes, the interfacial
tension may also change because of (1) curvature change, (2) gas-phase pres-
sure change, and (3) gas-phase composition change. For a pure substance, the
interfacial tension is a weak function of curvature when, say, r > 107° ecm. For
mixtures, the effect of curvature change on interfacial-tension change
becomes more complicated because of both curvature and composition effects
(see Example 3.6 in Chapter 3). In the context of the Phase Rule, if we specify
the interface curvature, the interfacial tension is also specified because other
intensive varlables such as pressure, temperature, and composition are
among the variables of the Phase Rule.

For systems in which there is a three-phase contact line between the phases
as a result of a solid phase, the concept of contact angle is introduced. For
such systems, the Phase Rule remains the same (Li et al., 1989). For highly
curved interfaces where the thickness of the heterogeneous region between
the phases is not small compared to r, there are other considerations in the
derivation of the Phase Rule (Li ef al., 1989; L1, 1994).

Let us give two examples for the use of the Phase Rule for curved interfaces.
First, consider a single component gas-liquid system with a curved interface
hetween the gas and liquid phases; for this system F = 2. Therefore, we can
fix two intensive variables, say temperature and pressure of the vapor phase.
Then the system is fully defined. We can also specify temperature and curva-
ture. Note that for a single-component gas- liquid system with a flat interface,
F = 1. If we fix the temperature, the vapor pressure is fixed. In the second
example, we consider a two-component two-phase system with a curved inter-
face between the gas and liquid phases, F = 3. Unlike the system with a flat
interface, specifying the temperature and pressure of the gas phase does not
specify the system. We also need to specify the interface curvature,

Example 2.10 Derive the following equation, which describes temperature
variation in porous media saturated with a single-phase fluid mixture at
steady state. The equation is based on the negligible effect of inter-diffusion
on heat transfer.

VA(KVT) = pve,VT =0,

where K 1s the thermal conductivity of the porous medium, and p and ¢p are the
fluid mass density and the heat capacity per unit mass of the fluid, respectively.

Solution We will derive the energy equation in a 21D x — z system and then
extend 1t to 3D. Consider a volume element of Az and A x dimensions sketched
in Fig. 2.39. At steady state, energy flux in at z — energy flux out at (z + Az) +
energy flux in at x — energy flux out at (x + Ax) = 0. The energy flux consists
of two terms: conduction and convection. Note that we have neglected the
energy flux due to diffusion.

Therefore,

@Az x 1], — Az X 1y a, + ¢ A% X 1], — ¢S A% X 1]y,

+ @Az x 1), — @7 AZ X 1 pp, + 927 AX x 1], — @™ Ax x 1,44, = 0.
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Figure 2.39 Volume element of Ax, Az and 1.

In the above equation, ¢°°*¢ represents the heat fiux by conduction through the
porous medium, and g®"" represents the heat flux by convection of the fluid
mixture. The y direction is assumed to be of unit length.

Dividing the above expression by Ax Az and taking the limit as Ax — 0 and
Az — 0, one obtains

3z ax + dz + dx =0.

8qC(H’1d anOnd aqionv aq('oﬂb’
+ .

But g = —KVT and g% = puh, where h 1s enthalpy per unit mass. The
conduction and convection in the x-direction are q°"? = —K,37/dx and
g™ = pu,.h, respectively. Therefore, the energy-flux expression in 2D is

ad arT i ar d d
oy [“Kx ‘é;] + = [“‘Kz -é;] + . [pu Al + g[pvzh] =1{.

The last two terms can be expressed as

a d aT aT 0 3]
L lpv. h] +—[ov,h] = O vy e B (pu,) + h— (pv,).
ax[pvx ]—.'— az[pvz ] puCp ax + PUCE 9z + ax(pl’z) + haz(pl’z)

Note that from continuity equation, Eq. (2.98),
ha( v)+ha( Y=hV.-(pv)=0
5 (PU) + R (pv,) = AV - (pv) = 0.

Therefore,

3 aT] 8 T aT aT
2k, v 2 -k, 9 22 o
Bx[ - 8ij + 82[ g az] Foviep et puep g =0
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T.°F

The above equation can be written in vector form as

V- (KVT) — pve,VT = 0.

Example 2.11 Consider a 2D cross-sectional reservoir of height H = 1500 ft
and width W = 10000 ft. The values of various parameters are (1)
C =-2°R/100ft, B = 5°R/10000ft (see KEqgs. (2106) and (2.107)), (2)
i =02cp, e=167x1073/R, p® = 32.21bm/ft>, T* = 150°F, and (3) k = 1000
md, and ¢ = 0.25.

First assume n =1 and n = 3 in Eq. (2.106) and compare the temperature
profiles from Egs. (2.106) and (2.107) by plotting T vs. x at z = 0. Then use Eqgs.
(2.113) and (2.114) to calculate v, and v, and plot the velocity contours for
n =1 in Eq. (2.106) and also plot v, vs. z at x = —5000 ft, 0 ft, and 45000 ft,
and v, vs. x at z = —125 {t,0 ft, and 125 ft.

In the next step, assume n = 3 in Eq. (2.106) and then calculate v, and v, and
plot the velocity contours.

Solution The solution for velocity requires the evaluation of (k/u)(p’ge WB) in
Eqgs. (2.113) and (2.114). The rest 1is straightforward.

The multiplier (k/¢u)(p’ge WB) = 90 ft/year. Note that with this multiplier
one obtains the true velocity, not the Darcy velocity.

Figure 2.40 depicts the temperature plots, indicating that Egs. (2.107) and
(2106) with n =1 give comparable results. Figure 241 depicts the velocity
contours. Note that the x- and z-axes have different scales. This figure implies
that horizontal velocities are much greater than vertical velocities. Figure 242

156
LT
154 4 ‘-- '-\ ————— Eq‘ 2107 //
— — Eq. 2108, n=1 g
e a = -
. : Eq. 2106, n=3 _. :
A -~ .

152 -l . \ ”

150 4
145.‘.

146 T

-5000 4000 -3000 -2000 -1400 o 1000 2000 3000 4000 5000

Distance, ft

Figure 2.40 Temperature (at z = 0) vs. x using the linear and cosine functions.
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depicts the horizontal velocity vs. z at x = —2500 ft, 0 ft, and +2500 ft. An inter-
esting feature of the plot is that v, varies linearly with z, which was not trans-
parent from Eq. (2.113). Figure 243 shows the vertical velocity vs. x at
z = —125ft, 0ft, and 125 ft. Note that vertical velocities are orders of magni-
tude less than horizontal velocities.

250 P e g e R e
WO @Il ITILTIIIITITIITIIIIIUITII
L
e
“
60 e e
ABGH. L LI LITIIITIIIIIIITIIIIILE
PPN HE QP O
5000 -3000 -1000 L1000 1 5000
~a 868 R

Figure 2.41 Velocity contours due to thermal convection:
Example 2.11 (n = 1, Eq. (2.106)).

vl
10 fi/yr
250
zft 0 +
-250
- 5000 2500 0 2500 5000

x, ft

Figure 2.42 p_vs. z at x = —2500, 0, and 2500 ft: Example 2.11 (n = 1).

x



120  Chapter Two

250
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Figure 243 ¢, vs. xat z = —125,0, and 125 ft: Example 2.11 (n = 1).

Figure 240 also shows the temperature profiles for n = 3. The factor n in the
cosine term dictates the number of cells in the x-direction. This is because the
flowlines will turn whenever dp/dx is zero. Figure 2.44 provides the velocity
contours for n = 3, showing that there are indeed three cells. Note the alterna-
tion in the velocity directions of the neighboring cells.

250‘[#.-_..__.......,. T TR TR T ST T T T e e T

R e O
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71
-250 "_'“"T“' -']_”""‘""-]‘* ""f""'_"‘ >
-5000 -3000 -1000 1000 3000 5000
x, ft

Figure 2.44 Velocity contours due to thermal convection; Example 2.11 (n = 3,
Eq. (2.106)). :
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The results from this thermal-convection example and the results from the
natural convection-diffusion problem presented in the last section of this
chapter have a basic difference: the vertical velocity. For the former, the verti-
cal velocity in the whole distance across the reservoir is effective. For the
latter, it is significantly close to the side boundaries and is close to zero
across the major part of the reservoir (compare Figs. 2.30 and 2.43).

Problems

2.1 Ina gravity field, for a closed reversible process,

dH = TdS.
When the effect of gravity is neglected,
dH = TdS + VdP.
Derive the first equation from the second equation.

2.2 Derive the following barometric formula which describes the isothermal
change of pressure with increasing altitude z:

Mg
p-po _ s
exp |:1 R z]

PP 1is the pressure at z = 0.

2.3 Show that the Phase Rule when the gravity effect is not negligible should be
modified to the following form:

F=c+3-p.

Note that in the above equation, the interface between the phases is assumed to
be flat,

2.4 Consider capillary condensation in the following configuration where
r, = 0.2um, ry = 10 um, and ry = 100 um. The system is initially saturated with
pure nCy vapor at 100°F at very low pressure. Calculate the pressure at which
condensation occurs in each of the capillary tubes for different contact angles.
(a) 0 =0 (1.e., liquid completely wets the substrate)

(b) 0 =30°

(c) 0 = 150°

Pertinent data are

vapor pressure of nC; for a flat interface at 100°F =15.57 psia
surface tension for nC; at 100°F = 14 dynes/cm.
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r=02pm r, =10 um r, =100 um

2.5 Consider a gas bubble and a liquid droplet sketched in the following. The
fluid 1s nC; and the temperature is 100°F. Calculate pressure P’ for both systems
for the following radii: r = 0.05,0.1, 10 pum.

P’ P
P’=1 atm @ = | atm
Bubble Droplet

2.6 Using the results from Example 2.5, show that the work required to create
a gas bubble can be expressed as

W = 16r0%/[3(P? — PF)").

2.7 Consider the P-T plot of a pure substance with a flat interface between the
equilibrium gas and liquid phases (see Fig, 2.45). Sketch the P-T plot for the
same system when the interface between the equilibrium gas and liquid phases
has a constant curvatyre. Assume liquid is the wetting phase and gas is the
nonwetting phase. What would be the results if gas were the wetting phase?

2.8 Consider the gas bubble shown in the cavity in Fig. 246. Derive the expres-

sion for the work of creating the new gas phase that consists of the top spherical
segment and the cone:

Whe: = W‘Ebhez '
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CP

-7
Figure 2.45 Vapor pressure curve for a pure substance; inter-
face curvature = 0: r = oc.

where Wis the work given in Example 2.5,

1 .2 cos®y 3 cos® y
~ 2|1 —sin®y — °
Phet 2 |: St tan x t g €08 0 Sin:x]
and v=0—a
2.9 Derive Eq. (249) of the text.
R R qumd o

A

Solid

Figure 246 Heterogeneous nucleation in a cavity.
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2.9 Derive Eq. (2.49) of the text.

2.10 Derive the following simple relations for the gas and liquid pressures
corresponding to the bubble and droplet systems:

PC - Pl =2q/r
PY - pl— —2a/r,

where r is the radius of the bubble and the droplet, respectively. Calculate the
pressure in the liquid phase for the bubble and droplet of Example 2.4 for
PS¢ = 0.2 atm. Note that negative pressure of liquid phase inside the bubble indi-
cates that the liguid 1s under tension (see Chapter 3).

2.11 Consider the phases sketched in the following figure. In spite of the differ-
ence between the arrangement of the phases in the figure below and in Fig. 2.38,
show that the Phase Rule remains unchanged: ¥ = ¢ + 1.

SEDEIE

Hint: You may need to establish the following relationship from the ¢riterion of
mechanical equilibrium in your derivations:

(0'(1'2}/1"(1'2") + (0_{2,3)/?.[2.3]) — {0_(1.3}Kr(1.3])l

2.12 Theinterface curvature effects the saturation pressure of a pure substance
and a multicomponent mixture according to Eqgs. (2.48) and (2.47), respectively.
The effect of interface curvature on the saturation pressure of a pure substance
1s given by (see Eq. (248))

2d{o/r) 2d(o/r)

P& = = .
o (1—ve/uk) (1 —pl/p%)

However, as the critical point is approached, both the numerator and denomina-
tor of the above equation for a fixed curvature approach zero. Show that for a
fixed curvature, approaching the critical point, dPY% — 0 and at the critical
point, dP¢ = 0.

Hint: At the critical point ¢ =0, but the rates at which ¢ and (1 — v%/v%)
approach zero are not the same. From the Macleod-Sugdon equation (Macleod,
1923; Sugden, 1924; Fowler, 1937, Firoozabadi et al., 1988),

ot = (P/M)(p" - p°),

the interfacial tension and phase densities are related. In the above equation, Pis
the parachor of the pure substance (which can be obtained from pure-component
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interfacial tension measurements), M is the molecular weight, and p* and p¢ are
mass densities of the equilibrium lhiquid and vapor phases, respectively. Note
that in the Macleod-Sugden equation above, the effect of interface curvature on
the interfacial tension of a pure substance is neglected.

2.13 Derive the Gibbs-Duhem equation for an open phase with a curved inter-
face (i.e., Egq (E28) by taking the Legendre transform of
U=U(S V.n.....,n., A) with respect to all the extensive variables
S V.n,,...,n.and 4.

2.14 DProve that for an 1decal binary solution, (dlnf,/dlnx)y p =1 (see Egs.
(2.87) and {2.88)).

2.15 Show that in a multicomponent system the summation of the diffusive
mass flux of all the components is zero:

e

.ﬂJi :0

I
—_

;

Hint: Use the diffusive mass-flux expression J; = p,(6 — v'), where p; is the density
of component i (that 1s. mass of component ¢ per unit volume} and v 1s the velocity
of component i. and the definition of mass average velocity is v = 3 _, p,;/p for
the proof above.

2.16 Derive the following expression for the stream function when the tempera-
ture variation is represented by Eq. (2.107):

Fy Y _ —2kp°gfB
ax?  8z2 Jr

In this case the boundary conditions remain the same as for Eq. (2.120). Derive the
solution to the above problem and compare it with Eq. (2.121).

2.17 King Hubert (1956) has shown that so long as the fluid density 1s constant
or 1s a function of the pressure only, there will be no convective circulation in
porous media. However, when p is a function of temperature, the fluid may have
a convective circulation, which 1s referred to as thermal convection. In other
words, the so-called free convection in porous media cannot occur because of
pressure variation of density. For multicomponent systems, it is only the tempera-
ture and/or composition variations of density that result in free convection.

Use the rotational and irrotational criteria for a vector field to prove the above.

Hint: Write the Darcy velocity of porous media in the following form:
U= —(R/u)p[(VP/p)+ g]. Then take the curl of (VP/p) + g].

Vx[(VP/p)+ 8l =V x (VP/p) = VP x V(1/p),

since V x g = 0. Show that VP x V(1/p) =0 if p = p(P) and VP x V(1/p) # 0 if
p = p(7). o
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Chapter

Equation-of-state representation
of reservoir-fluids phase behavior
and properties

Reservoir fluids contain a variety of substances of diverse chemical
nature that include hydrocarbons and nonhvdrocarbons. Hvdrocarbons
range from methane to substances that may contain 100 carbon atoms,
even when these substances are in the form of singly dispersed mole-
cules (1.e., monomers). Nonhydrocarbons include substances such as
N,, CO,, Hy5, S, H,0, He, and even traces of Hg. The chemistry of hvdro-
carbon-reservoir fluids 1s very complex. Methane, often a predominant
component of natural gases and petroleum-reservoir fluids, 1s a gas,
nC; and hydrocarbons as heavy as n(}; may be in the liquid state, and
normal paraftins heavier than nC,; may be in the solid state at room
temperatures. However, the mixture of these hydrocarbons may be in a
gaseous or liquid state at the pressures and temperatures often encoun-
tered in hydrocarbon reservoirs. The mixture may also be a solid as
will be seen in Chapter 5. The majority of reservoirs fall within the
temperature range of 80 to 350°F, and the pressure range of 50 to 20,000
psia. When steam 1s injected into hydrocarbon reservoirs, the tempera-
ture may exceed 550°F and for mn-situ combustion, the temperature
may be even higher.

In spite of the complexity of hydrocarbon fluids found in underground
reservolirs, simple cubic equations of state have shown surprising
performance in the phase-behavior calculations, for both vapor-liquid
and vapor-liquid-liquid equilibria of these complex fluids. This chapter
is structured on a simple presentation of cubic equations of state and
their use based on our own experience with the remarkable accuracy
of these equations. For the phase behavior of water-hydrocarbon
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fluids at high temperatures, the concept of association of water mole-
cules may become necessary and should be integrated into the cubic
equations. This integration, however, does not result in complexity:
the simplicity of the calculations remains intact.

The calculation of two-phase isothermal and i1sentropic compressibil-
ities, two-phase sonic velocity, single-phase sonic velocity, and cooling
and heating due to expansions are presented in the second part of this
chapter. Cubic equations of state facilitate all of these calculations.
One basic assumption in the formulation for the two-phase compressi-
bilities and two-phase sonic velocities is the equilibrium state. In the
transition from single-phase to two-phase state, compressibilities and
sonic velocity may have a sharp discontinuity, which implies lack of
validity of averaging procedures.

EOS representation of volumetric and phase
behavior

Consider the plot of pressure versus total volume of a pure substance
shown in Fig. 3.1. An equation of state (EOS) 1s desired to represent
the volumetric behavior of the pure substance in the entire range of
volume ~both in the liquid and in the gaseous state. It is also desired
that the EOS be a continuous function of volume.

Let us first examine the phase diagram of Fig. 3.1 at 7|, where
T, < T.:T. is the critical temperature. At point S, the liquid 1is
compressed. (In petroleum engineering terminology, this state 1s
referred to as undersaturated liquid because morc gas could be
dissolved in it.) As the pressure is lowered, the volume increases. At
point A. the liquid 1s in the saturated and stable state. Toward the
right of point A, as the pressure is lowered, the substance might follow
one of two routes. [t might follow the line AD, in which case point D
represents the saturated and stable vapor, or it might follow curve AB.
for which the fluid will be in a metastable condition. In this case. the
limit of stability is determined by the condition that (6FP/3V); vanishes
(i.e., point B). Similarly, one can start from point R and observe that as
the pressure increases, condensation may not occur up to point C,
where again (8P/9V)p will vanish. Curve DC represents the locus of
metastability and point C is the limit of metastability at 7} for the
vapor. The dashed line in Fig. 3.1 is the locus of the limit of metastahbility
(1.e., the spinodal curve). Any point on this curve or curve AB, below
zero pressure, represents the liquid under the state of tension. The
envelope shown by the solid thick line is the binodal curve representing
the saturated equilibrium liquid and vapor loci.

The region between the spinodal curve and the saturated liquid curve
may represent liquid in a superheated state. Similarly, the region
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Figure 3.1 DPressure vs. volume of a pure substance.

between the saturated vapor curve and the spinodal curve represents
the supersaturated vapor state. Inside the binodal curve is the unstable
region; there is no physical meaning to the curve between points B and
C. In other words, it 18 not physically possible to have a fluid on the
curve between points B and C at temperature 7Y, while a fluid may
exist on the curves between A and B and between C and D. In the next
chapter, we will discuss the stability concept in detail and derive the
corresponding mathematical expressions from the first principles.

Kenrick, Gilbert, and Wismer (1924) studied the superheating of a
number of liquids at atmospheric pressure and found that there was a
limiting temperature for each liquid, at or below which it always
exploded. For example, the maximum value for the superheating of
water at atmospheric pressure 1s around 270°C. Debenedetti (1996)
presents metastability of water and other liquids in detail.

It was mentioned that a point on curve AB may be at negative pres-
sure. In other words, a liquid could have a negative pressure without
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vaporizing. Consider a simple experiment that was performed to exam-
e the effect of negative pressure in a tube (Skuse, Firoozabadi, and
Ramey, 1992). The apparatus of Fig. 8.2 was used to create a negative
pressure in a glass capillary. First, the bottle was partially filled to 2-
cm depth with vacuum pump o1l and a partial vacuum of 0.00038 psia
(2.6 Pa) was created to remove air from the oil, then the vacuum was
released. A capillary tube of 0.025-cm radius was placed in a vertical
position inside the bottle, dipping into the vacuum pump o1l. A capillary
rise of 2.5 cm was observed. The capillary risc remained the same when
the bottle was pumped to a vacuum of 0.00038 psia (2.6 Pa). For an oil
density of 0.9 g/em?®, the hydrostatic pressure at the bottom of the
column was, therefore, about —0.0315 psia (—217 Pa). The entire
column was at negative pressure. No vaporization was observed.
Briggs (1950) measured the limiting negative pressure of water as a
function of temperature using a centrifuge to gencrate negative pres-
sure in a capillary tube. Figure. 3.3 1s a reproduction of Briggs' data.
The maximum negative pressure of water from Fig. 3.3 1s about 280 bar
at a temperature of 9-C. The equation of state and the stability criteria
can be used to estimate the limiting negative pressure of pure
substances and mixtures (sce Chapter 4).

As will be seen in Problem 3.11 toward the end of this chapter, when
the interface is curved, 1t is possible to be in a stable state instead of a
metastable state inside the binodal curve. The binodal curve of a
curved interface for the same fluid and the same temperature is different
from the binodal curve when the interface between phases 1s flat, We
could have negative pressures while the fluid 1s stable; this can occur
in a porous medium (Skuse. Firoozabadi, Ramev, 1992).

Yacuum

gauge
s 10 Vacuum
pump

Capillary Figure 3.2 Apparatus used to

tube establish negative pressure in a
capillary tube (adapted from
Skuse, Fircozabadi. and Ramey,
1992).

{ Vacuum pump
il
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Figure 3.3 Limiting negative pressure of water between 0 and
230°C (adapted from Briggs, 1950).

It 1s also desired that an equation of state predict the limits of stabi-
lity. Another feature of an EOS is that it can describe the volumetric
behavior even in the negative pressure region. Now consider the pres-
sure versus total volume plot shown in Fig. 3.4.

An equation of state 1s an algebraic expression that can represent the
phase behavior of the fluid, both in the two-phase envelope (i.e., inside
the binodal curve), as was demanded above, on the two-phase envelope,
and outside the binodal curve. The equations of state are divided into
two main groups: cubic and noncubic. Cubic equations have three
roots when 7T < 7T, and only one root when 7 > 7T,. At T = T, there
are three equal roots. Figure. 3.4 portrays the deficiency with most of
the cubic equations of state. In this plot, the solid circles show measured
data and the solid line represents the predictions from an EOS. The flat-
ness around the critical point can not be adequately described by most
cubic equations. The liguid phase description is also not so good as the
description of the gas phase. Later, we will discuss how the volume-
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Figure 3.4 Equation-of-state representation of P vs. V for a pure substance.

translation technique can alleviate this deficiency. Noncubic equations
can better describe the volumetric behavior of pure substances but
may nhot be suitable for complex hydrocarbon mixtures.

For mixtures, the pressure-volume plot differs from that of pure
substances; a schematic of a P-V plot for mixtures is shown in Fig. 3.5.
The main differences between Figs. 3.4 and 3.5 are (1) VE and V@ of
Fig. 3.5 do not represent the equilibrium states and (2) the critical
points have different features. For a pure substance, (dP/3V) =
(82P/9V?) = 0 at the critical point. For a mixture, these two equations
do not hold (see Figs. 3.1 and 3.5). The Z-factors in Fig. 3.4 of the equili-
brium gas and liquid phases always meet the condition Z! < ZC.
However, for mixtures, when gas and liquid phases are at equilibrium,
ZL might be smaller or larger than Z%. At equilibrium, the mass density
of the liquid phase is higher than the mass density of the gas phase,
pF > p%. Theén from

_ PM 3.1)
P=7ZRT |
L G
it follows that —-ﬂ!—— > M— (3.2)
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>

Figure 3.5 Pressure vs. volume of a mixture.

When Z-factors are less than one, then Z% could be smaller or larger
than Z©.

Similarly to pure substances, an equation of state should also repre-
sent the volumetric behavior of multicomponent fluids. The volumetric
representation of mixtures is a more difficult task, espectally around
the critical point.

There are a large number of equations of state that have been
proposed to represent the phase behavior of pure substances and
mixtures in the gas and liquid states. In 1873, van der Waals introduced
an EQS, which is known as the van der Waals equation of state:

(P—i-%)(v— by = Rff (3.3)

In the above equation, v = V/n s the molar volume. The parameters a
and b have clear physical meaning. As an example, b is the so-called
hard-core parameter or co-volume parameter, which 1s the state at
which the fluid is completely packed with the molecules at infinite pres-
sure. Therefore, v should be larger than b. Parameter ¢ has a more diffi-
cult meaning and will simply be referred to as the attraction parameter.
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Equation (3.3) may be written as

Pﬁ+§4ww—d):8ﬂ, (3.1)

r

where P, = P/P., T, = T/T,, and v, = v/v,. Therefore Eq. (3.4) is a state-
ment of “the principle of corresponding states,” which means that at
the same reduced pressure and reduced temperature, all substances
have the same reduced volume. Generalized compressibility-factor
charts for natural gascs are based on the corresponding-states prin-
ciple; that concept was also introduced by van der Waals 1in 1873,

In 1949, Redlich and Kwong (RK) made an important modification to
the van der Waals EOS. They proposed

a _ PN
[P+mnmi|(v—b] = RT. (3.5)

Later Soave (1972) improved on the RK-EOS by replacing the term
a/T'? with a more general temperature-dependent term «(7) and
proposed a simple form for a = a(7T,. w) for all pure substances, taking
advantage of the concept of the acentric factor of Pitzer, Pitzer (1939),
and Pitzer, et al. (1955). Pitzer's acentric factor, ), was intended as an
additional parameter for the improvement of the corresponding-states
principle. The acentric factor is a measure of the difference in molecular
structure between a given component and a gas with spherically
symmetric molecules with o = 0 (such as argon).

Another important variation of the van der Waals EOS was intro-
duced 11 1976 by Peng and Robinson:

a{T)
{P + v(v+ b))+ blv—b)

]w—bn:RT. (3.6

This equation improves the liquid density prediction, but still cannot
describe volumetric behavior around the critical point because of ¢
fundamental reason that will be discussed later. There are thousands
of cubic equations of states, and many noncubic equations. The non
cubic equations such as the Benedict-Webb-Rubin equation (1942) anc
its modification by Starling (1973) have a large number of constants
they describe accurately the volumetric behavior of pure substances
But for hydrocarbon mixtures and crude oils, because of mixing rule
complexities, they may not be suitable (Katz and Fircozabadi, 1978)
Cubic equations with more than two constants also may not improv
the volumetric behavior prediction of complex reservoir fluids. In fact
most of the cubic equations have the same accuracy for phase-behavio
prediction of complex hydrocarbon systems; the simpler equation
often do better. Therefore, the discussion will be limited to the Peng
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Robinson EOS, which according to the author’s experience enjoys more
simplicity and reliability than many other equations.

Before turning to the specifics of the PR-EOS, Maxwell’s equal-area
rule for pure substances will be derived for the van der Waals family of
equations and the mathematical structure of these equations will be
discussed. Maxwell’s equal-area rule, which applies to the suberitical
isotherm (7" < T'), is shown schematically in Fig. 3.6.

From the equality of chemical potentials or the Gibbs free energy at
the saturation points 4 and E,

Gt =G¢ (3.7)
AL +Psar VL — AG + Pwat VG (38)
and, therefore, AC — AL = syl v, (3.9)

which is the area of the rectangle AEFG. An alternative expression for
AS — ALl can be obtained by evaluating the integral of | dA along the
path ABCDFE using dA = —PdV, since d7 =0,

AG~AL:—JPdV, (3.10)

Figure 3.6 Maxwells equal-area rule.
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which is the area shown by the dotted region. It then follows that th«
two shaded areas are equal. Note that Maxwell’s equal-area rule on :
P — V plot applies to pure substances only. In Chapter 4, we wil
address the form of this concept for mixtures.

Algebraic form of cubic equations

The cubic equations of state may have four branches in P-v space
Examine the PR-EOS given by Eq. (3.6.) A plot of Eq. (3.6) shown 11
Fig. 3.7 exhibits three vertical asymptotes:

v=>5 (3.11
v=+(~2-1)b (3.12
v=—(v/2+1)b. (3.13

The branches for which v < b have no physical meaning. Wher
P > P,, there may be three roots: —(v2+1)b < v <0, —(+/2+ 1)
< v < (+/2—1)b,and v > b. Only the root that is larger than b is identi
fied as the molar volume of the liquid phase. The other two roots have
no physical meaning. When P, < P < P,, the only real root correspond:
to the liguid phase. For Py < P < P,, three real roots are obtained (set
Fig. 3.7a). The largest root corresponds to the vapor phase and the smal
lest root corresponds to the liguid phase. The intermediate root has ne¢
physical meaning. When P < P,, two situations may arise for v > b
one shown in Fig. 3.7a and the other shown in Fig. 3.7b. In Fig. 3.7a
the root corresponds to the vapor phase, and in Fig. 3.7b, the smalle:
root corresponds to the liquid phase (which might have a negative pres
sure), and the larger root has no physical meaning.

Peng-Robinson equation of state (PR-EOS)
The PR-EOS, Eq. (3.6,) can be written as

2P (1-B)Z*+(A—-38B*-2B)Z - (AB~-B*-B%»=0, (314

P
where A= R(; e (3.15
bP
B=—. 16
=T (3.16

For pure substances, the first and the second derivatives of pressure
with respect to volume at the critical point are equal to zero. (The condi
tion of criticality will be derived in the next chapter.) Note that these
derivatives may not be zero for mixtures. Using the criteria of criticality
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(that is, the first and second derivatives of P with respect to v being zer:
at the critical point), and Eq. (3.14),

R2T?
o(T,) = 0.45724 —5-¢ (3.17
¢
b(T.) = 0.07780 RPTC (3.18
Z, = 0.307. (3.19

Equations (3.17) to (3.19) imply that the PR-EOS will pass through th.
critical pressure and critical temperature, but not through the critica
volume. Alternatively, if true 7, and v, are honored by the equation o
state, it cannot pass through the critical pressure. Figure 3.8 highlight
the implementation of the criticality criteria on equations of state. Iy
this figure, the pressure s plotted versus the density at 7= T,. Th:
solid curve shows the observed data. The dotted curve shows the result
when an EOS is forced to pass through the true P, and 7; the dashe:
curve represents the EOS results when it is forced to pass through th

P

F 3

QObserved

------ EOS (parameters from 7, v )
------------ EOS (parameters from T,. 7 )

|
Pe

¥
o

Figure 3.8 Coexistence curve in the critical region: EOS vs. observed (adapted from Ch
and Prausnitz, 1989).
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true T, and v,. In either case, the shortcoming of the EOS in the critical
region needs improvement. As will soon be seen, the deficiency could
be easily alleviated for pure substances. For mixtures, a satisfactory
solution is not yet available.

It 15 well known that the critical compressibility factor depends on
the substance. Table 3.1 gives the critical compressibility factors of n-
alkanes and some nonhydrocarbons. This table shows a wide variation
in Z. of various substances. All the values listed in Table 3.1 are less
than Z_, = 0.307 predicted from the PR-EOS. The SRK-EOS gives a criti-
cal compressibility factor of 0.333. On the basis of Z_ predictions, one
expects the PR-EOS to predict pure component densities better than
the SRK-KOS. Density predictions will be further discussed later.

At temperatures other than the critical temperature, the parameter a
1n Eq. (3.6) 1s given by

A1) =alT )T, w). (3.20)

The dimensionless parameter « is a function of 7. and the acentric
factor, w. Vapor pressure data are used to obtain z in the following
manner.

TABLE 3.1 Critical properties and normal boiling points of nalkanes® and some
selected nonhydrocarbons’

Comp. T.K P.,MPa .. g/om’ T, K Z

C, 190.58 4,804 0.162 111.63 0.288
G, 305.42 4.880 0.203 184.55 0.285
G, 369.82 4.250 0.217 23105 0.281
nC, 42518 3797 0.228 272.64 0.274
nCs 4697 3.369 0.230 309,22 0.271
nC; 507.3 3.014 0.233 341.88 0.264
nC, 540.1 2.734 0.233 37157 0.262
nCy 568.7 2495 0.232 398.82 0.260
nC, 594.6 2.280 0.231 423.97 0.256
nCly 617.7 2.099 0.228 447.30 0.255
nCy; 638.8 1.948 0.227 469.08 0.253
nCi, 658.4 1.810 0.226 48947 0.249
nCy, 675.9 1.679 0.224 508.62 0.246
nCy, 692.3 1573 0.222 52673 0.244
nCys 707.8 1.479 0.220 543.84 0.242
nCq "722.6 1401 0.219 560.01 0.241
nCys 735.6 1.342 0.218 575.17 0.242
nC\g 774.2 1.292 0.214 589.50 0.247
H,0 647.4 22.104 0.400 373.30 0.229
COo, 304.4 7.398 0461 194.80 0.274
N, 126.2 3.392 0.311 77.50 0.290

*n-Alkanes data from Teja et al. (1990).
"Nonhydrocarbons data from GPA Handbook (1972).
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At the boiling point (vapor-pressure condition),
fr = (3.21
Using Eqgs. (3.6), and (1.109) of Chapter 1,

A 1 4+ 2.4148B

ln(f/P):Z—l—ln(Z—B)—fzﬁB N S4B

(3.22

Vapor-pressure data and Egs. (3.14), (3.21), and (3.22) are used to esti
mate o for pure substances. The parameter o can be correlated by :
simple expression:

a=[1+ml-TVH (3.23

In Eq. (3.23), m is given by
m = 0.37464 + 1.542260) — 0.269920°. (3.24
Equation (3.24) is apparently based on vapor pressure data of hydro

carbons with 0 < w < 0.5. The correlation was later expanded for w ir
the range of 0.1 < w < 2.0 (Robinson et al., 1985):

m = 0.3796 + 1.485w — 0.1644w® + 0.01667w° (3.25

For water and other polar substances, Mathias and Copeman (1983)
suggest a different correlation.

The acentric factor in Egs. (3.24) and (3.25) is defined as

Psat
P

c |T.=07

w = —log -1. (3.26)

If we assume the vapor-pressure data to be represented by
log Pt — ﬁ+%, (3.27)

where f and 7 are constants and P5* is the saturation pressure at
“absolute temperature T, then

_ 3llog(P,/14.695) _q
TR T, S ]

(3.28)

where P, is in psia, and T}, is the normal boiling point with the same
absolute units as T,. For mixtures, the ¢ and b parameters are defined



L

Equation-of-state representation of reservoir-fluids 143

according to certain mixing rules. The following mixing rules for petro-
leum fluids have proved useful:

=33 xixj(aij)lxz (3.29)
i=1j=1

j=(1~0ya*a?, (3.30)

b=3 xb, (3.31)

=1

where d; 1s the interaction parameter between component i and compo-
nent j, and d;; = J;. The interaction parameter is assumed to be indepen-
dent of pressure and composition and generally independent of
temperature. In the above equations, x; represents the mole fraction
and a; and b; represent the parameters of pure substance .

From Eq. (1.109) of Chapter 1 and Eq. (3.6) of this chapter,

In-f—~—-b"(Z~l)—In(Z B)
v, P
2% y.a,
a4 E Y@ bl Z+2414B (5.5
2v2B a b Z ~0.414R" e

This equation is very important in the thermodynamics of phase equi-
libria; the condition of the equality of the fugacity of equilibrium
phases and the above equation provide the phase composition.

Next we will present the use of the cubic equations in predicting (1)
the volumetric properties of pure components, {2) the phase behavior
of multicomponent mixtures, and (3) the phase behavior of reservoir
fluid systems.

Pure substances. Generally, the PR-EOS and other similar cubic equa-
tions reliably represent the vapor pressure of pure substances since
vapor pressure data are used to obtain the parameter a. The density
prediction is the weak point and may need a modification. An exception
is the ZJRK-EOS (Zudkevitch and dJaffe, 1970). In this equation the
constants of the a and b parameters of the SRK-EQOS, Qg and Qg, are
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assumed to be temperature-dependent. These two parameters are given
by

RET2S ,
a=Q 2 (3.33)
RT
= QO < N - .x "1
b=Q, 2 (3.34)

For the SRK-EOS, the dimensionless constants Q) and Qf arc 0.4274
and 0.0867, respectively. However, in the ZJRK-EOS, these two para-
meters are determined from saturated liquid density and the equality
of the saturated liguid and vapor phase fugacities. At the critical
temperature and above, these two parameters are assigned values of
0.4274, and 0.0867, respectively. In the PR and SRK equations, no para-
meter is adjusted for density. As a result, these twao eguations have a
density-prediction deficiency. Figure 3.9 shows the deviation in liquid
molar volume of selected substances at 7, = 0.7 versus . The SRK-
EOS underestimates the liquid density of all substances that are
shown in the figure. The PR-EOS overestimates the density to o = 0.35.
and then underestimates the density of n-alkanes heavier than nC,.
This figure clearly shows that at T, = 0.7, the SRK-EOS is best suited
for density prediction of pure hydrocarbons with w =0, while the PR-
EOS performs best for n-heptane and other hydrocarbons with
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Figure 3.3 Percent deviation in liguid molar volume at 7, = 0.7 as a function of acentric
factor (adapted from Firoozabadi, 1988).
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w=0.35. Figure 3.10 shows the deviation for the molar liquid volume of
n-hexane as a function of reduced temperature. This figure reveals that
the deviation ts nearly constant up to a reduced temperature of 0.75.
The volume-translation concept was introduced to take advantage of
this feature (Peneloux et al., 1982; Jhaveri and Youngren, 1988). The
volume-translation technique separates vapor-liquid-equilibria (VLE)
from density calculations (see Example 3.3). The translation along the
volume axis i1s given by

true _ UEOS

v +e, (3.35)

where ¢ 1s the volume-translation parameter. Figure 3.10 shows that the
volume translation may not improve volumetric prediction above
T, = 0.7; for the PR-EOS, it will make the predicted density worse. An
additional correction term has been suggested by Mathias. Naheiri,
and Oh (1989):

A

)_U_E aP
" RT\w/,

In Eq. (3.36), (—UQ/RT)(BP/E)U)T 1s a dimenstonless quantity related to
the inverse of the compressibility. This dimensionless quantity is zero
at the critical point, and its value 1s relatively high at low reduced

1. A\h_{%}
kL
n-Hexane
1=
14 3
RKS wa

U!rue — UBO.S + e +fc
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Figure 3.10 Percent deviation in liquid molar volume for n-hexane as a function of reduced
temperature (adapted from Firocozabadi, 1988),
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temperatures. Therefore, at conditions away from the critical point, the
third term on the right side of Eq. (3.36) becomes negligible. At the criti-
cal point,

virue — pBOS Lo f (3.37)
where f, from Eq. (3.87) 1s
u NON]
fo = v — (¢ + V209, (3.38)

The modified volume translation forces the EOS to pass through 7., P..
and v,. There is a universal value for 4 for the PR-EOS, 0.41. This value
was determined by regressing data for many substances.

Figure 3.11 shows the predicted liquid densities for nitrogen and
water when the modified volume translation is used. It is evident that
the term on the right side of Eq. (3.36) provides an important description
for pure substances in the critical region.

Multicomponent mixtures. The volume-translation concept 1s extended
to mixtures according to the following mixing rule:

¢

[ Z X;C; (339}
i=1

Uo = D XU (3.40)
i=1

The application of the conventional volume-translation technique
generally improves the volume predictions away from the critical
region, although the improvement is not guaranteed. In the retrograde
and near-critical regions, both volumetric and modified volumetric
translations may faill to predict volumetric behavior accurately
(Bjorlykke and Firoozabadi, 1992).

Phase behavior of mixtures with well-defined
components

The vapor pressure data for pure components are used to obtain the »
parameter of the EOS; the density is then predicted. For mixtures, the
EOS can be used to calculate not only the mixture density but also the
phase behavior. In a limited sense, the phase behavior means the compo-
sitions and amounts of the equilibrium phases. The next chapter
presents the equations for phase-behavior calculations. Essentially,
phase-behavior calculations rely on the use of the expression for the
fugacity of component ¢ in the mixture given by Eq. (3.32) for the PR-
EOS.
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Mixtures with well-defined components are comprised of substances
with a known boiling point. One may restrict the definition to mixtures
with components of known critical properties.

The critical properties (7, and P,) and either the boiling point or
acentric factor, w, are needed to describe pure components by an KOS,
For mixtures, the only additional parameter is the binary interaction
parameter. This coefficient is often empirically determined from one or
more data points of binary mixtures in the form of bubblepoint or K-
values. Once these coeflicients are available, VLE for multicomponent
systems can be predicted. Figure 3.12 shows a comparison of the
measured and computed K-values of a well-defined mixture (Yarbor-
ough, 1979; Firoozabadi, 1988). The SRK-EOS was used in the calcula-
tions. Note that the agreement between the measured and calculated
values is good. For mixtures of different hydrocarbons where critical
properties and normal boiling points or acentric factors are available,
the VLE predictions from the PR-EOS and other similar equations are
surprisingly good, except in the critical region. Figure 3.13 depicts the
measured and predicted phase behavior of the C,/nC,/nC,, system at
3000 psia and 160°F. The interaction coeflicients between C,/nC,,
C,/nCyy, and C,/nC,,; were set at 0.012, 0.044, and 0.01 respectively, in
the calculations. This ternary diagram demonstrates the himitation of
the PR-EOS and other similar equations in the critical region.

Reservoir-fluids phase behavior and volumetric properties. Reservoir
fluids are a complex mixture of thousands of components that exhibit
very complex phase behavior. It is, however, surprising that a simple
two-constant equation of state such as the PR-EOS can do an excellent
job for vapor-liquid equilibria calculations away from the critical
region. A discussion of the manner in which the calculations are
performed 1s presented.

As was stated earlier, one needs 7. P_, and 7', or w for every compo-
nent in a mixture. However, critical property data beyond a certain
carbon number are not yet available. The measurement of critical prop-
erties of heavy hydrocarbons is difficult and 1s subject to uncertainty
because of thermal decomposition and chemical reactions at high
temperatures. Thermal decomposition increases with increasing
carbon number and temperature. When a heavy hydrocarbon is
heated, it reaches a temperature at which it starts to decompose. The
product of decomposition increases with temperature and time. There-
fore, the measured critical point corresponds to the critical point of a
mixture. In order to determine the critical point of the original
substance, certain assumptions have to be made. For mildly unstable
substances, the critical locus of the mixture (original substance and
the products of decomposition) 1s assumed to be a linear function of
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Figure 3.12 Comparison of the predicted and measured K-
values of a well-defined hydrocarbon mixture (from Yarbor-
ough, 1979).

the mole fractions of the decomposed products. The criteria of stability
and criticality from Chapter 4 can be used to determine the critical
properties of pure heavy components (Anselme, 1988; Teja et al, 1990).
This approach has been used to measure T, and P, of normal alkanes
to nCy by Anselme (1988). The pulse-heating method has also been
used to measure the critical pressure and temperature (Nikitin,
Pavlov, and Skripov, 1993). Using this method, Nikitin, Pavlov, and
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Figure 3.13 Phase diagram showing the predicted and measured
phase envelope of C,/nC,/nC,4 at 160°F (from Firoozabadi and
Aziz, 1986),

Popov (1997) measured critical pressure and temperatures of several
normal alkanes including nCy.

For heavier n-alkanes, one could use various correlations. Figures.
3.14 and 3.15 plot critical P, and T, from various correlations. These
two figures show that the uncertainty in 7, estimation 1s less than that
in P,. Extrapolation of the correlation to nCjy, may result in unrealistic
values of T, and P,. Also note that the trend of P, data from Anselme
(1988) and Nikitin et al. (1997) are not the same. Until the data of Nikitin
et al. (1997) is verified, we should use them with caution. The subject of
critical properties is further discussed in Chapter 5.

For crude oils, it is not practical to provide the analysis to thousands
of components. Instead, for the Cg;, residue, average boiling point,
liquid density, and molecular weight of groups or cuts are measured.
When only the amount and the density and the molecular weight of the
Cy, or aheavier plus fraction is available, then it may become necessary
for some calculations to estimate an extended analysis. The two-para-
meter gamma’distribution function (Johnson and Kotz, 1970; Whitson,
1983) can be used for generating the molar distributions for the plus
fractions. Figures 3.16 and 3.17 give average density and molecular
weight for groups of compounds boiling between 0.5°C above the
previous n-paraffin and 0.5°C above the normal paraffin carbon number
used to identify the group. Table 3.2 shows the same data in tabular
form. Crude oils, with few exceptions, follow these two graphs. The
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practice 1s to use (from measurements or estimation from Figs. 3.16 and
3.17) average normal boiling point and liquid density instead of
measured properties available for pure components. From the density
and boiling point, then correlations such as those of Cavett (1962) or
Lee and Kesler (1975) are used to estimate critical properties. In addi-
tlon to critical properties and normal boiling point, one needs binary
interaction coeflicients for phase-behavior calculation of petroleum
fluids. It has been shown (Katz and Firoozabadi, 1978) that interaction
coefficients for methane-heavy component binaries significantly
improve the phase-hehavior calculation of reservoir fluids. Measured
phase behavior of binary mixtures provides interaction coefficients
between hydrocarbon-—hydrocarbon, hydrocarbon-nonhydrocarbon,
and nonhydrocarbon-nonhydrocarbon pairs. In crude oils only one
data point, such as a bubblepoint pressure, which is often available,
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Figure 3.17 Molecular weight vs. boiling points of hydrocarbon
groups in crude-oil and condensate syvstems (from Katz and
Firoozabadi, 1978).

can provide the interaction coeflicient between methane and the heavy
end. Various interaction coefficients given by Arbabi and Firoozabadi
(1995) are summarized in Table 3.3. Figure 3.18 compares predicted and
measured equilibrium ratios for the lean natural gas condensate of Hoff-
man et al. (1953). The data of Hoffman et al. (1953) are perhaps the most
complete condensate measurement in the literature. The data and
prediction results are in good agreement. Figure 3.19 compares the
predicted and experimental values for a crude oil from Roland (19453).
From two data points at 120°F, the interaction coefficient between C,
and Cyg, residue was estimated (Katz and Firoozabadi, 1978). The est1-
mated interaction coeflicient was used to predict the K-values at
200°F. The figure shows excellent results from the PR-EOS.

Figure 3.20 shows the computed results and data for a near-critical
condensate. The figure shows that as the K-values approach one (i.e.,,
critical point), the prediction results deviate from the measured data.

Both the usefulness and promise of the cubic equations to describe
gas and liquid phases and the problems of the description in the critical
region and density deviation have forced some users to adjust several
parameters of the EOS to match measured and calculated phase and
volumetric behavior. These adjusted parameters, in essence, include
critical properties and interaction coefficients.

Phase behavior of water and water-hydrocarbon mixtures

Water is an integral part of fluids in the reservoir. In addition to
connate water which often covers the rock surface, H,O at high
temperatures, either in the form of liquid or in the form of steam, is
injected into the reservoir to enhance the recovery of oil. At high
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TABLE 3.2 Generalized properties of petroleum hexane-plus groups (From Katz
and Firoozabadi, 1978)

Average Density

Hydrocarbon Boiling range Boiling point  at60°F  Molecular
Group °C °F °C °F g/cm? weight
Ce 36.5 to 69.2 979 to 156.7 63.9 147 0.685 84
5 69.2 to 98.9 156.7 to 21011 919 1975 0.722 96
Cyq 989t01261 2101t0 2591 1167 2432 0745 167
Cy 126.1to 151.3 2591t0 3044 142.2 288 0.764 121
Cio 151.3t0 1746 3044 to 3464 1658 3305 0.778 134
C 1746t0 1964  346.3t0 3855 1872 369 0.789 147
< 1964t02168 3855t04222 2083 407  0.800 161
Cps 2168102359  4222t04567 2272 441 0.811 175
Cus 2359t0 2539 4567t0489.2 2464 4755  0.822 190
Cis 2539 to 2711 489.2 to 520 266 511 0.832 206
Cre 271.1t0 2873 520 to 547 283 542 0.839 292
Ci4 287 to 303 547 to 577 300 272 0.847 237
Crs 303 to 317 577 to 603 313 595 0.852 251
Cro 317 to 331 603 to 628 325 617 0.857 263
Cag 331to 344 628 to 652 338 6405 0.862 275
sy 344 to 357 652 to 675 351 664 0.867 291
Css 357 to 369 675 to 696 363 686 0.872 305
Cys 369 to 381 696 to 717 375 707 0.877 318
Cys 381 to 392 717 to 737 386 727 0.881 331
Cae 392 to 402 737 to 756 397 M7 0.885 345
Cag 402 to 413 756 to 775 408 766 0.889 359
Car 413 to 423 775 to 793 419 784 0.893 374
Coy 423 10 432 793 to 810 429 802 0.896 388
Cay 432 to 441 810 to 825 438 817 0.899 402
Cuo 441 to 450 826t0842 446 834 0902 416
Cyy 450 to 459 842 to 857 455 850 0.906 430
Cis 459 to 468 857 to 874 463 866 0.909 444
Cyy 468 to 476 874 to 888 M 88l 0.912 458
Cyy 476 to 483 888 to 901 478 895 0.914 472
Cis 483 to 491 901 to 915 486 908 0.917 486
Cre 493 922 0.919 500
Cis 500 934 0.922 514
Cg 508 947 0.924 528
Ciy 515 959 0.926 542
Cao 522 972 0.928 556
Cyy 528 982 0.930 570
Cy 534 993 0.931 584
Cas 540 1004 0933 598
Cyy 547 1017 0.935 612
Cas 553 1027 0.937 625

temperatures, 1.e., above 300°F, the solubility of water in the crude oil
increases substantially. An equation of state is an ideal tool to study
water/reservoir fluid phase equilibria. However, phase behavior of
water-hydrocarbon mixtures is complicated by the association between
water molecules. Association means the tendency of the molecules to
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TABLE 3.3 Binary interaction coefficients for the PR-EOS

(1) d¢,_¢ =0.0289 + 1.633 x 107°MW, (Arbabi and Firoozabadi, 1995), where C, is the
hydrocarbon heavier than C;

(2) 0¢,—co, = 0.15

3) 8¢, _y, =0.10
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aggregate and to form clusters. The ability of molecules to associate 1s
mainly controlled by polarity. Cubic equations such as the PR-EOS are
not suitable for calculation of the phase behavior of systems in which
their molecules associate; only nonpolar substances can be described
by cubic equations. Water molecules form a three-dimensional struc-
ture of hydrogen bonds (Michel et al., 1989). This structure changes
rapidly as the temperature rises. Conventional use of the cubic equa-
tions of state cannot, therefore, provide reliable results for water and
water/reservoir-fluid phase behavior. While there are many sugges-
tions, the explicit association suggested by Heidemann and Prausnitz
(1976 @, b) seems simple for the use of the association concept. In this
approach a predetermined association model is assumed and then intro-
duced explicitly into the equation of state. Different explicit association
models have been proposed by various authors. The following discusses
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Figure 3.20 Comparison of the measured and computed K-values
of the GPA gas-condensate fluid at 100°F (from Firoozabadi,
1988).

how to combine an association model with a cubic equation of state,
such as the PR-EQOS, to describe phase behavior of water—hydrocarbon
mixtures.

Association equation of state (AEOS). To first introduce the concept of
chemical compressibility factor Z°* and the association constant K,
assume there are n, moles of a substance in which all the molecules
are in the form of monomers, 1.e., singly dispersed molecules. Then, if
the fluid behaves as an ideal gas, PV = nyRT, where V, is the volume
at pressure P. Let us now assume that some of the molecules will associ-
ate so that the true number of moles is n,,,.; then, the ideal gas PV T rela-
tionship takes the form

P‘/true = ntrueRT‘ (341)
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Equation (3.41) can also be written as
PV, = ZnyRT. (3.42)
From Eqgs. (3.41) and (3.42),
Z = ny0/ o (3.43)

If all the molecules form dimers, then n,,,,, = (1/2)n, and Z* = 1/2, If all
the molecules stay as monomers, Z¢* = 1. Next the association constant,
K, is defined.

Consider a mixture of monomers A and dimers A, of a single-compo-
nent system at temperature T and pressure P. Then

Ha, = 2U4. (3.44)

Assume that the mixture of species A and A, forms an ideal gas. The
chemical potentials of species A and A, are

ps(T, Py = (T)+ RTInP, (3.45)
pa (T, Py= 1y (T)+ RTInP, (3.46)

where P, and P,4, are the partial pressures of A and A,, respectively.
Combining Egs. (3.44) to (3.46),

1, () + RTIn Py =24%(T)+2RT InPy. (3.47)
Equation (3.47) can be written as
2u%(T) = iS5 (T) = RTIn P, /P, (3.48)
The association constant is defined by
RTInK = 2p3(T) — 43 (T)=RTIn P,/ P5. (3.49)
But y = h — T's, and therefore
RTInK = —[hgz(T) - zhg(T)] n T[sflg(T) . sg(T)]. (3.50)

Let us define Ah°(T) = enthalpy of dimer formatlon = ho (T) 2h?q(T)
and As%(7) = entropy of dimer formation = s° (1) - 9 %(T). From
these definitions and Eq. (3.50),

—InK = (ARY/RT) — Asﬂ/ﬂ. (3.51)

Similarly, enthalpy and entropy of trimer formation, etc. can be defined.
For water, the experimentally determined AR® and As® are available.
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The virial equation of state truncated after the second term can be
written as

Z = Pv/RT =1+ B/v, (3.52)

where B is the second virial coefficient. Coeflicient B is separable into
physical and chemical parts (Prausnitz ef al. 1986):

B = B + BP*, (3.53)
Combining Egs. (3.52) and (3.53),

Z=1+(B*+B")/v=00+B"v)+1+B"/w-1 (3.54)

or Z =7k 4zt 1], (3.55)

In Eq. (3.55), Z¢* and Z?" are the contributions from the chemical and
physical interactions, respectively. Z?* can be obtained from a cubic
EOS, such as the PR-EOS. There are theoretically derived Z°* expres-
sions for different mixtures of associating substances, such as alcohols
and phenols. However, because of high dimensionality in its aggregate
structure, a sound association model may be difficult to derive for
water. One may use theoretical analysis as a guide to find an empirical
functional form for the water association constant (Shinta and Firooza-
badi, 1995). Anderko (1991) has proposed the following empirical asso-
c1ation model for aqueous systems:

7 = Ta c+1-x,.  (3.56)
14+ (RTKx,/v) +8.2(RTKx,/v)

where x, 1s the mole fraction of H,O and K is the association constant.
Shinta and Firoozabadi (1995) modified Eq. (3.56) to

ch ‘):xa
= 1—x,, 3.57
VE+ (RTKx,/v)+ B(RTKx,/v) T (957

where f§ = 0.00005 and ¢ = 1.06.

Solution of the association equation of state (AEOS). The incorporation
of the association in the PR-EOS results in the following equation:

Z = (Pv/RT) = v/(v—n) — av/[RT(V* + 2bv — b*)]
" gxa/[\/é +(RTKx, [v) + ﬁ(RTKxa/u)z] —x,+1. (3.58)

Equation (3.58) is obtained from combining Egs. (3.55) and (3.57) and the
PR-EOS for ZP*. This equation is a polynomial of degree six in molar
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volume, and therefore is no longer cubic. One has to find the roots of this
polynomial and to relate the appropriate root to the vapor and liquid
phases. Fortunately, Eq. (3.58) has a maximum of three significant
roots. The remaining roots are either negative, complex, or less than
the covolume parameter 6 (Shinta and Firoozabadi, 1995). The smallest
root (v > b) i1s assigned to the liquid phase and the largest root
(v< RT/P,1.e., less than 1deal gas molar volume) is assigned to the gas
phase. The Brent method (1973) can be used to conduct the search that
satisfies (6P/dv)y < 0 in the interval b to RT/P to obtain v.

There are six parameters in Eq. (3.58) that have to be evaluated. These
parameters are related to

AR = AR + ACH(T — T9), (3.59)
As® = As” + Ak In(T/TO), (3.60)

and apparent critical properties of water. Parameters ARY and As* are
values of enthalpy and entropy of association at the reference tempera-
ture of 7° (say 273.15 K), and AC?J 1s the heat capacity of association at
the reference temperature. The apparent critical properties 7. and P,
and acentric factor ' relate the physical contribution of water to the
cubic equation of state. Apparent properties are equivalent to the prop-
erties of an associating monomer that has not aggregated. Therefore,
T,.P,, and ¢ are different from the true measured values. All six para-
meters can be evaluated by fitting the vapor pressure and saturation
liquid density data of water from the triple point to the critical point.
Once those parameters are obtalned, they can be used for calculation
of the aqueous-mixture phase behavior and properties. The association
parameters for the PR-EOS for H,O are (Shinta and Firoozabadi, 1995)
P.=23305MPa, T.=391K. o =004, AR = —-26.641 KJ/gmole,
As? = —93.49 J/(gmole.K), and Ac}, = 0.

The next step 1s the calcutation of the fugacity coeflicient of the asso-
clation substance (that is, water), (pfh. The physical fugacity coefhcient
for the PR-EOS is readily available (see Eq. (3.32)). In an AEOS, the
fugacity coefficient of an associating component in each phase is the
sum of both the chemical and physical contributions:

Ing,Z =In¢Z" + Ing”" 2°" i =H,0 (3.61)

(see Example 3.5b); Z°" is calculated from Eq. (3.57) and then used to
calculate ", For the nonassociating components (see Example 3.5q),

0, ="z Z i=1,...,c except H,0.  (3.62)
Equation (3.55) can lead to the following pressure expression:

P =Pt Pt _RT v, (3.63)
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where PP* and P are the physical and chemical contributions to the
total pressure. Therefore, ZP" and ¢?"* in Eqgs. (3.61) and (3.62) should
be evaluated at PP*. One uses Eq. (3.58) first to calculate the molar
volume v which is then used to calculate PP*, ZP* and ¢P" from the PR-
EOS.

Figure 3.21 shows a plot of the calculated Z, Z¢, and Z#* for water vs.
T. at saturation pressure. Figure 3.215 shows the contribution of ZP*
and Z* to the liquid compressibility factor. At low reduced tempera-
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tures below 0.55 (also at low pressures), there 1s strong association (low
ZM). At high pressures and temperatures, the association in the liquid
decreases and liquid converges to nonassociating liquid as the pressure
increases; Z°* increases and Z?" decreases to keep the calculated total
Z from Eq. (3.55) close to the true value.

The application of the AEOS to hydrocarbon-water mixtures
requires temperature-dependent binary interaction coefficients. These
data can be obtained from binary water-hydrocarbon data. Once such
data are available, then the AEOS can be used to predict the phase
behavior of H;0-crude oil systems. Figure 3.22 shows the binarv
interaction coefficients between C; and heavier hydrocarbons from
Shinta and Firoozabadi (1997). Binary interaction coefficients of
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TABLE 3.4 Binary interaction coefficients of H,0/CO,
and H;0/H,S systems for the PR-EOS (from Shinta and
Firoozabadi, 1995)

Svstem Component Binary Interaction
Reduced Coefficient
Temperature™’

1.0000 —0.028
1.1445 0.002

H,0/CO* 1.2960 0026
1.3910 0.055
1.5700 0.070
0.9811 0.0450

H.O/H.S8* 11298 0.0500
1.2786 0.0650
1.4273 0.0570

*Reduced temperature of CO;.
"Reduced temperature of H,S.

H,0/C0O,, H,O/H,S are given in Table 3.4. Figure 3.23 compares the
predicted results for the C,/nC,/H;0 from the AEOS with data. Figure
3.24 shows the steam distillation yield of two crude oils from Richardson
et al. (1992). The API gravities of crudes A and D are 33° and 12.6°,
respectively. The steam distillation yield is defined as the volume ratio
of the distilled oil to the original oil. The results correspond to a pres-
sure of 500 psig and a temperature of 467°F. The binary interaction coef-
ficients between components other than H;O remain the same as the
ones described earlier. The results presented in Figs. 3.23 and 3.24
demonstrate the usefulness and accuracy of the AEOS.

Two-phase isothermal compressibility
The isothermal compressibility of a single-phase fluid is defined in a

straightforward fashion:

1 /oV

Similarly, the isothermal compressibility of a two-phase multicom-
ponent system is defined by

1 (3V
o ¢ .
C? = v, (““a P)T,Q' (3.65)
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Figure 3.23 Comparison of the calculated and measured (McKetta and Katz, 1948) phase
composition of C,/nC,/H,0 system (adapted from Shinta and Firoozabadi, 1997).

In the above equation, n = (n, n,, ..., n,.) represents the total moles of
the components in both phases, and the derivative term on the right
side represents the change in the total fluid volume, V,, caused by a
small change in the pressure of the closed system at constant tempera-
ture. Isothermal two-phase compressibility is important in solving
certain well-test (Macais, 1985) and compositional reservoir simulation
equations (Acs, Dolescholl, and Farkas, 1985; Watts, 1986).

Figures 3.25 and 3.26 highlight isothermal two-phase compressibility
in the two-phase region. Figure 3.25 shows the isothermal P~V relation-
ship for a single-component fluid; the compressibility is proportional
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Figure 3.24 Cumulative steam-distillation yield oftwo crude oils (adapted from Shinta and
Firoozabadi, 1997},
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V

Figure 3.25 Compressibility of a pure-component fluid in
the two-phase region.

to (8V/3P)p. This figure shows that the (3V/3P); of the gas phase 1s
higher than that of the liquid phase, as expected. However, in the two-
phase region, (6V/9P),; = co, implying that the isothermal two-phase
compressibility for a single-component fluid is infinite.
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Figure 3.26 Compressibility of a mixture in the two-phase
reglon.

Figure 3.26 reveals that (3V/0P); , for a mixture in the two-phase
region might be higher than in the single-phase gas region. The implica-
tion is that the isothermal two-phase compressibility might be higher
than the isothermal gas-phase compressibility. Practicing engineers
often use the following relationship to obtain the two-phase compressi-
bility:

C? = C$8Y + CLst, (3.66)

where Cfﬁ is the two-phase compressibility and S¢ and S” are the gas
and liguid saturations. This equation is invalid when there 1s mass
transfer between the phases; at the bubblepoint, for example, S¢ =0
and C¥ = Cf according to Eq. (3.66). As we will see shortly, when we
get even one bubble of gas, C‘T‘? may become several times higher than
the compressibility of the compressed liquid just before gas-phase
appearance. ‘

The equations for the calculation of two-phase 1sothermal compressi-
bility (Firoozabadi et al., 1988b) follow. The key term in the evaluation
of two-phase compressibility is the derivative of volume with respect
to pressure at constant temperature and overall composition. To calcu-
late this term, one writes

'Vt —_— V'f + V2, (367)



Equation-of-state representation of reservoir-fluids 167

where V|, and V, are the gas- and liquid-phase volumes, respectively.
From the relation PV; = Z;n; RT, where n;, is the total number of
moles 1n phase J,

_RT f Zn (3.68)

Taking the derivative of Eq. (3.68) with respect to pressure and hold-
ing temperature and overall moles constant yields

3V,\ _ RT LRI 8z o, ,

Jj=
The unknown derivatives in the right side of Eq. (3.69) are (3n,,/dP)r ,
and (3Z;/0P)r ,. The change in the total number of moles of phase J
with pressure can be expressed as the sum of the changes in moles of
each component i1n phase j with pressure:

on; c an.
J't }.f, . _
— - — 1 2 .
(BP )T_H ;( ap)T‘;’ 2 (3.70)

where n; ; is the number of moles of component 7 in phase j. There are 2c
unknown derivatives (dn;,;/0P)r, in Eq. (3.70); 2¢ equations are
needed. These equations come from ¢ material balance equations,

ni :nl‘i+n2‘£ i:]_,...,c, (371)
h - — = =1,... :
which yield ( P )T‘n+( P )y, 0 i=1,...,¢ (3.72)

and the remaining ¢ equations result from the equilibrium conditions
before and after the change in pressure of the system:

O e | & of1 ; ang x c [ 3fs; ang p
()= |50, () - 56, (5.
&) L) [0 imee om

The subscripts ny=®11,. s R g1 Py - -- M) and np =
(P11, .., 1y 0). A similar definition applies to n,; and n,. The subscript
T has been dropped from the terms in the right side of the above equa-
tion. The derivatives of fugacity in the right side of Eq. (3.73) for the
PR-EOS can be calculated readily by using software such as Mathema-
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tica. For the sake of brevity, we will drop some of the subscripts in the

following equations.
Combining Egs. (3.72) and (3.73) yields

i ‘afl,i n s, (an,k) - (d_fli _(%) i=1,...,c
k=1 dnl‘k Bnglk BP 8P T.n 8P Tvﬂz

(3.74)

After solving for (dn; ,/0P) 1 ,,.J = 1, 2, the following expression gives

the various terms contributing to (0Z;/0P)p

0Z; 0Z; c {87\ [on;
— = _—J J .k - -
(8P)7,.ﬂ (8}’) T‘E-+k§ (nj‘k)( 4P ) j=12 (3.75)

An EOS can be used to calculate the (8Z;/0P) and (8Z;/9dn; ;) terms on the
right side of Eq. (3.75).

The following example illustrates the use of the above equations in
computing the isothermal two-phase compressibility of multicompo-
nent systems. Consider a three-component system in the two-phase
gas—liquid region. The calculation of the (dn;;/dP)y, terms is the
major task of computing two-phase compressibility. The matrix repre-
sentation of Eq. (3.74) for the three-component system 1s

i 8)"1‘] 8f2.1 8fl,l afZ.l afl,l an.l ]
+ 1 - +-
an]‘] 8}'12.1 Bnl_z dng‘g 8n1‘3 dn2_3

) af. ofy . daf. 0 )
fl.2 + f2,2 fl,Z + f2.2 ffl.? + f2,2
8711.1 3712‘1 anl‘z 8”2.2 dnl‘g 8712}3

af afs . ) af. a d
Wiz | fo.3 'f1.3 n fos 13 + fo 3
dnyy  dngy dngp  dngy Omyz Mg

(3.76)

[0n51 7 [3fia 8]
P 3P~ P
4 -—._an2‘2 = %.‘.2_ - i‘w_
P aP 9P
Inas s s
lap 1 Lap " ap
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A sumilar procedure can be derived to compute two-phase volume
expansivity for use in thermal models. The defining equation for
volume expansivity is

1 [aV,
= — . A
TV, (BT)PJ ©77)
The procedure is virtually identical to the calculation of 1sothermal

compressibility.
Taking the derivative of Eq. (3.77) with respect to temperature, hold-
ing pressure and overall mole fractions constant, yields

aV,\ R : [ oz, on,
(aT)P; 2 2 Z[ (i), +Zf(aT)pJ‘ B9

The (3n;,/3T)p ,, term 1s expressed as

c.fon;; :
@n;,/dT)p ,, = Z(—L) ji=12 (3.79)
{=1 oT Pn

The evaluation of (9n,,/0T)p, and (3Z;/3T)p, terms are straight-
forward (see Example 3.9).

Two-phase isentfropic compressibility and
two-phase sonic veiocity

In the previous section, the two-phase isothermal compressibility of
multicomponent systems was formulated using the equilibrium assump-
tion that there 1s no gradient of chemical potentials in the systems. In
this section, the two-phase isentropic compressibility and the two-
phase sonic velocity for multicomponent systems will be formulated.
Again, we will make the assumption of equilibrium, which implies the
gradients of chemical potentials are zero. The equilibrium assumption
regarding the two-phase compressibilities depends on the problem and
may or may not be justified. As long as there 1s no supersaturation, and
adequate time is allowed to reach the state of equilibrium, then the equi-
librium criterion can be invoked.

The isentropic compressibility and the thermodynamic sonic velocity
are related to each other both in the single-phase and two-phase states.
They are used in problems in the exploration and production of hydro-
carbon reservoirs and in different disciplines. We should also make a
comment on the thermodynamic sonic velocity, which is a purely ther-
modynamic property. The thermodynamic sonic velocity 1s equal to the
true sontc velocity over a wide range of frequencies and amplitudes.
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However, at high frequencies where the thermal properties depend on
the rate of heating, then the true sonic velocity and the thermodynamic
sonic velocity are not the same (see Chapters 2 and 3 of Rowlinson and
Swinton, 1982; Voronel, 1976).

In the following, we will first derive the expressions that can be used
to calculate the isentropic two-phase compressibility. The thermody-
namic sonic velocity then can be readily calculated from the isentropic
compressibility. We could have combined the derivations for the
isothermal and i1sentropic compressibilities, but have decided on sepa-
rate derivations for the sake of simplicity.

Compressibility is defined on the basis of the thermodynamic path.
For isothermal compressibility, the path 1s constant temperature; for
isentropic compressibility Cg, the thermodynamic path is constant
entropy and is defined by

1 /aV
co--2(Z) a0

The 1sothermal and isentropic compressibilities are related by a simple
expression in the single-phase state,

C[J

CTI

Cs (3.81)
Cy

where cp and ¢y are heat capacities at constant pressure and volume,
respectively. The derivation of Eq. (3.81) is provided in Example 3.8.
Since cp = ¢y (see Example 3.8), then Cp > Cg.

The difference between Cy and Cg depends on pressure, temperature,
and composition and may vary from 10 to several hundred percent in
the single-phase state. )

The two-phase tsentropic compressibility Cfép is defined as,

1 /8V
ip o ___t
C? = 7 (an)S_Q' (3.82)

Note that in Eq. (3.82), we define Cg using pressure of phase 2, say the
liquid phase to take into account the effect of interface curvature.
Figure 3.27 shows the schematics of the process for the estimation of
C? by increasing the volume a small amount from V, to V, + AV,. The
volume of each phase j is given by

Z.n.
V. = RT 2%t (3.83)

J Pj
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P, - AP,V +AV,T",S

PV, T,S
| 1
n; i=le n"v" i=lc
v, v/
Gas Gas
\_/ | .
- z T Liquid
= Liquid v’
v, : Figure 3.27 Schematics of
— changes associated with the
V.=V, +V, Vo=V +V, calculation of two-phase Cg
(adapted from Firoozabadi and
n =0, +n,, Pan, 1997).

1
G = —;{—-(AV/AP?_}S_!

=n'. +n . .

where P; is the pressure of phase j. The total volume V), is then

> {7.n.
v, = RT3 [ 200t), (3.84)
=\ P

The variation of V, with respect to P, at constant S and n can be
obtained from the use of Eq. (3.83):

2
(8V,/0Py)g, = RT ;[(Zj/Pj)(anj,t/8P2)S‘ﬂ +(n;:/ P(0Z;/0P) g

7

- (Zjnj,t/Pjg)(apj/aPQ)S,E]

2
+ [R g;(zjnj_t /Pj)(aT/aPQ)S‘E} (3.85)
J=

Various derivative expressions on the right side of Eq. (3.85) are evalu-

ated next.
(3Z;/3Py)g , — One can write the differential of

C
dZJ = (3%/8T)P‘EJdT + (8ZJ/8P})T,EJ dPJ, -+ g(aZj/8nj.1‘)T’Pj‘njlidnj.i,
=
(3.86)
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where n; = (n;,,...,n;,) and n;; = (M1 o oos Tty Ry igts - o0 T )i M S
the number of moles of component i in phase j. By dividing Eq. (3.86) by
dP, at constant n and S,

(aZJ/BPQ)SE = (aZ;/aT)PJHj(aT/aPZ)SQ + (BZJ/BP})TEJ

'(an/apg)gvﬁ + Z(azj/anj‘i)ﬂpj_nm(3nj’£/3P2)S‘ﬂ j = 1, 2, (3.87)
i=1

where coefficients (azj/aT)Pj‘,_l,, (0Z;/3P;) T.n, and (3Z;/9n; ;) T P,.n,, CAN be

calculated from an EOS. These derivatives are easily obtained from soft-
ware such as Mathematica.
(0n;,/3P;)g , — the expression for (9n; ,/dP,) is given by

i
(an_t/aPz)S‘E = Z(anj,i/apz)s‘ﬁ Jj=12 {3.88)
i=1

Equations (3.85), (3.86), and (3.88) contain 2(c + 1) unknowns on the
right side: (1) one unknown (3P, /3P;)g ,, (2) 2c unknowns (n; ;/3Ps)g .,
and (3) one unknown (07'/9P;)g .. Once these unknowns are available,
the expression for (8V,/dP,)s, can be evaluated. We need, therefore,
2(¢ + 1) equations to solve for the same number of unknowns. The mate-
rial balance, equilibrium criterion, entropy constraint, and the expres-
sion that relates P, and P, provide 2(c + 1) equations.

Material balance. From Eq. (3.71), the variation in mole number of
component i in phases 1 and 2 can be expressed by

Therefore, material balance provides ¢ equations.

Equilibrium criterion. The equilibrium criterion f, ; = f, ; can be written
in differential form,

dfy; = dfy, (3.90)
where f;; = f; (T, P;, njy, ..., n; ). Therefore,
dfi = (8f;:/0T)p, AT + (0f;.:/ O )1 0 dF; + 3 (0f;i/ 00 1)1 Py, , BN
k=1
i=1%i=1..,¢ (391

wheren; . = (1, .. . R 41, M pins oo o) Substituting Eg. (3.91) into
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Eq. (3.90) and then dividing by 3P, while keeping S and n constant, one
obtains

[(3f1.:/0T)p, n, — (Of2,i/0T)p, o, 8T /OPs)g p,
+ [(3f1,i/ 3P )1 p, (P [0Py)g  — (8f3,:/3P2) 7 p ]

+ |: ‘é(afl.i/anl.k)T.Pl.nm(anl.k/BPQ)S_ﬂ

C
— Z(szri/anz.k)T‘Pz_nglk(Bng‘kfapz)s_ﬂ] = 0 l = 1, ol Cl (392)
k=1

The coefficients (B}G_i/BT)Pj‘ﬂj, (Bﬂ‘i/apj)j‘_ﬂj, and (Bjﬂ-.i/anj_k)T_Pj_nj_k can be
obtained from an EOS. We need two more equations to complete the
2(c + 1) equations.

Entropy constraint. From S = Z?Zl S
2
(8S/3Py)g n = 3.(8S;/8P,)s ,, = 0. (3.93)
j=t B

Since S; = S(T. P;.n,,. ..., n;.), one can write the differential form of
S;, then divide it by aP, at constant n and S, and substitute the results
into Eq. (3.93),

2
b [(BSJ,-/E)T)‘DJ_E)_(E)T/EflPQ)S‘E + (BSj/BPj)T_EJ_(BPj/UPQ)S‘E
j=1
k=1

The coefficients (BSj/BT)PPEj, (8S;/0P;) 7 ., and (BSj/an‘k)T.,,j‘nj_k can be

estimated from the expression for entropy of phase j derived in Example
3.2. Note that the entropy constraint provides (37 /0P,)g ,,.

Curvature effect. For a curved interface, the gas and liquid phase pres-
sures are related by the well-known Young-Laplace equation derived
in Chapter 2,

P. =P, — Py =2q/r. (3.95)

In the process sketched in Fig. 3.27, when P, changes not only P,
changes, but also ¢ and r may change. From these changes, we want to
establish the unknown (3P;/9P;)g,, which depends on how ¢ and r
change. In the special case that r stays constant (such as in a capillary
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tube with a fixed contact angle) then (8P, /3P,) is related only to the
variations of ¢. The variation of ¢ is due to the variations in tempera
ture, pressure, and composition and curvature. The Weinaug-Katz
model (1943) can be used to calculate composition, pressure, and
temperature effect on o

= 3 Py (dy/ M) — x, iy /M) (3.96)
1=1

In Eq. (3.96), x,, and x, ; are the mole fractions of component i in the
liquid and gas phases, respectively, and d and M are mass density and
molecular weight; P, is the parachor of component i.

The curvature may vary with P,. In porous media, the relationship
between I’ and P, is given by

P, =P, — P, = oF(S,) (3.97)

where S, is the saturation of the liquid phase defined by
Sy = Vu/(V, + V,). Equation (3.97) takes into account the variation of
curvature with P, and P,. Taking the derivative of Eq. (3.97) with
respect to /°, at constant S and n,

(0P, [0Py)g ,, = 1+ F(S,)(80/3Py)g , + 7(3F/3Py)g p- (3.98)

The terms (45/8P,)g , and (8F/9P,)g , are evaluated next. For evalua-
tion of the term (80/9P, ) »» @ more useful form of Eq. (3.96) is employed,

(ORI

(80/0Py)g , = 40 32 P~/ VEN@V, /0Py)s  + (my o/ V)

t=1

OV, /8Py) g, + (83 1/8Py)s n/ Vo — (304 1/8P3) g 0/ V1) (3.100)

From the ahove equation,

The second derivative term in Eq. (3.98) is estimated from

(0F/3Py) , = (dF /dS;(8S5/0P5)g . (3.101)

. Vi(8Vy/8Py)g ,, — ValdVy/ 8P2)Sn
h 95, /0P, ! 3.102
where  (95,/8P)s , AR ( )

We showed earlier how to calculate (8V,/ 0Py)s , and (3V,/0P;)g ,. Note
that in Eq. (3.100) the effect of interface curvature on ¢ is neglected,;
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Eq. (3.99) takes into account only pressure, temperature, and composi-
tion variation of a.

The above system of equations may then be used to iteratively calcu-
late Cg’. In the first iteration, we may assume that the interface is flat.

Two-phase sonic velocity. The thermodynamic speed of sound, a, is
given by the following expression:

a? = —v 8P/ dv),, (3.103)

which assumes that all irreversibilities, including heat conduction, and
diffusion are excluded. We also neglect, in the thermodynamic defini-
tion, the frequency dependence of the sonic velocity. Note that in the
above equation, v is molar volume. Equation (3.103) applies to both
single-phase and two-phase systems. In the two-phase state, one of the
phases should be in a dispersed state. For two-phase sonic velocity, Eq.
(3.103) becomes

2 Yy
a® = —5 |, (3.104)
Cé?

where v, is the two-phase molar volume. Since v, and C¥ are available
once the two-phase isentropic compressibility is calculated, then the
two-phase sonic velocity 1s calculated readily.

Using the equations presented in this section, one can calculate the
two-phase isentropic compressibility and the two-phase sonic velocity.
In the following, some numerical results are presented from Firooza-
badi and Pan (1997), who employed the PR-EOS for the calculation of
coeflicient derivatives.

Figure 3.28 shows the calculated compressibilities and sonic velocity
for a mixture of C;/Cs (30 mole% C;, 70 mole% C;) at 130°F. In Fig.
3.28a, Cr and (g are plotted vs. pressure. This figure indicates that
there is a discontinuity in both 1sothermal and isentropic compressibil-
ities, when the phase boundaries are crossed. From a pressure of 1200
psia to a bubblepoint pressure of about 977 psia, there 1s a small increase
in Cg of the undersaturated liquid; the Cr increase 1s, however, more
noticeable. At the bubblepoint, there is a sudden increase in both Cyp
and Cg. Similar behavior is also observed at the dewpoint of about 453
psia. It is interesting to note that the compressibilities in the two-
phase region approaching the dewpoint are higher than the correspond-
ing gas-phase compressibilities. Figure 3.28a also reveals that the varia-
tion of Cg in the two-phase region is less than the variation of Cy. This
figure also provides the experimental isothermal compressibility data
of Sage et al. (1933). The results in Fig. 3.28¢ are for a flat interface
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Figure 3.28 Compressibilities and sonic velocity for the C, /C,; mixture (30 mole% C, and
70 mole% C;) at 130°F (adapted from Firoozabadi and Pan, 1997).
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Figure 3.29 Calculated compressibilities and sonic velocity for the C, /nC), mixture (95
mole% C,; and 5 mole% nC,,) at 160°F (adapted from Firoozabadi and Pan, 1997).

between the phases. Figures 3.28b and 3.28¢ show the effect of a curved
interface on Cp and Cg, respectively. For the preparation of these two
figures, F(S,) = 25 — 55, is assumed with the units of (psia - cm)/dyne
(see Eq. (3.97)). As we have discussed in Chapter 2, a curved interface
may increase or decrease the saturation pressure of mixtures. The
calculated bubblepoint pressures of the flat and the curved interfaces
are 977.2 and 966.4 psia, respectively. The dewpoint pressures of the
flat and curved interfaces are 4563.4 and 389.3 psia, respectively. The
parachors (see Eq. (3.96)) used in the calculation of interfacial tension
are Po = 77 and PC3 = 150 (Katz et al., 1959). The results in Figs. 3.28b
and 3.28¢ show that while the interface curvature does not have a signif-
icant effect on Cr, its effect on Cg is pronounced. Figure 3.28d plots
the sonic velocity both in the single-phase and two-phase regions. In
the single-phase liquid, the sonic velocity decreases as the pressure
decreases. There is a sharp decrease in the sonic velocity at the bubble-
point, from 370 to about 100 m/s. There are plenty of data on the sonic
velocity of two-phase gas—liquid mixtures of water—air and water—
steam (Kieffer, 1977). Those data reveal that (1) the presence of one
percent by volume air in the form of gas bubbles reduces the sonic velo-
city from 1500 to 100 m/s and (2) the sonic velocity in the water—steam
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Figure 3.30 Compressibilitics and sonic velocity for the North Sea crude at 224.6°F
(adapted from Firoozabadi and Pan, 1997),
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system can be as low as 10 m/s. However, there is not much data for
hydrocarbon mixtures in the two-phase region.

Figure 3.29 shows the compressibilities and sonic velocity for a
mixture of 95 mole% C, and 5 mole% nCj, at 160°F. This fluid system
has a retrograde dewpoint pressure of 5146.7 psia when the interface
between the phases is flat. Figure 3.29a shows that at the dewpoint, Cr
increases while Cg decreases. This behavior is different from the
bubblepoint system presented in Fig, 3.28. There 1s a significant differ-
ence between C, and Cg—a factor of 20. The sonic velocity is plotted
in Fig. 3.29b. This figure shows that the sonic velocity increases in the
two-phase region, which is in contrast to the results in Fig. 3.28d.
Sonic velocity is initially effected by the interface curvature. The
dewpoint pressure with the interface curvature between the phases is
5151.3 psia for the capillary pressure shown in Fig. 3.295. Therefore,
there i1s an increase 1n dewpoint pressure due to interface curvature.

Figure 3.30 depicts Cr, Cg, and sonic velocity for a North Sea crude
01l. The composition and characterization of the plus-fractions are
provided by Firoozabadi et al. (1988b). In the single-phase liquid, C;
and Cg do not change appreciably with pressure; the difference between
C; and Cg 1s also not appreciable. However, this difference becomes
appreciable in the two-phase region as is indicated in Fig. 3.30a. The
measured isothermal compressibility is also plotted in Fig. 3.30q,
which shows good agreement with the calculated results. The effects of
interface curvature on Cy and Cg are shown in Figs. 306 and 30c¢, respec-
tively. Because of interface curvature, the bubblepoint pressure
decreases, but the effect on C7 and Cgq is not significant. The parachors
for plus-fractions of the crude were adopted from Firoozabadi et al.
(1988a). Figure 3.30d shows the calculated sonic velocity. The effect of
interface curvature is also shown in the same figure. The results show
that (1) there is not a significant drop in the sonic velocity as the crude
enters the two-phase region and (2) the interface curvature does not
appreciably change the sonic velocity.

The next section presents the sonic velocity and temperature changes
due to expansion in the single-phase region.

Single-phase ‘'sonic velocity and temperature
change due to expansion

The sonic velocity and the thermal properties of fluids are related to
their volumetric behavior. The basic equations for the single-phase
state are derived 1n this section.

Speed of sound is useful in the determination of liquid level in gas
wells and in the estimation of gas flow rate in critical flow provers, in
addition to applications enumerated in the preceding section. Speed of
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sound correlates with volumetric data and can be used to calibrats
equations of state.

Here we will limit our derivation of sonic velocity to a single-phas«
system (see Eq. (3.103)) where composition is constant. The derivation:
are very similar to those of Thomas et al. (1970).

The molar enthalpy and entropy, k and s, can be assumed to be func
tions of temperature T, and pressure P. Then

dh = (3h/8T)pd T + (8h/0P)pdP (3.105)
ds = (3s/9T)pd T + (3s/0P) pdP. (3.106)

Let us define the molar heat capacity at constant pressure as
cp = (8h/9T)p. (3.107)

For areversible process in a constant-composition system (see Eq. (1.52)
of Chapter 1),

dh = Tds 4+ vdP. (3.108)
Dividing Eq. (3.108) by d7T and holding P constant results in
(0h/6T)p = T(3s/3T)p. (3.109)
Combining Egs. (3.107) and (3.109) provides
cp = T(3s/3T) p. (3.110)
Now divide Eq. (3.108) by dP, holding the temperature constant:
(8h)3P)p = T(8s/0P)p + v. (3.111)
Using the Maxwell relation given by Eq. (3.198) of Chapter 1,
(0h/8P)p = —T(90/3T)p + v. (3.112)

Combining Egs. (3.105), (3.107), and (3.112),

dh = cpdT +[v — T(3v/9T)p]dP |. (3.113)

An expression for ds can be obtained by combining Egs. (1.106), (1.110),
and Eq. (1.199) of Chapter 1:

ds = %’dT — (3v)8T)pdP. (3.114)
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Now express u = u{T, v} and s = s(7', v). Then

du = (0u/3T),dT + (3u/dv)pdv (3.115)
ds = (8s/3T),dT + (3s/8v)pdv. (3.116)

Define the molar heat capacity at constant v as
cy = (0u/3T),. (3.117)
For a reversible process,
du = Tds — Pduv. (3.118)

Dividing Eq. (3.118) by d T while holding v constant and using the defini-
tion of ¢y from Eq. (3.117),

(6u/9T), = T(3s/3T), = cy. (3.119)
Also dividing Eq. (3.118) by dv and holding T constant,

(8u/8v)y = T(3s/8v)p — P. (3.120)
Using the Maxwell relation given by Eq. (1.201) of Chapter 1,

(du/dv)y = T(8P/3T), — P. (3.121)

Combining Egs. (3.115), (3.117), and (3.121), the following expression
for du 1s obtained:

du = ¢, dT + [T(8P/3T), — Pldv |. (3.122)

An expression for ds is also obtained by combining Egs. (3.116) and
(3.119) and the Maxwell relation given by Eq. (1.201) of Chapter 1:

ds = %” dT + (8P/8T),dv. (3.123)

By combining Egs. (3.114) and (3.123), an expression for dT can be
obtained:

T

dT =
(cp —cy)

(3v/aT)pdP + (3P/3T),dv. (3.124)

(cp —cy)
Now express T as a function of Pand v, T = T(P, v); then

- dT = (3T/aP),dP + (8T /dv)pdv. (3.125)
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From Egs. (3.124) and (3.125),

cp — ey = T(0v/dT)p(3P/3T), | . (3.126)

Note that in the above expression, the volumetric behavior fully
describes the heat capacity difference. Note also that for an ideal gas,
Cp—Cy = R.

From Egs. (3.110) and (3.119),

(cp/cy) = [(9s/0T)pl/[(3s/3T),]. (3.127)
Using Eq. (1.79) of Chapter 1, Eq. (3.127) becomes
(3P /), = (cp/ey)BP/8v) . (3.128)

The term (6P/9v)y can be evaluated from Pv = ZRT.

ZRT RT [8Z\ (4P
P = - e AN 3.
(3P 3v) =+ (ap)?(au)jﬂ (3.129)

Rearranging the above equation and using Pv = ZRT provides

—-P/U

(OP/)p = p—p . (3.130)
[1 -7 (BZ/HP)T]
Combining Egs. (3.128) and (3.130),
—-P/v
(BPXBU)S = (C}J/Cv) p / (3131)
[1 - (4)(32/313)?]

The 1sothermal compressibility expression Cp = — —(60/ dP), and
Pv = ZRT can be combined to provide ‘

C N 8Z /3P (3.132)

From Eqgs. (3.103), (3. 131), and (3.132), the expression for the sonic velo-
city becomes

1/2
o= {L"P/_C_VE] , (3.133)

Eq. (3.133) gives the sonic velocity of a single-phase fluid of constant
composition in terms of the volumetric behavior and the ¢p/cy ratio.
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The next step is the calculation of the ¢p/cy ratio in terms of volumetric
behavior. Let us derive the expression for c¢p. At constant temperature,
Eq. (3.113) reduces to

dh = [v— T(3v/3T)pldP. (3.134)

Integrating Eq. (3.134) from pressure 0 to pressure P,

P
KT, P)— h*(T, 0) = J [v— T(8v/3T)p)dP, (3.135)
0

L

or AT, P)- h"(T,0)=RT(Z—1) + J [T(3P/3T), — Pldv,  (3.136)

o0

where A*(T, 0) 1s the ideal gas enthalpy at zero pressure, which is a func-
tion of temperature only. Using the PR-EOS, Eq. (3.136) simplifies to

Tda/dT — a In 7+ 2.414B
2/2b Z —92414B |

(3.137)

KT, P)— R(T.0) = RT(Z — 1) +

From the definition of ¢cp given by Eq. (3.107),

T(—da) a
| 9 dT) . Z+2.414B
~ et - RT(Z/T) 4 —e
cp=cp+ R(Z-1)+RT(BZ/ )P+8T Wil nZ——2.414B

(3.138)

where ¢} 1s the ideal-gas heat capacity. Passut and Danner (1972)
provide correlations to provide ideal gas enthalpy, heat capacity, and
entropy of some 90 substances—mostly hydrocarbons.

When c¢p 1s available, then Eqg. (3.126) can be used to calculate cy; the
ratio ¢p/cy becomes readily known. Thomas et al. (1970) provide the
following equation for the low-pressure heat capacity of natural-gas
mixtures as a function of temperature and gas gravity G (G =M of
gas/ M of air):

¢p=A+ BT+ CG+ DG? + E(TG). (3.139)

Table 3.5 gives the coeflicients of the above equation. Equation (3.139) is
valid for gas gravity & in the range of 0.55 to 2.0 and temperature in
the 0 to 600°F interval; the units are ¢ in Btu/(lb-R) and T'in °F.
Figures 3.31 to 3.33 show the measured and computed sonic velocities
for methane, nitrogen, and n-hexane. The computed enthalpy is
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TABLE 3.5 Coefficients
of Eq. (3.139)

Coeflictent Value
A 37771
B —0.00110
C 7.5281
D (.65621
E 0.014609
800 T T T T -7 T Y ] T ] La—
- o Experimental Daa s 62 F .
x Experimental Data at 152 F o x
* Experimental Dan ot 242 F
700 1= + Experimenta! Data at 332 F L
— Calculstions o .
a -
B -
%
- .ﬂ
0]
-
8 -
.
4m ] { 1 l L i 1 [ | J 1
0 1000 2000 3000 4000 5000 6000

Pressure, psia

Figure 3.31 Sonic velocity in methane gas {(from Nutakki, 1989).

compared with experimental data in Tables 3.6 and 3.7. In these two
tables, the computed results are from the Peng-Robinson EOS (1976)
and the Schmidt-Wenzel EOS (1980).

Heating and cooling due to expansion

Hydrocarbon fluid systems undergo rapid expansion around the well-
bore and in production facilities, As a result of expansion, the tempera-
ture may rise or fall. The following establishes the criteria for cooling
and heating due to free expansion. The derivations are limited to
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Figure 3.32 Sonic velocity in nitrogen gas at 122°F {from Nutakki, 1989).
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Figure 3.33 Sonic velocity in hexane liquid (from Nutakki, 1989).
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TABLE 3.6 Enthalpy of ternary mixture of methane, ethane, and CO; (data of Ng and
Mather, 1978)

(H* — H), d/mole

Temperature, Pressure,

*F psia Exp. SRK-EOS SW-EOS PR-EQOS
164 435 722 725 727 763
194 1015 1715 1739 1734 1807
194 1450 2489 2504 2485 2575
194 1886 3242 3223 3185 3283
140 435 841 865 864 897
140 1015 2113 2156 2138 2203
140 1450 3163 3188 3140 3211
140 1886 4175 4146 4061 4127
104 435 967 983 981 1011
104 1015 2534 2565 2533 25886
104 1450 3924 3924 3836 3878
104 1886 5174 5095 4956 4979

TABLE 3.7 Enthalpy of n-pentane (data of Erbar et al., 1964)

Enthalpy of nC;, Btu/lbmole

Temperature, Pressure,

“F psia Exp. PRE-OS SW-EOS
16086 600 3827 3485 3524
190.6 800 3850 3499 3539
190.6 1000 3875 3516 3557
190.6 1250 3907 3541 3683
1806 1500 3941 3570 3613
190.6 1750 3975 3601 3646
190.6 2000 4015 3635 3681
280.2 600 8107 7855 7847
2802 800 8089 7812 7804
280.2 1000 8080 7782 7776
280.2 1250 8082 7760 7754
280.2 1500 8091 7750 7745
280.2 1750 8108 7748 745
280.2 2000 8129 7754 7752
3707 + 600 13070 13267 13163
3707 800 12844 12025 12815
3707 1000 12716 12727 12612
3707 1250 12612 12568 12449
370.7 1500 12547 12462 12340
3707 1750 12506 12389 12266

3707 2000 12482 12339 12215




Equation-of-state representation of reservoir-fluids 187

Piston 2

Figure 3.34 Irce expansion process.

single-phase systems where the phase composition does not change. In
Example 3.4, we provide an expression that can be used in the free
expansion of a two-phase system.

Consider the sketch, Fig. 3.34, in which a fluid 1s expanding from pres-
sure P, to pressure P, at steady state conditions. The svstem 1s rigid
and insulated. Assume two imaginary pistons at points 4 and B at
time ¢. During time interval At, piston 1 moves from point A to A" and
piston 2 moves from point B to B'. The filuid contained between plstons
1 and 2 is our thermodynamic system. The work done on the system in
the time interval At 1s given by

W= -Pyu,Am+ Pv,Am, (3.140)
where v, and v, are volume per unit mass at the upstream and down-
stream of the system, respectively, and Am is the mass within the
volume between the piston in the old and new positions, which 1s the

same 1n the upstream and downstream sides. If one further assumes
that there 1s no heat flow in the upstream and downstream sides, then

AU =W, (3.141)
where AU = Am(uy — uy); (3.142)

Uy and u, are‘ the internal energies per unit mass in the upstream and
downstream sides, respectively. Combining Kgs. (3.140) to (3.142),

uy — uy = —Pyvy + Py, (3.143)
Since h = u + Puv,

hy, = hy, (3.144)
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which implies that in a free expansion, the enthalpy remains constant.
Now apply Eq. (3.113) to a free-expansion process:

cpdl = —[v— T(Av/oT)p]dP. (3.145)
Rearranging the above equation,

T(3v/9T)p — v

(37 /3P), = (3.146)
Cp
From the EOS, v = ZRT /P, one obtains
(3u/8T) p =@+E(32/3T)P. (3.147)
P P
Combining Egs. (3.146), (3.147), and the EOS, Pv = ZRT,
/P
(3T /8PY, = (RT7/P)(62/6T)p . (3.148)
Cp
The Joule-Thomson coefficient u is defined as
u = (3T/3P),. (3.149)

Eq. (3.149) implies that if u is posttive, the free expansion results in cool-
ing. For a negative 4, the free expansion leads to heating.
Combining Egs. (3.148) and (3.149),

Eh (RT?/PY3Z/0T); | 2150

Cp

Equation (3.150) indicates that if the term (3Z/987T)p is positive, the free
expansion results in cooling and if it 1s negative, the expansion leads
to an increase in temperature.

For natural gases, the term (3Z2/87)p may become negative at pres-
sures above 4000 psia. An EOS conveniently can be used to estimate
this term. The method of corresponding states can also be used to
compute (3Z/97T)p.

Jones (1988) reports temperature data during production testing. The
data show an increase in bottomhole temperature during flow. The
temperature rise from several fields was of the order of 2 to 5°C. All
these reservoirs had an undersaturated oil. Figure 3.35 shows a typical
downhole pressure and temperature profile during a production test.
Jones suggests that the interpretation of temperature fall-off may exhi-
bit the same features as seen on the pressure buildup. Therefore,
temperature data may be a useful source of information that can supple-
ment the pressure data.
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Figure 3.35 Downhole pressure and temperature profiles during a production test (from
Jones, 1988},

Examples and theory extension

Example 3.1 (Gas, oil, near-critical oil, and gas and volatile oil Sometimes
when a hydrocarbon reservoir is discovered, it is not an easy task to describe
the state of the fluid in the reservoir. How would one describe a gas, an oil,
and a volatile 01l? Is the density of the liquid of the fluid flashed to ambient
conditions a good measure?

Solution Perhaps the best way to deseribe a high-pressure complex hydro-
carbon mixture is through a pressure-temperature diagram. Figure 3.36 is a
plot of saturation pressure of a given reservoir fluid as a function of tempera-
ture. In this figure, a point on the right side of line AB is called a“gas”and on
the left side is called an “oil” (line AB passes through the critical point CP).
Neither the API gravity nor the color of the stock tank liquid could be used as
a yardstick to designate a reservoir fluid as a gas or an oil. As an example, a
gas-condensate fluid could produce a liquid with an API gravity of 29° (Kilgrin,
1966).

Figure 3.37 shows a further subdivision of a reservoir fluid. The area in the
vicinity of line AB, both on the right and left, is the near-critical region. One
simple indication of a fluid being in the near-critical region is the magnitude
of methane K-values. Whenever methane K-value is less than 1.1 and the resi-
dual (least volatile fraction) has a K-value greater than, say 0.3, near-criticality
is assured. On the left side of line AB, the region next to near-critical is the
volatile-oil region. The production characteristics of the near-critical and vola-
tile-oil fluids can be examined by inspecting Fig. 3.38. This figure represents
the constant-volume depletion of a fluid. The dashed curves represent an oil
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Figure 3.36 Definition of oil and gas systems.
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Figure 3.37 Definition of various reservoir-fluid systems.
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Figure 3.38 Constant-volume depletion or constant-mass expan
sion of a reservoir-fluid svstem.

fluid and the solid curves a gas-condensate system. On the “oil” fluid side, this
figure implies that as the degree of volatility increases, the producing GOR
below the bubblepoint increases. This means that the recovery factor for a
very volatile oil, and especially for a near-critical oil, could be low (provided
gravity drainage and rock compressibility effects are negligible). Therefore,
natural depletion (in the absence of water drive) could be very inefficient. The
reason for high GOR production and low recovery is a sudden increase in gas
saturation. At high gas saturation, relative permeability to gas is high and
therefore, gas is produced at high rates. As a resuit, oil recovery from pressure
depletion is low. Fluid injection, either gas or water, could become viable

options.

The diagram in Fig. 3.38 can be generated by starting with a black-oil fluid
and then a series of successively increasing temperatures to change the fluid
to near-critical oil and then a gas condensate. Figure 3.39, taken from Katz ef
al. (1940), shows the behavior of a hydrocarbon mixture as temperature
changes. It should be mentioned that not all reservoir fiuids could undergo
such a behavior on changing the temperature. An oil with asphaltene materi-
als may not have a measurable dewpoint and, therefore, does not follow the

trends of Figs. 3.38 and 3.39.

Figure 3.39 shows the effect of temperature on the volatility of a reservoir oil
and the degree of near-criticality for a rich gas condensate. For an oil fluid,
the degree of volatility increases as the temperature increases. For a gas-



192

2700

Chapter Three

2600

2300

166°F,

2400

2300

145 “F,

2800

2100

:

£
o)

2
o)

2

Pressure, b per sq. in. Abs

g

1500

1400

1300

1200

20

30

40 20 60 70

Liquid volume, %

80

Figure 3.39 Liquid percentage isotherms (adapted from Katz et al., 1940).

90 0



R N ————

Equation-of-state representation of reservoir-fluids 193

condensate fluid, the trend 1s the reverse. As the temperature increases, the
gas moves away from critical behavior. ¥or a gas-condensate reservoir, the
liquid recovery also decreases as the gas becomes more near-critical. This 1s
mainly due to high gas mobility compared to condensate liquids, even at high
liquid saturations. Recovery of condensate liquids could be around 15 percent
or less for some near-critical gas-condensate reservoirs. Recycling is an attrac-
tive option, provided liquid saturation is above 15 to 20 percent.

Example 3.2 Derive the following entropy expression for mixtures using the
PR-EOS:

s=RIn(Z— B)/Z + {[da(T)/dT]/zJéb} m{[z +(1+ JE)B]

/1Z+(1-V2)Bl} + R S 0 In(Z/(xP) + 3 x,8X(T).
i=1 =1

In the above equation s 1s the molar entropy of the mixture at 7, P, and x.

Solution From Chapter 1, Example 1.6,
O I C
S = J [(RR/V)—@P/3T)y dV + R Y nIn V/(in,RT) + 3 n;s%(T).
1’4 B =1 i=1
The above equation in terms of molar entropy is

5= Jm[(R/U) — (0PJAT), Jdv+ R Y. x, In v/(x,RT) + 3" x,8%T).
I 1=1

i=1
From the PR-EQS,
(8P/aT), , = R/(v—~ ) — [da(T)/dT]/[v{v + b) + (v — b)}.

Combining the above equations and using
J [R/v— R/(t_) — b)dv = RIn(v — b)/v

and
[ vty + )+ bio - b = @V o+ @+ VB[ + 0 - VER]),

the expression sought is obtained.

Example 3.3 Show that the simple volume-translation expression, v =
vEOS 4 ¢ where ¢ = 3 _, x,¢;, does not effect the prediction of phase composi-
tions. It effects only the phase densities.

Solution Consider the expression for fugacity coeflicient given by Eq. (1.100)
of Chapter 1. Let us denote the fugacity coefficient using v as ¢{* and the
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one from vF%S by P75 Then

VEOS = @VES1an)p p . = (005 102 p

VI = (V7™ fon)p p o = (007 [0x) p

- c _
Vi = 9/0x; [UEOS + > xjch = VEOS 4 ¢
=1 T.Px

e

Substituting V¥ and VEOS into Eq. (1.100) of Chapter 1
¢!/ pf0% = exp[~c;P/RT).

The equilibrium ratios which provide the phase compositions are the same
whether one uses an EOS with or without volume translation,

trie

K; = [oF/ol 1™ = [oF10} 1.

The term exp[—c¢; P/RT] drops out from both the numerator and denominator.

Example 3.4 Cooling and heating due fo expansion Consider the following
three gases at the given temperature and pressure. If these gases undergo a
free expansion around the wellbore, would you expect heating or cooling?
Compute the final temperature for each case (use the EOS approach to perform
all of the computations).

Component Gas A Gas B Gas D
Mole% - Mole% Mole

CQo, 2.37 244

N, 0.81 0.08

C, 7319 8210 100

C, 7.8 5.78

G, 3.65 2.87

iC, 071 0.56

nC, 145 1.23

Cs 0.64 0.52

Cs 068 (.60

Cs 1.09 072

Cy. 8.21 310

Me, 184.0 132.0

Init.pres.,psia 8500 6500 7500, 12000

Fin,pres.,psia 7500 5500 6000, 3000

Init. temp., °F 280 180 180

Solution Equation (3.144) can be used to solve this problem. In a free expan-
slon,

him’tial(Ts P) = hfinal(T;s P)
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Initial pressure and temperature and final pressure, as well as the composi-
tion, are provided. Solution of the above equation requires knowledge of
S iey xRN(TY and 377, x;A)(T). Passut and Danner (1972) provide the ideal-
gas enthalpy data. The results of free expansion for gases A, B, and D are
shown in Fig. 3.40. The PR-EOS was used in the calculations. Note that the
above equation is not limited to the single-phase state; it also applies to the
two-phase state. In the two-phase state at 7" and P/,

hT, PYy= VRE(T PY+(Q — VRMT, P).

where A% and k% are the molar enthalpies of the gas and liquid phases, respec-
tively, and V is the mole fraction of the gas phase.

Example 3.5 Derive (a) Eq. (3.62) and (b) Eq. (3.61) of the text.

Solution (a) The expression for the fugacity coeflicient of component i in a
mixture is (see Eq. (1.109) in Chapter 1)

K

[(3P/9n)7.y.n — RT/VIdV — RTInZ.

RTIngy, = J
1%

In a mixture with an assoclating substance,
P=Pt 4y P" _RT/v.

Differentiating with respect to n;, at constant 7, ¥V and n;=
(nyj.ng..... M1 Rig1e - 1),

o Dph h
o I ) B & ML (1)
M) 7y, on; Jpyva, N, J oy, i J\e) v p,

i =1,....¢c, except for H,O.

From1l/v =n/V

ad 1
i (Prvn=v

3

Combining P*v = Z*RT and Eq. (3.57),

Pchv éxa
RT © RTKx RTKaNE L%
Ve (B ()
[ v
ar
h En, RT noong
- =

e () o

(apch) _RT
Bni T.V.n, Vv l
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Figure 3.40 Cooling and heating due to expansion.
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Combining the above equations,
@P/n)r.y n = @P"[0n)r y o + RT/V — RT/V = (3P"" /801y 5.
Therefore, RT In(¢,Z) = RT In(¢?* 2P, or
0,2 = " 7P,

(b) The expression for (3P/dn;) above can also be written as

T V.n,

(ap) B (aPPh-) N (anh) R
on, T.V.nl-_ on; J o yon, n; Jpy, V

After substitution of the above equation in the expression for fugacity coeffi-
cient, one obtains

o
RTIng,Z = J (3PP jan)p . — (RT/VAV
v '
v

The first and the second terms on the right side are RT ll’l((p‘?thh) and
RT In(@St Z"), respectively. Therefore, the derivation of Eq. (3.61) of the text is
established.

Example 3.6 Effect of curvature on the interfacial tension of a binary muxture.
Consider a mixture of 95 mole% C, and 5 mole% rnC,; at 3275 K and 276 bar.
Use the PR-EOS and the expression for the interfacial tension given bv Eq.
(3.96) to calculate the influence of compositional changes due to curvature on
the interfacial tension for r = oo, 107%, 1075, and 10-% cm. Keep the liquid pres-
sure constant at 276 bar.

Solution The following expressions define the problem:
Xyt xy =1
Yty =1
z; =% L+ {1—- L)y

fHT, PEoay =T PY.y)  i=12

21 & d* dv
vV _ plL “ P. T S
PY =P+ - [El E(:wc1 Al Y M‘"’)]

where P; is the parachor of component i (P =70, P, = 500) and L 1s the
liquid fraction (see Chapter 4, the section on Two-phase flash calculations).
The unknowns in the above set of 6 equations are x;, Xy, ¥, ¥, L, and P".
Once these unknowns are calculated, at given r, T, P¥, z,, and z,, then ¢ can
be estimated. We used the PR-EOS for the fugacity and phase density calcula-
tions. The predicted densities were not adjusted by volume translation. The
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results are summarized below.

rcem o, dyne/cm L, liquid mole PY — Pl bar
fraction

o 1.06 01071 0

103 1.06 0.1071 0.002

1074 1.05 0.1072 0.02

103 1.05 0.1078 0.21

10-¢ 0.97 0.1135 1.95

Note that as r decreases, o also decreases. In the above calculation we have
neglected the effect of curvature itself on o, which was discussed in Chapter 2.

Example 3.7 Usethe PR-EOS to calculate the partial molar volume of C, and
nC, at 80°C and 57 atm for x,¢, in the range of 0 to 0.2. Compare the results
with the data of Wu and Ehrlich (1973).

solution The PR-EQOS is pressure-explicit, Therefore,
Vi = @V/0n)r pu, = =lOP/In) 1 v o )/ (OP/3V)p 4]

(EM’J/H;".',E)T.Vﬂ= and (EJP/E;"‘E/’)Tﬂ can be easily calculated from Eq. (3.6). The
results are shown in Fig. 341 There is a good agreement between data and
predicted results.

Example 3.8 Derive the following relationships,

(a) between the isothermal and isentropic compressibilities: Cp = (c,/cy)Cy,
and (b) between cp and ¢y : ¢p = cy + Tve*/Cy.

solution (a) We can start from Eq. (3.132):

i 1
Cr = - E(BZ/BP)T
From Eq. (3.131),
_ _(ep/ey) :
(0P/v), = > {1/}) — (1/Z)(HZ/3P)T]'

Combining the above two equations results in

(3P/av), = — CP/CV)
UCT

The definition of isentropic compressibility is

1
Cs = —5(3V/3P)s.
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Figure 3.41 Partial molar volumes of C, and nzC; at 80°C and 57 atm (data from Wu and
Ehrlich, 1973).

Therefore,

Cr = (cp/cy)Cs

(b) From Eq. (3.126),

cp —cy = Tve(dP/3T),,.

But

(8P/a8T), = —(3v/3T)p/(8v/3P)y, (30/3T)p = ve
and (Q/aP)p = —vCrp.
Therefore,

cp = cy + Tve?/Cp
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Example 3.9 Calculate (3n;,/87)p, and (3Z;/0T)p, terms in Eq (378).
These terms are necessary for the calculation of thermal expansivity.

Solution (an;,/8T)p, can be expressed in terms of (dn;;/07T)p,, (sce Eq.
(8.79)), and the latter are obtained from the material balance and equilibrium
criterion:

¢ 3f1.£) (a"q.k) R (az,i) (anz.k)
|:J;2=:1(8n1,k a, NIT Jpy k; ang 1 T Jpp
of1 4 3.
- |:(_é—f) Pon, N (_é‘i:‘-) P,

Note that we have dropped some of the subscripts on the fugacity derivatives.
The above 2¢ equations provide the 2¢ composition variations. (3Z;/97), , can

be calculated from
IT)pp \T/pn  i=i\®x )\ T
n n

An EOS can be used to caleulate (3Z;/0T)p ,, , (82;/07; 4)p 7.5, @8 Well as the

fugacity derivatives of phase j. The calculation of (8Zj/8T)p‘! can be simplified
if one uses

| G
I
o
L]
I
—
3

0Z; 3Z;3A 8Z; 9B
A4 S
0T  8A 3T  oBaT
where the A and B expressions are provided by Egs. (3.15) and (3.16) for the PR-

EOS. In Problem 4.6 we comment how to calculate the derivative of Z with
respect to P, which 1s required for the estimation of isothermal compressibility.

Example 3.10 Consider pure nC,, at 5000 psia, and 100°F. What would be the
temperature after free expansion to 1000 psia?

solution A procedure similar to Example 3.4 can be used. The results are

plotted in Fig. 3.42. There is heating due to expansion, which is often the case
for liquids.

Problems
3.1 From the PR-EQOS, derive Z, = 0.307.

3.2 Derive the van der Waals equation of state in the reduced form given by Eq.
(3.4).

3.3 Use the van der Waals equation of state to derive the following expression
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Figure 3.42 Temperature rise of n(;, due to expansion.

for the compressibility factor in terms of T, and P,:
Z8 (1 +(P)/(BT)Z2 + [2TP, J(64T ) Z — (21P,)/(512T,) = 0.

Compare the results from the above equation and the generalized compressibility
factor chart for natural gases shown in Fig. 3.43. Note that away from the critical
point, the agreement 1s very good.

3.4 Use the PR-EOS to prove that at the critical point of a pure substance
(¥ P/ov®) < 0. Hint: You may use software such as Mathematica for this purpose.

3.5 Derive the expression for the partial molar volume of component { in a
mixture using the PR-EOS. Hint: You may use software such as Mathematica for
this purpose.

3.6 Derive the following expression for the derivative of Z with respect to pres-
sure at constant Tand composition from the PR-EOS

0Z _ «a B-Z
@*R2T2[3ZZ~_2(1—B)+A~3B2~-23]
N b [—zﬂ+2(3B+1)Z+(A—2B_ﬁ]
RT| 322 -2 - B)Z+(A-3B2-2B) |

Note: to facilitate the above derivation, use

0z _zoA  aziB
aP  80A 3P  8BoP’

3.7 Derive Eq. (3.32) of the text.

3.8 Prove that at the critical point of a pure component, (3Z/3v) = P.,/RT, and
(8#Z/3v?) = 0. Use the criterion of the second derivative to calculate the critical
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compressibility factor for the SRK equation of state from Z° — Z% + Z(A—
B? —B) - AB =0, where A = aP/(RT)* and B = (bP/RT).

3.9 Relationship between infinite dilution activity coefficient and interaction coeffi-
cient in binary mixtures At infinite dilution, the activity coeflicient is solely a
measure of solvent-solute interactions. The activity coefficient of component i at
infinite dilution is shown by 7%, that is, x; — 0. Derive the following expression
for y3° from the PR-EOS for a binary mixture and show that In y{* is linear in J,,.

Z, —B A Z, +2.414B
1n}sf;oz%(zz—1)—(zl—1)+1n(_1 1) L | [ 1+ ‘}
2

Z, - B,) " 2/2B, | Z, — 0414B,
apP\ 1 | [ 742418, biA;, | [Z,+2414B,
\R2T?) /2B, |Z,—0414B,|  2/2B,b, |Z,—0.414B,]

In the above equation subscripts 1 and 2 denote component indices:
Z.2,, B B, A, and A, are pure liquid parameters (at 7 and P). and
ay =a aé’az(l — dpy)-

Hint: The activity coefficient of component i can be written as
Iny;, =lne(T.P.x) - Inei(T, P).

3.10 Usethe definition of the solubility parameter from Eqgs. (1.155) and (1.156) of
Chapter 1, and the PR-EOS to derive the following expression for the solubility
parameter,

{71 (o-755)m ot + (V2 + 1)5]”9

2V 2bvl dT) vk~ (V2-1b]

3.11  Effect of temperature on the pressure in gas and liquid systems Two students
were arguing in a laboratory on the effect of temperature increase on two cylin-
ders, one containing methane gas and the other c¢ylinder containing n-decane
liquid. The pressures of the two cylinders at the laboratory temperature of 25°C
were the same — both were 100 atm.

They were planning to move the two cylinders outside the laboratory on a hot
summer day to a room at 40°C temperature and leave them there for the whole
day. Student A was concerned that the pressure of liquid decane may increase to
195 atm while he thought the methane cylinder pressure would increase to only
110 atm. ’

Use the PR-EQOS to calculate the pressure of methane and decane cylinders at
40°C and to test the skill of the student A in EOS calculations. If student A is
correct, then there is a basis that airlines would accept only fluids in the two-
phase state for the transportation of liquids in a container.

3.12 Use the PR-EOS with and without association to calculate the maximum
value for the superheating of water at atmospheric pressure. The measured
value is 270°C (Kenrick et al., 1924).
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3.13 Consider the P-T diagram of a hydrocarbon mixture when the interface
between the phases is flat (see the sketch below). Now suppose the interface
between the phases is curved with the gas on the convex side. The dewpoint
curve is sketched below for the curved interface system. Sketch the bubblepoint
curve of the same system with a curved interface.

P

Flat interface
7" Curved interface

3.14 The following figure shows a plot of volume vs. pressure for a reservoir
crude at constant temperature both in the single-phase and two-phase states.
The change in compressibility provides the bubblepoint pressure, P;.

IJ’
i

| }
y

(a) When a fluid is in the near-critical region, then the V vs. P plot at constant
temperature is sketched as the following:
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Yy
o

ain the reason for the gradual increase in the compressibility from single-
e to two-phase states.

Yhy cannot the V vs. P plot be used to estimate the retrograde dewpoint pres-
N
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Chapter

Equilibrium, stability, and
criticality

Equilibrium, stability, and criticality arc important concepts that are
closely related. In this chapter, after the formulation of simple methods
for phase-equilibria calculations, the concepts of stability and critical-
ity are introduced, and the application of the Gibbs free energy surface
analysis to phase-equilibrium calculations 1s demonstrated. Then the
stability and criticality concepts are presented in detail. These concepts
are useful for a broad range of problems in engineering and physics.
Suppose we are given a mixture of different species at a given
temperature and pressure. If we know that the given mixture will split
into two phases, say a gas phase and an oil phase, then we want to calcu-
late the amount as well as the composition of each phase. This type of
calculation 1s called the two-phase flash. In a more complicated case,
we may not know into how many phases the mixture will split. Use of
phase stability analysis provides a sound basis for such a situation.
The stability concept 1s also useful 1n establishing the maximum
supersaturation that can occur for both pure components and multicom-
ponent mixtures. Suppose we are given a mixture of C, and nCy that
has a fixed bubblepoint pressure at a given temperature. If the pressure
of this mixture at the given temperature 1s lowered from a pressure
above to a pressure below the bubblepoint, the gas phase may not
appear if the pressure reduction is carried out rapidly. However, there
is a theoretical limit for the pressure at which the gas phase will
appear no matter how fast is the pressure reduction. This maximum
supersaturation can be calculated from the stability limit to be
discussed in this chapter. In the last part of this chapter, we will present
methods that can be used in calculating the critical point of complex

209



- e e — T

210 Chapter Four

mixtures. Methods that were introduced around 1980 will be empha-
sized.

In this chapter, there is a strong emphasis on step by step derivations
of the criteria of stability and criticality, mainly relying on the Second
Law and its equivalent forms. We would like to comment that, to the
best of our knowledge, the stability criteria and concepts have not yet
been developed for multicomponent systems with curved interfaces.

Two-phase flash calculations

A two-phase flash problem can be stated as follows. Given the number of
moles of feed, F, the mole fraction of components in the feed
zi,i=1,....¢@.e, Y,z =1), and pressure and temperature, find the
number of the moles in the gas and liquid phases, V, and L, respectively,
and the mole fractions of the gas and liquid phases, y; and x;, respec-
tively. We assume that the interface between the gas and liquid phases
is flat, which implies that the gas and liquid phase pressures are the
same. Iigure 4.1 shows a sketch for the process. The application of this
type of calculation is shown in Fig. 4.2, where a gas phase from the gas
cap of a hydrocarbon reservoir at pressure P, and temperature T, is

flashed at a lower pressure P and a lower temperature 7" Similarly, the

oil phase from the oil column at temperature 7T, and pressure P, can

es

be flashed at a lower pressure P and a lower temperature T (see Fig. 4.2).

P o V moles 1
v, i=1..,¢
. {mole fractions)
®
F moles
o i=4...,¢c 'S

(mole fractions)

] L moles
= Liquid

x, i=1..,¢

Figure 4.1 Schematic of two-phase flash at constant T and P,



Equilibrium, stability, and criticality 211

[ ] - V
SE———
F -
- . Vi
. L]
g
AR 5
. .

Impervious Rock

‘e TP

et ores g

* Gas Cap

Gas-0il Contact (GOC)

Figure 4.2 Schematic of the flash of the gas-cap gas and oil from the oil column.

Let us write the equations that define the two-phase flash.

(1) Equality of chemical potentials or fugacities provides the equili-
brium condition.

fHT.P.x)=fY (T, P.y) i=1,....c (4.1)
(2) Material balance for components provides the mass conservation.
Fz, =x, L +y,V i=1,..., c (4.2)

(3) Mole fraction constraints assure that the sum of the mole fractions in
a given phase are equal to unity.

(4.3)

"-Mﬁ‘
kel
I
—

-
it
—

o

,_
I
—_

yi=1 (4.4)

In the above equations, there are 2¢ unknowns in x; and y; and two
unknowns in V and L. Various solution methods for the above (2¢ + 2)
equations and unknowns are available. Two solution techniques will
be presented in the following. A third technique will be briefly
described.

Successive substitution technique. In this technique, through an
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iterative procedure, only one unknown, the fraction of liquid or vapor, 1s
searched. Let us define the equilibrium ratio, K;, as

K; = y;/x; i=1,...,¢c {4.5)
Then
vy, = Kx; i=1,...,c (4.6)
Combining Egs. (4.2) and (4.6),
Lx; + VK;x; = Fz; i1=1,...,c. (4.7

Taking the summation over i =1,..., ¢ and using Egs. (4.3) and (4.4),

L=F-V. (4.8)
Combining Egs. (4.7) and {(4.8) and solving for x; results in
z; :
xf:m i=1,...,c (4.9)
Similarly, one also obtains
Kz

YEITR R b (4.10)

Combining the above two equations and the two constraint equations,
Egs. (4.3) and (4.4),

(K; — Dz _
?:11 + (B - 1(V/F)

¢

0. (4.11)

Define a = V/F; then Eq. (4.11) becomes the Rachford-Rice (1952)
expression,

¢ (K, -1z

ZOEDY

S ol St AnE S 412
S+ oK~ 1) o 12

The equilibrium ratios, K;, in Eq. (4.12) defined previously in Eq. (4.5)
are functions of 7T, P, and composition of one of the phases, say
X = (%, X9, ..., X.q). Let us examine the dependency. The fugacity of
component ¢ in a phase is given by

fV=yelP i=1,..c (4.13)

fF=x0lP  i=1..,c (4.14)
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where ¢! and (p‘f are gas- and hquid-phase fugacity coefficients defined
in Chapter 1. At equilibrium f% = £V, and therefore

K, =y/x;=oF /o] |, i=1..,c  (4.15)

where ¢F is a function of (T, P, x), and ¢/ is a function of (T, P, y). Since
composition of the phases, x and y, are related by f59 = fiv, r=1,...,¢c,
then x and y in Eq. (4.15) are not independent of each other;
K,=K/(T.P x)or K; = K,(T. P, y). Now we can proceed with the itera-
tive solution procedure.

Step 1. Guess the 1nitial values of K; at the fixed temperature and
pressure. The Wilson (1969) correlation can be used for this purpose.
In this correlation, which is based on the direct application of Raoult’s
law (see Example 1.7, Chapter 1), the ideal K-value of component ¢ is
given by

InK; = 5371 + w)[1 — T,/ T| + In(P/ P,,). (4.16)

where T,; and P.; are the critical temperature and critical pressure of
component i, respectively.

Step 2. Solve Eq. (4.12) for «. This equation is readily solved by
Newton's method, to be discussed shortly.

Step 3. Calculate x; and y; from Egs. (4.9) and (4.10), then the compres-
sibility factors of the liquid and gas phases from an EOS.

Step 4. Calculate ¢ and ¢/

Step 5. Update K;. The update 1is given by KM* =
o VorL

K,; fd exp[— ]'n(fi /fz M-

Step 6. Test the convergence. Different convergence criteria can be

used. One may use the criterion (1/¢) > ¢, [In(f,Y /fF)]* < a given toler-
ance, say 107'2,

If the convergence criterion 1s not satisfied, steps 2 through 6 are
repeated. When the ratio of component fugacities converge to a value
other than one, and « 1s outside the interval [0,1], a single-phase region
may exist. Because of a poor initial guess of K, « may be calculated to
be outside the interval [0,1], in early iterations, and the mixture may
not be single-phase. If h(x =0) <0, then set x; = z;, and the vapor
phase composition is estimated from y;, = K;z;/ Zle Kz; (see Problem
4.1). Then in the first iteration, we start from Step 4 and the process is
repeated.

The number of iterations depends on closeness to the critical point. If
away from the critical point, depending on the initial guess and the
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tightness of the tolerance, the number of iterations is often less than 10
to 20. When close to the critical point, the number of iterations may
exceed several thousand and other methods become necessary.

One may use Newton’s method to solve Eq. (4.12). The first step is to
evaluate the derivative of 2 with respect to x, A'(2):

4 R 2 .
Moy — - 5 =Dz

S+ (K - D (4.17)

Note that A'(2) is negative and therefore A 1s a monotonically decreasing
function of «. The expression for updating « is given by

A = o (/R (4.18)

The solution in the interval 0 to 1 for o = V/F exists provided
h(0) = éKizi 150 (4.19)
and
A1) =1 — izl(zi/KI-) <0, (4.20)

When A(0) < 0, the fluid may be a subcooled liquid and for A(1) > 0, the
fluid may be a superheated vapor. _

Now we examine the shape of & vs. x and demonstrate that in a given
mixture in the two-phase region, always at least one of the K; should
be greater than one and at least one K; should be less than one. In
other words, in a binary mixture, the K;-value of the more volatile
component, say component “1” 1s greater than one and the K;-value of
the less volatile component, say component *‘2”, is less than one.

The asymptotes of A from Eq. (4.12) are given by

1+(K, — Doy =0 i=1,...,c (4.21)

where «;,, represents the asymptote of component ;. From Eq. (4.21), 1f
K, <10, >1,and if K; > 1, ;.. < 0. Figure 4.3 depicts A{x) vs. « for
different values of K;; the orderis K| > Ky > K5 > --- > K, > 0 (compo-
nent “1”" 1s the most volatile component). Note that in Fig. 4.3, the solu-
tion lies between the two asymptotes corresponding to K; > 1 and
K, < 1. Also note that because of the monotonically decreasing trend,
there is only one solution, 0 < o* < 1. If a* = 1, then L = F, 1.e., liquid
phase, and if o* =0, V = F, 1.e., gas phase.
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Figure 4.3 The asymptotes of hvs. x {see Eqs. {(4.12) and (4.21)).

Newton’s method The nonlinear system of Egs. (4.1) and the linear Kgs.
(4.2) to (4.4) that define the two-phase flash can be solved by Newton’s
method to obtain 2(¢ + 1) unknowns, V, F, x;, and y; from the 2(c + 1)
equations. In the following, we will use Newton’s method to solve the
problem of bubblepoint pressure of a c-component system, a special
case of two-phase flash, when « = 0.

Given T and the overall composition of the fluid 2z;, find the bubble-
point pressure P and the composition of the gas bubble, y;. At the
bubblepoint, the composition of the liquid phase, x;, is the same as the
overall composition, z;; therefore y ;_; z; = Y7, x; = 1. The expressions
defining the bubblepoint pressure and bubble composition are provided
by Egs. (4.1) and (4.4).

There are (¢c+1) equations and (¢c+1) unknowns, P and
yi(i=1,....¢). From ff=¢lx,P and fY = ¢Vy,P, Eq. (4.1) can be
expressed as

¥ = xicpf‘/f,of/ i1=1,...,c. (4.22)
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Equations (4.22) and (4.4) can be written as

Fo=y, —x0¥/0) i=1,...,c (4.23)

C

Fepp=1— _Elyi. (4.24)

Next we write the Taylor’s series expansion of the above two equations,
Frlx F 4+ (07, /0P)AP + Y. (37 ;/oy)Ay, i=1,....c  (4.25)
k=1

f:—tll o+ k;l(agzc-i-l/ayk)ﬁsyk (4.26)

where n 1s the 1teration level; the derivatives are evaluated at the nth
1teration level (the iteration level n will be dropped in the expression
for derivatives in the following). From Eq. (4.24),

OF 1 /0y) =—1  k=1,....c (4.97)

Equations (4.25) and (4.26) can be cast into the forms

¢ [(3F, 5F, N .
Z( ‘)Ayk+ AP=F™  F1 =R, i=1..,c (428

k=1 a.yk apP i
¢
~ S Ay, + OAP =FIH - F =R, (4.29)
k=1
In the matrix form,
(07, 07, 0F, 8F\
AN We P (Am\/Rl\
o7y 87y a7 7 | || g,
dy; vy AL or
(4.30)
A
3F, BF, o7, a7, || || Be
dy; 9y . P J\AP ) \ Be1/
\ -1 -1 ... -1 0

We can write Eq. (4.30) 1n a condensed form,

JAy =R, (4.31)
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where J is the Jacobian matrix. Next we write the expression for the
elements of the Jacobian matrix /. Using Eq. (4.23), the elements of
the Jacobian can be determined:

0F d : : C
: :—xi#—(qof‘/(pf’r)T_P‘y_ i=1,...,candj=1,...,¢c,1 #]
] T P J

(4.32)

37, )
( ) 1“-’5:8 (pF /(P;)pr i=1,...,¢ (4.33)
T.P.y, Vi

ay;
3.?1- d P .
= =1,...,c 4.34
(aP)T_y iaP( )T.y =t (4.34)

The above equations can be further simplified to

AF L (5pY . . o
(? ‘) = +x; q1‘2(“825-) i=1,...,candj=1,...,¢c,t #J
(yj TPy, ((p;) yJ' T.P.y,

(4.35)

AF dpY
( ) g O (fp) i=1,....c (4.36)
i /rpy, (f;fi’1 Y\ 9y T.P.y,

837’_;- L 74 BCPIL L aqolv o
(aP)Ty_ x;[(p.‘. (aP)T,y (rbt aP T‘y ((,0 ) L—l,...,C,

(4.37)

The derivatives (3¢} / ay;), (8¢¥/8P), and (3¢Y/3P) can be calculated
either analytically or numerically using an EOS. One could start with
the Wilson equation to obtain the initial guess for y and Raoult’s law
for the initial guess for P, then use Eqgs. (4.32) to (4.37) to calculate the
elements of the Jacobian and follow an iterative process to calculate y
and P. Note that the mixture at temperature T might have two bubble-
point pressures—an upper bubblepoint and a lower bubblepoint. A
very low guess for pressure may give the lower bubblepoint and a high
value may give the upper bubblepoint. Upper and lower bubblepoints
are not common for reservoir fluids. However, two dewpoints exist for
reservolr gases. The upper dewpoint is called the retrograde dewpoint.

Other methods The method of successive substitution (SS), and the full
Newton method for solving the system of nonlinear algebraic equations
of flash have certain limitations. They have also certain desirable
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features. The successtve substitution method, 1n addition to its simpl-
city, is also a stable method that results in the reduction of Gibbs free
energy in every iteration (see Michelsen, 1982b). The SS method, unlike
Newton’s method, does not require good initial estimates of K;-values.
As we have seen, the SS method relies on the assumption that in every
iteration the K;-values are constant, which is not true for nonideal
phases. As the nonideality of phases increascs, the rate of convergence
decreases; for the near-critical region, the rate of convergence becomes
extremely slow.

The classical Newton method has quadratic convergence properties
whereas the successive substitution method hasg linear rate of conver-
gence. However, because of the overshoot, the Newton iteration may
fail to converge when the initial estimate is not a good estimate of the
solution of the system of nonlinear equations.

A very large array of methods have been proposed to accelerate the
convergence rate of successive substitution. These include the use of
the Dominant Eigenvalue Method of Crowe and Nishio (1975). In spite
of significant increase in the rate of convergence, such methods may
cause the loss of basic stability of successive substitution.

In Newton’s method, various approaches have been suggested to
adjust the step length to alleviate the overshoot problem. These adjust-
ments do not guarantee convergence of the Newton’s method in early
iterations.

The combination of successive substitution and Newton's method is a
good choice and has the desirable features of both. In this approach,
the successive substitution comprises the first few iterations and later,
when a switching criterion is met, Newton’s method is used. To our
knowledge, some commercial reservoir simulation models have adopted
the combined successive substitution-Newton approach after the
experience with various methods of solving nonlinear flash calculation
including Powell’'s method (1970). The application of a reduction
method to phase equilibrium calculations has also been proposed
(Michelsen, 1986; Hendriks, and Van Bergen, 1992). In this approach,
the dimensionality of phase equilibrium problems for multicomponent
mixtures can be drastically reduced. The application of reduction meth-
ods and its implementation in reservoir compositional models 1s under
evaluation.

Even when the nonlinear-flash equations are properly solved and
convergence 1s achieved, there is no guarantee that the solution
obtained 1s a true solution. The equilibrium condition given by the
equality of chemical potentials or fugacities is a necegsary but not a
sufficient condition. However, for gas-liquid equilibria, the true solu-
tion is nearly always obtained from the equality of chemical potentials.
For liquid-liquid and vapor-liquid-liquid and higher equilibria
calculations, the equality of chemical potentials alone may lead to a
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false solution. One needs to use an additional relationship to examine
the validity of the calculated results. The additional relationship 1s
derived from the Gibbs free energy surface analysis. Phase stability
analysis is also useful to check if a given composition is in a single- or
two-phase state. In the following, we will give a simple geometrical
interpretation of the phase-stability analysis, mainly drawing from the
work of Baker, Pierce, and Luks (1982) using the Gibbs free energy.

Gibbs free energy surface analysis

As stated before, Eq. (4.1) is not equivalent to the global minimum of the
Gibbs free energy. The system of predicted phases from Egs. (4.1) to
(4.4) must have the lowest possible Gibbs free energy at system tempera-
ture T and pressure P. The global minimum of Gibbs free energy is the
statement of the Second Law, which 1s equivalent to the statement
that the entropy of an isolated system must be a maximum.

In three- and higher-phase calculations, there are many instances
where the equality of chemical potentials or fugacities does not guaran-
tee a global Gibbs free energy minimum. As a result, the solution may
be false. Examples of three and higher phases are CO,-hydrocarbon
systems and water-hydrocarbon systems, as well as mixtures of rich
gascs and crude oils. When there 1s solid precipitation, the occurrence
of several phases is a norm rather than an exception, as we will discuss
in the next chapter. All these multiple phases occur in the temperature
range of 50 to 300°F, commonly observed in the production facilities
and in the reservoir.

Let us study a two-component mixture comprised of a less volatile
component 1 and a more volatile component 2 at temperature T. For
this binary mixture, the pressure—composition diagram is sketched in
Fig. 4.4; P, and Pp are the vapor pressures at T of pure components 1
and 2, respectively. Several different regions exist in this figure.
Toward the right of curve AC, the state of the system 1s gas. Along the
line FDC, the mixture exists as three phases, gas and two liquids; the
pressure for this state is called the three-phase pressure, Py,. In the
region ACDF gas and a liquid phase rich in the less volatile component
1 coexist. To the left of AFH, only a liquid phase rich in component 1 1s
present. Twd liquid phases, L4 and Lg, exist in the region bounded by
HFDE. Liquid Ly and gas exist in the CBDC region, and only liquid
phase Ly exists in the region bounded by the B} and DE curves.

Now consider the mixing of components 1 and 2 at constant tempera-
ture and pressure. The molar Gibbs free energy of mixing, Ag,,;,, can
be expressed as

2
Agmix =& Z xifu?(Tv P)a (438)
=1
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- X,
0 1

Figure 4.4 Pressure-composition diagram of the binary mixture at temperature T
(adapted from Baker ef al., 1982).

where g = }:?:1 x; 17T, P, x;) 1s the molar Gibbs free energy of the
mixture and the term Z?:l x,40(T, P) represents the Gibbs free energy
of one mole of components 1 and 2 before mixing. Equation (4.38) can
be expressed as

AGpmix = % (tty — 1) + x9(ptg — 13). (4.39)

In Example 4.11, we will illustrate how to calculate Ag,,;, over the whole
range of composition {that is, 0 < x, < 1), making the assumption that
over the whole range, the mixture stays in the hypothetical homo-
geneous single-phase state.

From Eq. (4.39), one may obtain the following expression:

(BAGuix/ 3%) = —(pty — 1) + (g — 113). (4.40)

The above relationship can be derived by taking the derivative of Eq.
4.39) with respect to x, and using the Gibbs-Duhem equation
2?:1 x;(8u;/0x,) = 0 at constant temperature and pressure. Finally, by
combining Eqs. (4.39) and (4.40),

Agpis = (11 ~ 1) + X9(0AG i/ 9%5) ) (4.41)
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Figure 4.5a shows a plot of Ag,,;, vs. Xy at pressure P, and temperature T
for the binary mixture (see Fig. 4.4). At a given overall composition z,,
the composition and amount of the gas and liquid phases can be
obtained from this figure. The compositions are obtained by drawing a
tangent line to the Ag,,;, curve. At the points of tangency, the chemical
: oka .V La __ ,V
potentials of components 1 and 2 are equal; % = and w,* =y, .
The proof of the equality of chemical potentials is simple. From Fig.
4.5a,

Almic = MGyt + (908 /35y) (x5 — x5, (4.42)
where (0Ag,,;./9x,) 1s the slope of the common tangent, and superscripts
L, and V indicate the points of tangency. Writing Eq. (4.41) for the
points of tangency and substituting the results in Eq. (4.42) gives
p‘f“ = 1} which is the sought relation. The molar Gibbs free energy of
the hypothetical single-phase system 1s Ag,,;., (see Fig. 4.5a). The molar
Gibbs free energy of the two-phase mixture 1s Ag,,;;». From z5 = Lng-" +

Agﬂ“l Alg"“x
A ﬁL
0 v L 1_‘ ]L 0 _1';“ ) £ N 1‘ l; |
T T | | »x. T T — T R
ngu | b= = I || II Ag — l \ : I|
S mur |
S i /| i N
I I Agmn] ! I Il
|
|
(a) Pressure P, (b) Pressure P,
Ag,, Ag
F 3
Ly : , .
0 X 1 LA L X ol &y xl .\xf vl & X 1 .
-1 T r | i) TT T ] ™ -
l | * Ag [l l [ 1
' | b pg b H=Zo=— Lo
| L Bmic2 —A-=C | K
1 | ! |
,' y o i 1
| i I &gmil" '''''' - | ”
|
I ! Ag s b——————— -
Agﬂlul ___________ I h
;ﬁgﬂll _____________
() Pressure P, (b) Pressure P,

Figure 4.5 Ag, .. vs. x, of the binary mixture at temperature T (adapted from Baker, et al.,
1982),
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(1 — L)x)(F = 1 in Eq. (4.2)), L and V =1 — L can be computed. Note
that x‘;"" and x) are the compositions of the liquid and vapor phases.
Since Ag,,.0 < Ag,iv, then the two-phase state for the given overall
mole fractmn, 2z, 18 more stable than the single phase. For 0 < z, < xz
and x) < 2z, < 1, there will be only one single phase. Outside the two-
phase region, the tangent to Ag,,;, curve lies below this curve, and only
one phase exists. As an example at z3, x%” < 25 <1, only the gas phase
exists.

At pressure P,, the Ag,,. plot i1s sketched in Fig. 4.56. At overall
composition z,, two different tangent lines can be drawn that satisfy
the material balance and the equality of chemical potentials. One
tangent line results in the vapor composition x}" and liquid composition
x,*. The other tangent line provides vapor and liquid compositions xé’
and x'(“f‘ but does not intersect the Ag, ;. curve except at the tangency
points. Note that Ag,...; > A,iwe > A8mixs, and therefore Ag,,;.3 1s a
minimum. The single phase with the corresponding Ag,.;.1 has the high-
est Ag,,;.- Outside the range xL" < 2, < x,, the tangent has one point
of tangency and the system does not split into two phases. We will
later show that for this range (8u,/9x,) < 0, which ensures the stability
of the single phase.

At P = P,,, the plot of Ag,,,, is shown in Fig. 4.5¢. Any z, that is in the
xb* and x) range x.* < z, < xJ may split into three phases: two liquid
phases and one gas phase. The common tangent line implies that the
chemical potentials are the same for all three phases for component 2,
as well as for component 1. Outside the interval xé‘A < zy < x), the
tangent intersects the Ag,,,, curve at the point of tangency and there-
fore one phase exists. Note that at zy, Ag,,;. > A8,.:xe and thercfore
Ag i corresponds to the more stable three phases.

Figure 4.5d shows the Ag,,;, plot at P,. For the overall composition z,,
there are several tangent lines. Three tangent lines are shown. Since
Ag,.iwa provides the lowest Ag,;, and does not intersect the Agm,x
curve, the corresponding tangent is the most stable solution glvmg
liquid-liquid equilibria with composition xQ”‘ for phase L, and x2 for
phase Lg.

The above simple geometrical description for a binary system can be
readily extended to a multicomponent mixture. For a multicomponent
mixture (¢ > 3), the corresponding Ag,,. becomes a hypersurface
instead of a curve, and the tangent line becomes a hyperplane. The
criterion, however, remains the same. The tangent hyperplane corre-
sponding to a stable equilibrium state cannot lie above the Gibbs free
energy hypersurface for any composition. One approach to avoid false
solutions is to search for all possible values of x, that provide the
global minimum of Ag,,;,. (In Fig. 4.5d, Ag,,;,4 1s the global minimum
for a fixed z, and all possible values of xy.) This straightforward
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approach can be attacked mathematically using a minimization algo-
rithm (as we will discuss later in this chapter), but it may be computa-
tionally expensive. A more practical approach 1s the method suggested
by Michelsen (1982a) to determine certain minima of a distance func-
tion.

Tangent plane distance (TPD) analysis

Consider N, moles of a homogeneous mixture at temperature 7 and pres-
sure P. The overall mole fractions are z; = N;/ ¥ ;_, N; = N;/N. The
Gibbs free energy of the homogeneous single-phase system (see Fig.
4.6a) 1s

¢
G' =3 Nz T, P), (4.43)
i—1
where z = (2,. 25, ..., 2,_1). If a very small amount of a second phase s

formed at the same pressure and temperature with mole numbers n;,
and n; « N;, then the Gibbs free energy of the new system II (see Fig.
4.6b) 1s

GY =G, T,Py+ GN —n, T, P), (4.44)
{en) {(b)
RVJ- (‘N;' - n,‘)
i=l,..,c i=1,..c
n i=1,..,c
I I

Figure 4.6 Systems with and without a second phase at temperature 7'and
pressure P
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where G(n, T, P) and G(N —n, T, P) are the Gibbs free energies of the
two phases of system I1.

Gin. T, P) = 3 nyy(x, T, P) (4.45)
i=1
xi = ni/ i ni = ni/n (446)
i=1
and G(N —n, T,P)~G'(N, T, P) - (6G/aN,)| (n,)
i=1 N;
=GN, T,P)= " niu(. T, P). (4.47)

=1

Equation (4.47) 1s a Taylor’s series expansion of G(N —n, T, P) around
G(N, T, P). The change in Gibbs free energy from [ to I11s

AG =G - G, (4.48)

Combining Eqgs. (4.43) to (4.45), and (4.47) and (4.48),

C

AG = 3 nulT, P.x) — u(T, P, 2)). (4.49)

i=1

If AG > Ofor all feasible values of x, then the original state at Iis stable
and G' cannot be further reduced (that is, G is a global minimum at
constant 7 and P). However, if AG < 0 for any feasible value of x, then
the original state 1s unstable and the single phase will split into more
than one phase; it may split into two phases, three phases, or more.
When AG = 0, the system is said to be neutral.

If we divide Eq. (4.49) by n (the total number of moles in the new
phase),

c

Ag(x) = AG/n = ¥ x[u(x) — ps(2)), (4.50)

i=]1

where Ag(x) 1s a molar quantity. Note that we have dropped 7 and P
dependencies since 7 and P are held constant. Similarly to Eq. (4.49),
Ag(x) > 0 implies that system [ is stable, and for Ag(x) < 0, system I is
unstable. Equation (4.50) has a simple geometrical interpretation. For
simplicity, let us select a two-component system in which x; =1 — x;.
Then Eq. (4.50) reduces to

2
Aglxy) = ; xilpi (o) — pi(2)]. (4.51)
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Figure 4.7 depicts the plot of g(x;),
2
g(x;) = gxﬂui(xl) (4.52)

vs. X;; x, 1s the mole fraction of component 1, which can vary from 0 to 1.
An EOS can be used to calculate g(x,). In Fig. 4.7, 2, is the mole fraction
of component 1, a fixed overall composition. Let us draw a tangent line
at point zy to the curve g(x;). The equation for this tangent line is

T(x,) = g(z1) + 3g(xy)/dx, | az 1 — 7). (4.53)

From Eq. (4.52) and the expression x, =1 — x;, we can evaluate the
slope 9g(x,)/dx;:

0g(xy)/0x; = pp{xy) — pg(xy) + 2,311 (x)/ 0%y + xp019(x,)/ 02, (4.54)

g(x))

!

=
= ]
-
i
o)
o0
=
SR —
oo
o0
—_
=

T (x,) T(x) —
TPD(x,) <0

Figure 4.7 Plot of g(x) vs. x,.
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From the Gibbs-Duhem equation at constant 7 and P, (see Eq. (1.40), of
Chapter 1) fol x;dy; = 0, which after dividing by dx, becomes

223 x;(Op;/0%,) = 0. (4.55)
i=1

Combining Eqgs. (4.54) and (4.55),
Bg(x,)/ %1 = 1,(%,) — o, (4.56)
At x; = 24,
0g(x1)/ 0y | 5, = i (21) ~ 1(27), (4.57)

Combining Egs. (4.53), (4.57) and g(z,) = Z?ﬂl z;{z,),
2
T(xy) = 3 xiu(2y)- (4.58)
t=1

Now we define the tangent plane distance (TPD) as the difference
from T{x;) to g{x;) at any point x,:

TPD(x,) = g(x,) — T(x,). (4.59)

From Egs. (4.52), (4.58), and (4.59), one obtains
2
TPD(x)) = 3 x;[u(x1) — p(21)]. (4.60)
=1

Equation (4.60) is the same as Eq. (4.50) with ¢ = 2. For a c-component
system,

TPD(x) = Y x,[1:(%) ~ 1(2) ‘, (4.61)
i=1

which i1s the same as Eq. (4.50).

The criteria of the stability of system 7 in Fig. 4.6 now can be stated in
terms of the tangent plane distance. TPD(x) should be positive over
the whole range of x. Note that in Fig. 4.7 the TPD(x) from 2z, becomes
negative for 0.80 < x; < 0.88 and, therefore, the system of overall
composition 2; is not stable. One the other hand, the overall composi-
tion 2 has a tangent 7™(x,) that is below the curve g(x;) and does not
have a TPD(x,) of less than zero; therefore, it is stable and the system
cannot split into two phases.
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Different methods have been proposed to search for the value(s) of x
to test the stability of a system with a fixed composition z. Michelsen
(1982a) suggested locating the stationary points (maxima, minima, or
saddle points) of TPD(x) rather than conducting an exhaustive search
in x-space for values of x where TPD(x) > 0. Let us examine the g(x,),
the tangent T'(x;) at point z;, and the TPD(x,) shown in Fig. 4.8. The
stationary points of TPD(x) for a c-component system occur at points
where

g[TPD(x)} =0 i=1,...c-1 (4.62)

In Eq. (4.62), the derivatives are with respect to x, to x,_;. Substituting
the expression for TPD(x) from Eq. (4.61) and using the Gibbs-Duhem
expression, 3 7, x,(8y,/8x;) = 0, we obtain

Ry — 1(2) = px) — p (2 =K I=1,....c—1, (4.63)
g{x,) g(x;)
i A
0 \ <1 1 0 \ 4 1
.’ - X - X
v T(x;z) Tix;z)
TPD(x,) TPD(x,)

(a) z, stable {b) z, unstable

Figure 4.8 Plots of g(x,), and TPD(x,) vs. x,.
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The TPD(x) at the stationary points are obtained by substituting Eq.
(4.63) into Eq. (4.61):

TPD(x) = K = K. (4.64)
=1

The distance K is shown in one of the stationary points of Fig. 4.9, at
x{l)‘sp. From the criteria of stability set forth before for a stable system,
K > 0, and for an unstable system, K < 0.

Equation (4.63) is a key equation for stability analysis. The solution of
Eq. (4.63) provides the x of the stationary points of TPD(x), which is
not a trivial task. The fugacity form of that equation can be obtained
as follows.

From

wi(x, T, Py = p(T, P) + RTInf,(x,T, P)/fAT, P)

1z, T, P) = ¢(T, P) + RTnf(z, T, P)/fXT, P),

Eq. (4.63), and the defintion of fugacity coeflicients ¢;(x, T, P)=
fi(e, T, P)/(x,f2(T, P)) and 9,2, T, P) = fi(2, T, P)/(z.£(T, P)),

Ing;(x)+1Inx; —Inz; —Ing,(z) =% i=1,...,¢c—1, (4.65)

g(x,) and
TPD(x,)

F 3

\
v
x

xl.lw

Lap

Figure 4.9 Plots of g(x;), TPD(x,), and the stationary points,



Equilibrium, stabtlity, and criticality 229

where &k — K/RT. Equation (4.65) provides the x at which TPD(x)isat a
stationary state. This equation 1s nonlinear and may be transformed to
the following form by introducing a new variable X,

InX;, =Inx; - k. (4.66)
from which
x; = X,e" (4.67)

follows. Since >_;_, x; = 1, then

=1/ X, (4.68)

and, therefore,

=X/ X, (4.69)

Equation (4.69) implies that the new variable X, is similar to mole
numbers for the new phase.
Combining Eqgs. (4.65) and (4.66),

InX; +Ing (x) —Inz;, —lne(z)=0 i=1.....c—1, (4.70)

where x is given by Eq. (4.67). Solution of the above nonlinear system of
equations provides X that can be used to examine the stability analysis.
From Eq. (4.68), 25:1 X = 1/€*. Since for a stable system of fixed compo-
sition, z;, when k > 0, the system is stable; therefore, in terms of X,
when 3 | X; < 1, the same system is stable. If °° ) X, > 1, the system
1s unstable.

The stability analysis of a given phase with a fixed overall composi-
tion z is a search for a trial phase of small amount that is taken out of
the original single phase (that 1s, the homogeneous phase). The trial
phase when combined with the remainder of the original mixture gives
a Gibbs free energy that should be higher than that of the original
single-phase mixture for the single phase to be stable. If the feed compo-
sition 2 can be identified as a liquid, then we can search for a vapor-
like trial phase with composition X estimated from

Xi - ziKi l — 1, R N (471)

The K;-values are estimated from the Wilson correlation (Eq. (4.16))
or other suitable correlations. However, if the feed composition z is
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identified as a vapor, then we need to search for a hiquid-like trial phase
with composition X estimated from

Xi :zi/Ki iZI,...,C. (472)

For reservoir and some other fluids at high pressures, it may not be
possible to identify the feed as liquid or vapor, and therefore both esti-
mates of X from Egs. (4.71) and (4.72) should be used as the first initial
guess. The strategy for the solution of nonlinear Eq. (4.70) can be to
first calculate the term —(In z; + In ¢,(2)). Then with the initial guess
from either Eq. (4.71) or Eq. (4.72), use either successive substitution or
Newton’s method, or a combination of these two methods as we
discussed earlier, to solve for X. In the successive substitution, the
updating of X is simply

X% =expl(Inz; + Ing;(2)) — In p;(x)] i=1,...,c—1, (4.73)

where x; = Xfld/ 2;21 }i:?"d. Then is the testing for convergence.

In case the solution is nontrivial (that is, X is not equal to z within a
given tolerance), the original phase is considered unstable if
Zle X; > 1 (of course within a given tolerance). If convergence on X;
is achieved but Z;zl X; < 1, another estimate of X is made by using Eq.
(4.72) if Eq. (4.71) was used first. If all calculations converge to a trivial
solution after using Eqs. (4.72) and (4.73) for the first initial guess or if
no convergence is achieved, the original phase 1s assumed to be stable.

When testing the stability of a two-phase mixture, it is necessary to
select only one of the phases to test its stability. A complication arises
in the initial guess for X. Four different sets of initial estimates of X
are recommended for stability analysis calculations (Michelsen, 1982a)
to avold trivial solutions of X for either phase. These estimates are
calculated from the following equations (Michelsen, 1982a)

X, =1/2(y; + x;) i=1,...,¢, (4.74)

X, =0.999 (4.75)

X, =(1-X)/(c—1) i=1,....8-1,84+1,....c  (4.76)
X; = exp[lnz; + In ¢,(2)] i=1,...,c (4.77)

In Eq. (4.74), the trial phase composition is estimated to fall between
the gas and liquid phase compositions. If the estimate from Egs. (4.75)
and (4.76) yields convergence to a trivial solution, Eq. (4.77) is used. In
Eqs. (4.75) and (4.76), one time the selected component “‘s’’ is the most
volatile component. The next time X, is the mole fraction of the heaviest
component or the pseudocomponent. The usefulness of Egs. (4.75) and
(4.76) 1s that the chances of locating a phase instability are improved
by using distinct values of composition that are widely separated. The
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fourth estimate from Eq. (4.77) assumes ideal behavior. Similar to the
stability of a single-phase system, if from any of the initial guesses the
phase becomes unstable, then further estimates will not be pursued.

One then may observe a certain drawback in the search of a trial
phase composition and the trivial solutions. The situation gets quite
complicated when testing the stability of three-phase and four-phase
systems. A large variety of initial estimates of the trial phase composi-
tion are required. An alternative to the stationary points of TPD of
Michelsen (1982a) has been suggested by Trangenstein (1987). He
suggests minimizing AG given in Eq. (4.49) for the variables n.
Details of the procedure can be found 1n Trangenstein (1987) for two-
phase systems, and Perschke (1988) and Chang (1990) for three-phase
systems.

Example of multiphase flash and stability analysis. We will, in detail,
discuss the stability analysis of a three-component system of
C,/COy/nCys at T =2940K and P=67bar with z, = 0.05.
zco, = 0.90, and z,¢,, = 0.05. At fixed temperature and pressure, from
the phase rule F = ¢ + 2 — p, there can be a maximum of three phases
when the interface between the phases i1s flat. The first question is
what types of phases may exist—gas, liquid, or solid. As we will seen
Chapter 5, asolid phase does not exist for the above system. Therefore one
might expect (1) a single gas phase or a single liquid phase, (2) gas and
liquid phases, (3) liquid and liquid phases, or (4) gas-liquid-liquid phase
separation. The difficulty in liquid-liquid (I-L) and vapor-liquid-liquid
(V-L-~L) and higher-phase equilibria (for more than three components) is
how many phases should be considered for flash calculations. One
approach is to determine whether one, two, or more phases are to be con-
sidered without prior knowledge of the true number of phases. In certain
cases, as we will see in the next chapter, i1t 1s possible from thermo-
dynamic stability analysis to determine the true number of phases a
priori without performing a flash. However, in general, we do not know
the true number of phases. One may, therefore, follow a sequential
approachas outlined next for the C,;/COy/nC,, example.

1. Perform the stability analysis on the overall mixture to examine the
stability of the single-phase mixture. In case the original mixture is
unstable, estimates of equilibrium ratios (K;-values) are then on
hand for the two-phase flash.

2. Perform the two-phase flash using the K;-values from the stability test
as the initial guess.

3. Perform stability analysis on only one of the phases of the two-phase
flash. If the selected phase 1s unstable, estimates of the equilibrium
ratios for part of the three-phase flash are available.
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N'.g%—A"g,

X, +A%x,
N e o Gr— — o — —— ——
24

N, g+ Ag,

X, + Ax,
(T,P) (T,P)

Figure 4.16 Stability of a two-component mixture at constant 7, Pand N.

In Eq. (4.136), Ag 1s the molar Gibbs free energy difference between
the primed phase and the original single phase, and A’g is the molar
Gibbs free energy difference hetween the double-primed phase and the
original phase. The constraints (see Fi1g. 4.16) are constant temperature
and pressure and mole numbers of components 1 and 2; N; = N/ + N/,
i=1,2(N=N,+ Ny, NN=N]+N;, and N" =N/ + Nj). From the
mole constraints,

N'Ax, + N'A"%, = 0. (4.137)

The molar Gibbs free energy g = g(T, P, x,) and since T and P are held
constant, then

- Ag = (dg/dx)Ax; + (1/2)(Fg/3x)(Ax))* + - (4.138)
and Alg = (dg/ox )A %, + (1/2)(8%g/0xD) (A%, )2 + - - -, (4.139)

where Ax, and A’x, are assumed to be small. Combining Eqgs. (4.135) to
(4.139),

AG = (N'N/2N")3g/ax2)(Ax)? + - - (4.140)
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Combining Eqgs. (1.201) of Chapter 1 and (4.130),

(#Pu/dsdv) = T(—m. (4.131)
14
We also can write
dv/al

where e 1s the thermal expansivity and Cp is the isothermal compressi-
bility. Combining Eqgs. (4.131) and (4.132),

(Pu/dsdv) = —TefcyCp (4.133)

From Egs. (4.125) and 1(4.26), T/¢y > 0 which gives ¢y > Q; therefore,
the thermal stability condition is established. This is the same relation-
ship as that developed earlier from the entropy approach. Substituting
Eqgs. (4.128), (4.129), and (4.133) into Eq. (4.126) and wusing
(0P/8v)y = —vCp and ¢p =cy + Tve?/Cp (see Example 3.8 and Eq.
(3.126) of Chapter 3),

T/{cyCru) > 0. (4.134)

Therefore Cyp > 0. Note that since ¢y and Cr are positive for a stable
system, the implication is that ¢p > 0 when a system is stable.

Stability analysis in a two-component system

Consider N moles of a binary mixture of composition x; and x, (mole
fractions) at temperature T and pressure P. Let us compare the stability
of the single-phase system with that of the two-phase system at the
same temperature and pressure. Similarly to the single-component
system in the preceding section, we assume N moles of primed phase
and N” moles of double-primed phase, in the two-phase state. The
composition of primed and double-primed phases are x; + Ax, and
x, + Ax,, respectively, for component 1 (see Fig. 4.16).

This time we will work with the Gibbs free energy function. The Gibbs
free energy difference between the two states shown in Fig. 4.16 1s

'AG = G0 phase — Gsingle phase- (4.135)
where
Gouwo phase = N'(g + Ag) + N"(g + A'g)
and Gingle phase = (N' + N")g.

Therefore, AG = N'Ag + N"A%. (4.136)
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The stability of the single-phase state in comparison to that of the
two-phase state requires AG > 0. Since the multiplier of (3*g/0x?) is posi-
tive, then

(9*g/0x)p p > 0 (4.141)

is the stability condition of the original single phase. Note that when
the second-order variation is zero, then

(3g/ox])p p > 0. (4.142)

If fourth-order variations are zero, then the higher-order even varia-
tions should be positive.

Equation (4.141) can be transformed into the chemical potential form.
Since (dg/0x,)y p = ity — Ho, then

(8°g/8x)7 p = (B4t /0%1)r p — (s /%1 )7 p (4.143)

From the Gibbs-Duhem relation at constant 7 and P,
2?21 x(0u;/9x)y p = 0. Therefore, Eq. (4.141) transforms to
(Ou, /08x1)p p/ x5 and, since x, 18 positive,

(B11,/0%, )7 p > OJ. (4.144)

Equation (4.144) 1s an alternative form of Eq. (4.141) for the stability
criteria. Figure 4.17 shows a plot of i, vs. x; at constant temperature
and pressure in a binary mixture. For a system to be stable, (9, /0x)
should be positive. At 7, and P, the system is in the stable single-
phase state. At 7 and P, only the points from A to B and from C to D
are stable. At B and C, the limits of stability are defined by

(Ou;/0xy )7 p =10 | (4.145)

We will show in Example 4.6 that the following inequalities hold for a
stable binary system. At constant pressure,

(0°g/0T")p,,, i’ (4.146)

and at constant temperature,

(°g/0P%y, <0 I (4.147)
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T,.F

#XE

Figure 4.17 Plot of ¢ vs. x; in a binary system at constant Tand P.

Stability analysis for multicomponent
mixtures

The stability criteria for single-component and binary systems are given
above; those criteria are general, but restrictive assumptions were
made in their derivations. These assumptions can be removed and the
same results can be obtained. The generalized derivation relies on the
use of the sum-of-the-squares expression, and Legendre and Jacobian
transformations. The derivations of stability criteria presented above
provide a physical sense of the problem using only the Taylor’s series
expansion. In the following, a more elaborate derivation for the general
problem of multicomponent systems will be presented. An alternative
dertvation discussed 111’

Legendre transform.

Consider N moles of a multicomponent system consisting of ¢ compo-
nents. We wish to study the stability of the single-phase state in relation
to the perturbed two-phase state. The perturbed two-phase state
consists of NV moles of the primed phase and N” moles of the double-
primed phase. We assume that N” « N’ solely for the purpose of deter-
mining whether the internal energy of a fixed mass could be reduced
by introducing a new phase (that is, the double-primed phase) of infinite-
simal amount while keeping the volume and entropy fixed. We can use
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the criterion of the UV minimum (as was just mentioned) or ( minimum
or the criterion of the maximum of S to study stability. Let us use the
U-minimum principle. The Legendre transform can be used to transform
the results from U to any other basic thermodynamic function, such as
H A orG. b

The internal energy of the original homogeneous phase is a function
of (8§, V, N). Figure 4.18 shows the state of the system before and after
perturbation.

The change in the internal energy from a single phase to a two phase-
state 1s

AU = AU + AU, (4.148)

where AU denotes the internal energy change of ¥V moles from the
original single-phase state to the primed phase, and AU” represents
the internal energy change of N” moles from the original single-phase
state to the double-primed phase. The restrictions of the internal
energy change are

AS =AS +AS" =0 {4.149)
AV = AV +AV" =0 (4.150)
AN, =AN +AN' =0 i=1,....c (4.151)
.
B )\f'
E N=N,+N” ) N’ é U’:N#up
| . y_ "’
! V =~Nv . % . jvaf \’ - s
S = Ns & Sf - N.:S‘z ;L
L
| (S,V.N) (S.V,N)

Figure 4.18 Stability of a multicomponent mixture at constant S, V, and N.
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In Eq. (4.149), AS represents the entropy change of N moles from the
single-phase state to the primed phase, and AV’ is the volume change
of IV moles from the single-phase state to the primed phase. AS” and
AV"” have similar defimtions. The expressions for various variations
are given by
AU = N'(d — u), AV = NV — v), AS = N'(s' —s),

(4.152)
AU" = N"(u" — u), AV" = N"(v" —v), AS" = N"(s" — ),

where i, ¢/, and u” are the molar internal energies of the original single-
phase, primed and double-primed phases, respectively; s, ¢/, and 5", and
v, U, and v” have similar definitions. Note that in the above equation,
there is no restriction on the magnitude of the molar property changes.

The expressions for AU and AU are provided by the Taylor’s series
expansions, which assume that the amount of the double-primed phase
1s small.

AU’ = (3U/3SYAS' + (3U/3VYAV' + 3 (3U/aN,) AN
(=1
+ (1/DUPU/3SPYASY + (BPU 10 VEY (A V')
1 28U 883VY(AS AV
+ Y Y (PU/N,AN,) (ANAN))

i=1j=1
+2 Y [(BU2/3N,0VY (ANIA V)
+ (E;;ZI} /ON;3SY(AN]AS)]} + higher-order terms (4.153)
and
AU" = (3UJ38S)'AS" + (dU VY AV" + _}cjl(BU/aN;-)”AN;’

+ (1/2{(*U/3SY"(AS"Y + (& U/;J Vi @avy

+ 2(8°U /383 VY'(AS"AV")

3 3 OU/ONAS) (ANIANY)

T oi=1j=1
+2 ; (P /aN,aVY' (AN/AND).

+ (BU/3N;38)" (AN AS)} + higher-order terms. (4.154)

In Eq. (4.153), {0U/8SY represents the variation of the internal energy
of N' moles with respect to the variation of the entropy of N moles at
the original state of the single phase. Similar representations for
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(aU/38)”, (U /382, ete. follow. From dUU = TdS — PdV + ¥, wdN,,
at the original state,

(dU/8SY =(@U/8S) =T
@U/ VY = (dU/3VY = ~P (155)
QU/IN)Y = (QU/3N)Y = i=1,...,c

The first derivatives are intensive variables. However, the second and
higher-order derivatives at the original state depend on mass. The
second derivatives are related by
N'(BU /852 = N"(82U /352"
N(@U/BVE = N(3U/HVE
N(8*U/3S3V) = N"(8*U/aSs V)"

f e ¢ 1 el " . (156)
N'(3*U/388V)Y = N"(3*U/aN;8S)"., i=1,...,¢c
N'(FU/aNaVY = N(FPU/dNBV)Y', i=1,..., e
N'(@U/aNIN)Y = N(FU/INBNY i=1,....c,j=1,..., c.
To prove the first relationship above, we write
(U /a8 = 3/3S'(aU/38Y = (31'/3SY
(82U /38%Y" = 3/88"(8U /8SY = (8T /38Y". (157)
But 8" = N'sand 8" = N”s at the original state, and therefore
(B*U/8S%Y = (1/NH3T /s,
(82U /882 = (1/N"dT /ds. (4.158)

From the above two equations, the first relationship in Eq. (4.156) is
established. (The last expression in Eq. (4.156) and some higher-order
derivatives are derived in Example 4.4.) Combining Egs (4.148) to
{4.156), we obtain,

AU =(1 /2)(N/N""){(a%U/aSE)’(AS’)Q +(PU/VEY AV,
+2(RU/3SIVY(AS AV + 3 Y (PU/6NaN,Y (AN/ANY)
i=1j=1
+2 Y (PU/BNAVY(ANAY') + 2 Y (PU/3N3S) (AN/AS')

i=1 =1

+ higher-order terms. a (4.159)
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Equation (4.159) can be written as

AU = 1/211 + N'/N"[d*U + 1/31[1 — (N'/N"Y¥1d* U
+ 1741 + (N /N Y1 dU* + - . -, (4.160)

where d>U isthe term in { }in Eq. (4.159); it represents the second-order
variations of UJ. Note that there is no term to represent first-order varia-
tions of U in the above equations. The first-order variations drop out
because of the equilibrium condition. AU in Eq. (4.160) is positive if the
quadratic term representing second-order variations is positive for
every small variation of variables AN,, AS, and AV. (Note that the coef-
ficient of d?U is positive.) When the quadratic term is positive, the origi-
nal homogeneous phase is stable and there is no need to examine
higher-order terms. If the quadratic term 1s zero, then the cubic form
must also be zero, and the fourth-order term must be positive for AU to
be positive. In other words, the first nonvanishing even-order term
must be positive for AU to be positive and odd-order terms below that
must be zero. The expression for d*U in a compact form can be written
as

c42 42

d*U = Y. Y (PU/3X0X)AX,AX,, (4.161a)

j:] =1

Eguation (4.161a) can also be written as
o c+2 42
U =3 Y UpAXAX,, (4.161b)
j=1 k=1

where Uy, = (°U/3X,0X,).

Linear algebra provides a perfect shorthand for writing Eq. (4161b)
because of the symmetry of Uj,: U, = Uy;. This equation can be written
as the inner product of the perturbation vector AX " and the vector
that results from the Hessian matrix of U on the perturbation vector
AX. The Hessian matrix is the second-order-derivative matrix; the

entries of the Hessian matrix of U are Uj,. Therefore,
AU = AXTH AX, (4.162)
where the Hessian matrix, Hyy, 1s given by

Ul,l U1,2 s Ul.c+2

U2.l. U2‘2 o U2,c+2

Uc+2,1 Uc+2,2 Uc+2,c+2
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4. Perform the three-phase flash using the estimates of equilibrium
ratios from steps 2 and 3.

5. Perform the stability analysis on only one of the phases of the
three-phase flash to check stability of the three phases. The
three-phase flash should be stable since single-phase and two-
phase were unstable (this 1s true only for a three-component
system).

In Step 1, we can use K;-values from the Wilson correlation (see Eq.
(4.16)) to proceed with the stability of the original phase and to calcu-
late the composition of the trial second phase. The Wilson correlation
may not be appropriate if the trial phase and the original phase are in
liquid states. From Eq. (4.16), K =4.564, Kco, = 0.8709, and
K¢, = 0.000001. We can use x; = K,2; and x; = z;/K; as estimates of
the trial phase composition. If we minimize the fugacity form of Eq.
(4.50), with respect to x; with the initial estimates above, at the mini-
mum k = Ag/RT = —0.03105 is obtained. We used software simulated
annealing (to be discussed next) to perform the minimization. At this
minimum, xc, = 0.0408, x5, = 0.6819, and x,. = 0.2773. Since k < 0,
then the single phase is unstable. From the trial phase composition,
initial estimates of the K,-values for the two-phase flash are, therefore,
available: K, = 1.2255, Koo, = 1.3198, K, = 0.1803.

In Step 2, a two-phase flash is performed with initial estimates of
equilibrium ratios from the first step. The results of the two-phase
flash are yq =0.0523, yeo, = 0.9382, y,0, = 0.0095: x¢ = 0.04007,
Xco, = 0.7335, x,¢, = 0.2265; K, =1.3075, Kgo =1.2791, K, =
0.0420; and V = 0.8137 (that is, the mole fraction of the vapor phase).

In Step 3, the stability of one of the phases 1s analyzed to check the
stability of the two-phase system. Let us select the liquid phase with
z¢, = 0.0440, zpp, = 0.7335, and z,,, = 0.2265. Note that instead of x,
we have used the symbols z to emphasize that-the original liquid phase
composition is fixed. We need an initial estimate of K;-values to proceed
with the minimization of Eq. (4.50). The simulated annealing minimiza-
tion is not in general sensitive to the initial guess; one does not need to
be concerned with good initial estimates of K;. Let us use initial K;-
values: K¢ = 2.0, K¢o, = 1.05, K, . = 0.9, with the mole fraction ratio
being that of the trial phase composition to the original phase composi-
tion. The initial estimates of K, are used to estimate x; (see Egs. (4.71)
and (4.72)), and then minimization of Ag is performed. The minimum is
k= Ag/RT = —0.00461, which implies that the liquid phase from the
two-phase flash is unstable. The composition of the trial phase is
¥, = 0.10852, yoo, = 0.89144, and y,c = 0.00004. The Kj-values can
then calculated from the trial phase composition and the composition
of the original liquid phase.
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In Step 4, the K;-values from steps 2 and 3 provide the initial estimates
of the three-phase flash. From the three-phase flash, the compositions
and the amounts of the three phase are calculated: Ye, = 0.093768,
yeo, = 0.906177,  y,c = 0.000055;  x{, = 0.04396, xco = (.94428,
X, = 001176, x¢ = 0. 03532, x’co — 0. 74527 X =0. 21941. The mole
fractions of the phases are V =0. 1546, I = 0 6025 and L” = 0.1929,
The primes and double-primes represent the two liquid phases.

Although there is no need to perform stability analysis of the three-
phase system, since single-phase and two-phase system were unstable,
let us study the stability of each of the three phases of the three-phase
flash. Take the vapor phase first: 2o = 0.093768, 2o, = 0.906177 and

2,c,, = 0.000055. Note again the change of symbols from y to z. We can
use K -values from step 1. The results of the minimization of Ag(x)
are k= Ag(x)=—-1x10"° and x¢ =0.0333, xcp, =0.7453, and
Xnc,, = 0.2194. Since k ~ 0 (within a certain tolerance), the vapor phase
is stable. The trial phase composition is the same as the liquid phase

composition in step 4. We can also study the stability of the liquid
phase with composition zo = 0.04396, zco, = 0.94428, and z,c, =
0.01176. At the minimum of Ag(x), k = Ag(x)/RT = —1 x 10~7. The
composition of the trial phase at the minimum 1s xc
= 0.03532, x5 = 0.74527, and xnc = 0.21941. The trial phase composi-
tion 1s the same as that of the vapor phase. Since & 2~ 0 (within a given
tolerance), this liquid phase 1s also stable. Finally, we can study the
stability of the third phase, i.e., the heavy liquid phase with
zo = 0.03523, z¢p, = 0.745627, and ch = 0.21940. At the minimum of
Eq (4.50), & = Ag/RT — 0.2 x 10~% and the composition of the trial
phase is the same as the heavy liquid phase composition. The fact that
the compositions of the trial phase and the heavy liquid phase are the
same implies that there 1s no other phase composition for the trial
phase to provide the minimum of Ag.

Direct minimization of Gibbs free energy in
multiphase flash

The general problem of multicomponent, multiphase flash calculation
at constant temperature and pressure has been attacked by direct mini-
mization of the Gibbs free energy (Pan and Firoozabadi, 1998). Using
an algorithm that can provide the global minimization of Gibbs free
energy, one can readily perform a multiphase flash to obtain the compo-
sition and the number of phases.

Consider the multiphase, multicomponent flash at constant tempera-
ture and pressure sketched in Fig. 4.10. The stable-equilibrium state

consists of p phases; each phase j consists of N;;, N;g, N;s, ..., N;,
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Phase 1|
N‘i NI}I’NI.Z,NI,S"”’N].C
N, Phase 2
N:a_,'.sNz.zsNz.ss--‘aNz.c
N, Phase p
Np.]’N;J.Z’Np.B?""Np,c

Figure 4.10 Schematic representation of multiphase, multicomponent flash at
constant temperature and pressure {(from Pan and Fircozabadi, 1998).

moles. The stable-equilibrium state at which the Gibbs free energy of
the system is a minimum 1s a necessary and sufficient condition. At
constant temperature and pressure, the Gibbs free energy of the
system 1n the right side of Fig. 4.10 can be written as

»
G=3 GiN.y, Ny ....N,), (4.78)
j=1

where G, is the Gibbs free energy of phase j and G is the total Gibbs free
energy of the system. The stable-equilibrium state corresponds to
the global minimum of G with vrespect to N;; moles
(i=1,....c,j=1,...,p), subject to the following constraints:

(a) the material balance for component {

N, =¥ N, (4.79)
=1
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(b) non-negative mole numbers of component i in phase j,

0<N,;<N, i=1..,¢j=1....p (4.80)
The Gibbs free energy of phase j, G;, in Eq. (4.78) is given by
G = > a1 Vi (N)). Therefore, the Gibbs free energy of the system
sketched in Fig. 4.10 can be written as

D c
G=3">. Ny (), (4.81)
J=1i=}
where p; ;(N;) = 1Ty + RTlan,-J-(QJ-)/f?(T). Therefore,

G= [i Nd(T)~ RTY. NJ?(T)] +RTY. Y InfiN).  (482)
p==1

In Eq. (4.82), the first term on the right side 1s a constant, since T, P, and
N; are fixed. The second term on the right is a function of N, ;, since
f;{(¥;) is a function of NV, ;. We can eliminate the mole numbers of one
of the phases, say phase 1, from the material balance expression, Eq.

(4.79):

P
I.‘.‘:2

7

The above equations reduce the number of unknowns from pe to ¢(p — 1)
in the minimization search.

The search for the global minimum of a function of many variables
with close minima 1s a very difficult problem. Disciplines ranging from
economics to engineering need to use minimization (or optimization)
algorithms. The simulated annealing (SA) algorithm is a powerful tool
for this purpose. This algorithm 1s apparently very effective when the
global extremum is hidden among many local extrema. The root of simu-
lated annealing is in thermodynamics. When a molten metal is cooled
slowly (annealing process), the system is able to reach a highly ordered
crystalline state of the lowest energy. Rapid cooling (quenching
process) leads to a polycrystalline or amorphous state having somewhat
higher energy, The simulated annealing algorithm is analogous to the
annealing process of the molten metal. It decreases the objective func-
tion slowly to reach its global minimum. A detailed description of the
method can be found in Press et al. (1992), Corana et al. (1987), and
Goffe et al. (1994). Mathematically, the SA algorithm globally optimizes
an objective function with the constraints of bounds. The sole drawback
of the method is the computational cost because of the ‘“‘slow cooling
process.” The computational time increases roughly linearly with the
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number of independent variables. The SA randomly searches for the
optimized point. Therefore, the computational time is nearly the same
for the near-critical region as for away from the critical region.

The use of the above algorithm for phase-equilibrium calculations is
straightforward. For vapor-liquid equilibria, initial estimates of
K; = y;/x; can be obtained from the Wilson correlation. Close to the
critical point, K; = 1 is provided for light components and K; = 0.5 for
heavy components of a multicomponent mixture. Figure 4.11 depicts
the example for the multicomponent mixture: zp =035, zp =
0.03, z¢, = 0.04, 2,0, = 0.06, z,¢, = 0.04, z,, = 0.03, 2,5, = 0.0, 2,0, =
0.30, z,¢,, = 0.05 and varying amounts of CO,. (The introduction of
CO, in the mixture reduces the mole fraction of the other components
proportionally.) Note that the calculation proceeds to the near-critical
region where all K-values are close to one.

For V-1-L equilibrium calculations, one can select the light liquid
phase as the reference phase and then estimate the initial equilibrium
ratios according to the procedure of Example 4.2. Figure 4.12 plots the
calculated results for a COy~reservoir oil system at various pressures
at fixed composition and 307.6 K. The compositions of o1l B and CO,
mixtures investigated by Shelton and Yarborough (1977) are used.
Note that up to a pressure of 78.8 bar, two phases, a vapor phase and a
hydrocarbon-rich liquid phase, coexist. From P = 78.8 to 81.2 bar,
three phases exist and above P = 81.2 bar, the vapor phase disappears
and two liquid phases are present. Details of vartous parameters can
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Figure 4.11 Equilibrium ratios vs. CQ, concentration for the CO,—synthetic oil mixture at
322.0 K and 105.35 bar (adapted from Pan and Firoozabadi, 1998).
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Figure 412 Mole percent of different phases vs. pressure for the CO,-reservoeir oil system
at 3076 K (adapted from Pan and Fircozabadi, 1998).

be found in Pan and Fircozabadi (1998). We will later (Chapter 5) use
direct minimization of Gibbs free energy to perform wax and asphaltene
precipitation calculations.

Stability analysis and stability limit

Considerable effort will be made in this chapter to derive the criteria of
stability and criticality from basic principles. In order to appreciate
these concepts, we first derive the criteria of stability for a pure compo-
nent separately and then proceed briefly to binary mixtures. The stabi-
lity criteria for multicomponent systems will be derived in detail. The
derivation for multicomponent systems is very general and relies on
the Legendre and Jacobian transformations discussed in Chapter 1
and the mathematical principles for definiteness that will be discussed
in this chapter.

Stability analysis for a single component

The basic derivations for the stability analysis of a single-component
system are similar to Haase’s presentation (1956) with certain changes.

Stability criteria based on entropy Let us consider a single-component
single-phase system with molar internal energy u and molar volume v
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at temperature T and pressure P. At this temperature and pressure, if
the single-phase system is not stable, it may split into two phases; N’
moles of the primed phase and N” moles of the double-primed phase.
The molar internal energy and the molar volume of the primed phase
are represented by v + Au and v + Av, and those of the double-primed
phase are represented by u+ Aw and v+ A%y, Let us represent the
molar entropy of the original single phase by s, the primed phase by
s + As, and the double-primed phase by s + A’. The criteria of stability
of the original single phase in comparison to the two-phase state can
be developed in terms of the entropy difference between the single-
phase and two-phase states. The problem is sketched in Fig. 4.13:
which one of the two states is more stable, ¢ or b?

The expression for the entropy change, AS, between the two states
can be written as

AS = Stwo phase — Ssz’ngie phase (4-84)

and the entropy of each system is given by

! i 0
S0 phase = IV (8 +As)+ N'(s + A's) (4.85)
7 i
Ssingle phase = Ns = (N + N )s. (4.86)
BT et L e e e g s e v e L i T e e
3
N s+A's
1 i u+A%u, v+ A%
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Figure 413 Stability of a single component at constant U ¥ and
N(N=N+N")
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Therefore,
AS = N'As + N"A%. (4.87)

Based on the Second Law, the single-phase state is stable if AS < 0
the entropy of the original single-phase state is greater than the entropy
of the two-phase state for the isolated path. The constraints of the
isolated path are

AU = Utwo phase — Usingle phase = N'Au + NﬂAou =0 (488)
AV = Vtwo phase — Vs.ingle phase = N'Av + N'Av =0 (4.89)
N = N+ N’ = constant. (4.90)

The AU and AV expressions in Egs. (4.88) and (4.89) are derived in the
same way as Eq. (4.87) was derived. Next we perform the Taylor’s
series expansion of As(u, v), and A%s(u, v) in terms of independent vari-
ables 1 and v.

As = (3s/8u)Au + (8s/3v)Av + (1/2)[(8%s/ du W Au)®
+ 2#s/0udv)(Audv) + (s/avNAv) )+ - - (4.91)

and

A% = (8s/3u)A°u + (3s/0v)A%y + 1/ 2(Ps/0u) (A% W)
+ 2(8%s/8udn)(A°uAlv) + (/DA% 1+ ... (4.92)

The Taylor’s series expansions are based on the assumptions that

Au, Av, A’u, and A’v are small. Note that in Eqgs. (4.91) and (4.92), the

partial derivatives are evaluated at the original single-phase state.
From Egs. (4.88) and (4.89),

Ay = —(N'/N"Au (4.93)
and
A% = —(N'/N"Av. (4.94)

The substitution of A’u and A%v from Eqgs. (4.93) and (4.94) into Eq. (4.92)
results in

A% = —(N'/N")[(3s/3u)Au + (3s/3v)Av] + (1/2)(N'/ N")*[(#s/du>)(Au)®
+ 2(8%s/dudu)(Audv) + (Fs/HA AV ] +- - . (4.95)
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Combining Egs. (4.87), (4.90), (4.91), and (4.95),

1N'N

AS =
2 Nﬂ'

[(s/du”NAw)® + 2(8°s/Budv)(Aulv) + (8s/0V°)(Av)’] + - --
(4.96)

Since Y/, N'N/N" is positive, then the condition for the stability of the
original single phase 1s

(3%s/ D) Aw)® + 2(8%s/0udv)(AuAv) + (8%s/9v8)(Av)? < 0. (4.97)

Therefore, the stability of the original phase is defined with respect to
the second-order variations of s. If the second-order variations are
zeyo, third-order variations must also be zero, and then fourth-order
varlations should be negative.

Let us review some simple concepts on the negativeness and positive-
ness of a function f(u, v) of two independent variables « and v to make
use of the above expression in terms of simple criteria. The function
flu, vy 1s saad to be positive defimte if 1t 1s strictly positive at all pomnts
other than u =0,v =0, (i.e., the origin). The same function f, if it is
strictly negative at all points except at the origin ¥ = 0, v = 0 1s called
negative definite. If 1t can take either sign, both f > 0 and f < 0, it 1s
called indefinite. Semidefiniteness will be defined shortly.

Consider the quadratic form for f:

fu, vy = au® + 2buv + v’ (4.98)

Equation (4.98) can be written as

2 2
flu,v) = a(u + g v) + (c — 9_) 2, (4.99)

a

The first term on the right side of Eq. (4.99) is never negative provided
a » 0. When a < 0, this term is never positive. For the second term to
be always positive, (¢ — b%>/a) > 0. From the above simple discussion,
the criteria for positive definiteness and negative definiteness of the
quadratic f = au? 4- 2buv + cv? are then established: (1) fis positive defi-
nite if and only if @ > 0 and (ac — %) > 0, and (2) f is negative definite if
and only if @ < 0 and (ac — #?) > 0. For positive definiteness, the above
conditions demand ¢ > 0 and for negative definiteness ¢ < 0. However,
the sign of ¢ is necessary but not sufficient for either positiveness or
negativeness. When ac = 5%, the second term on the right side of Eq.
(4.99) disappears and only the first term remains. Then f is said to be
positive semidefinite when a > 0 and negative semidefinite when a < 0.
The quadratic f is indefinite if ac — b% < 0; f can take either sign, both
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f >0 and f < 0. Later we will discuss the definiteness of functions of
more than two variables. Strang (1986, 1988) presents a detailed analysis
of definiteness in a simple manner.

With the above background on definiteness, we now examine the
quadratic given by Eq. (4.97) for negative definiteness:

(8%s/8u) < 0 (4.100)
(6%s/3u?)%s/v?) — (Fs/8udv)® > 0. (4.101)

Note that (8°s/0v?) < 0 is a necessary but not sufficient condition of
negative definiteness. To derive a simple criterion for stability from
Egs. (4.100) and (4.101), it is necessary to derive the expressions for
(8%s/8u?), (8%s/8v%), and (8°s/8udv) in terms of pressure, volume, tempera-
ture, and heat capacity.

(8%s/0u?), expression The first derivative of s with respect to u at
constant volume is given by (8s/du), = 1/T (from du = Tds — Pdv).
The second derivative of s with respect to 1 at constant v is simply

(sjau’), = —1/T%@T/3u), = —1/(Tcy). (4.102)

In the derivation of the above equation, the definition of ¢ from Eq.
(3.117) of Chapter 3 1s used.

(°s/av?), expression From Eq. (1.22) of Chapter 1, (3s/dv), = P/T. The
second derivative is

(&s/ov*), = ) TYH3P/dv), — (P/T*)BT [ov),. (4.103)
but
(8T /v),, = —(3u/3)p/(3u/IT), = —(1/cy)(8u/dv),. (4.104)
From Egq. (1.21) of Chapter 1,
(8u/dv)y = T(ds/dv)p — P. (4.105)

Using the Maxwell relation given by Eq. (1.201) of Chapter 1, the above
equation simplifies to

(3u/dv); = T(dP/3T), — P. (4.106)
Combining Egs. (4.104) and (4.106),

(3T /9v), = (/e[ P — T(@P/3T),). (4.107)
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We also need to evaluate (3P/dv), in Eq. (4.103) using P = P(v, T').
dP = (@P/dv)ydv + (3P/aT) dT (4.108)
and, dividing by du at constant u,
(3P/3v), = (AP/3v)y + (AP/AT) (AT /3v),,. (4.109)
Substituting (37/dv),, from Eg. (4.107) into the above equation,
(8P /vy, = (8P/0v)y + (8P /3T, (1/cy)[ P — T(3P/3T),]. (4.110)
Combining Eqgs. (4.103), (4.107), and (4.110) gives the sought expression,

(8%s/8v%), = (1) T)(@P/dv)y — (1/ T jey)[P — TBP/3T),).  (4.111)

(6%s/dvdu) expression From (3s/du), = 1/T, one obtains
(#%s/dudv) = —(1/THOT /dv),. (4.112)
Substituting Eq. (4.107) into Eq. (4.112),
(s /B8udv) = [1/(TPe)]|[T(dP/3T), — P) (4.113)

Now one can substitute Eqgs. (4.102), (4.111), and (4.113) into Egs. (4.100)
and (4.101). From Eqgs. (4.100) and (4.102), —[1/(T?¢cy)] < 0 and since T

s positive, then
es0] g

The above relationship is referred to as thermal stability. The substitu-
tion of Eqgs. (4.102), (4.111), and (4.113) into Eq. (4.101) gives
—[1/ey T3](8P/8v] > 0 and, since ¢y > 0, then

lEP/Bv)T < (j (4.115)

which is referred to as mechanical stability. From the definition of
isothermal compressibility Cy = —(1/0)(8P/0v)y, an alternative state-
ment of mechanical stability is

‘ Cr>0| (4.116)

Therefore ¢y > 0 and C; > 0 guarantee that the original single phase
shown in Fig, 4.13 is stable. Note that for a single-component fluid to
be at stable-equilibrium state, both of the relations given by Egs.
{4.114) and (4.115) should be satisfied simultaneously. In Eq. (4.114), the
stable equilibrium is based on a thermal quantity and in Eq. (4.115),
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stable equilibrium is based on mechanical quantities, therefore they are
referred to as thermal and mechanical stabilities, respectively.

Figure 4.14 shows a sketch of the P-v plot for a pure substance at
three different temperatures; 7. 1s the critical temperature, which will
be discussed in the presentation on criticality. For T, < T, the ABC
branch has a negative slope, i.e., —(dP/ov) > 0, and according to Eqg.
(4.115) 1s stable. Similarly the EFG branch also has a negative slope
and is stable. At Cand E, (3P/9V), = 0, which defines the limit of stabi-
lity. At T > T, the whole curve has a negative slope and therefore is
stable. Note that the segment of the P—v curve between C and K has a
positive slope, (8P/8v) > 0, and according to Eq. (4.115) is unstable.
The criteria can also be derived from stability analysis of the internal
energy.

Stability criteria based on internal energy The stability of the original
single phase 1n comparison to the two phases demands that the internal
energy change be positive (see Fig. 4.15):

AU = N'(u+Aw) + N'(w + A"w) — (N' + Ny = N'Au+ N'A% > 0,
(4.117)

Figure 4.14 P-V plot showing stable and unstable regions.



244 Chapter Four

N, s+A%s,
U+ Au, v+ Aty

Z

_[
1
t
1
]
1
1
1
1
H
1
1
]
I
1
]
!
]
]
1
]

T S e e
&
iy

x%. X

P

k3
i L e Bty B 0 e SRR s e O
s Y e S R R

it

N’ s+ As,
u+ Au, v+ Av

PAVE e

% G
¥ B T g

VN RIS A TN S R R S A 4 4 Fo

(S,V.N) (5.V,N)

(a) (b)

Figure 415 Stability of a single component at constant S, V, and N
(N =N+ N")

subject to the constraints

AS = N'As + N'As = ¢
AV = N'Av+ N"A%% =0

N = N 4+ N" = constant,

(4.118)
(4.119)

(4.120)

where AS is the entropy change from the single-phase to the two-phase
state. Since u = u(s, v), then the Taylor’s series expansion of Au and

A%y can be expressed by

Au = (u/8s)As + (Ju/0v)Av + (1/2)[(8 1/ 35" As)*
+ 2(8%u/ 3sdv)(AsAv) + (/D) Av) + - -

A% = (3u/35)A% + (3ue/d)A v + (1/2)[(3%u/3s2)(A%s)?
+ 2(8%u/ 850v)(A%sA"V) + (BPu/vP YA V)] + - - .

(4.121)

(4.122)

Similarly to the entropy derivation, As, Av, A%s, and A°v should be
small. From the constraints given by Egs. (4.118) and (4.119),
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A% = —(N'/N")As and A’v = —(N'/N")Av; substitution of these equa-
tions into Eq. (4.122) and combining the results with Eqs. (4.117) and
(4.121) gives

f A 2
AU:@%}[)[(QE)(A) ( )(AL)-{-Q(B )(Amu)} I

(4.123)

For AU to be positive, since Y/,N'N/N" is positive, the second-order
variations with respect to s and v have to be positive. In case the
second-order variations are zcro, higher-order even variations should
be positive. In other words, the first nonvanishing terms of order two
or higher-cven order should be positive. Therefore, stability of the
single-phase state demands that

‘((d u/ds” )(As) + (& u/az, )(AU 207w/ du ds)(AL/\S) >J (4.12.)

The positive definiteness of Eq. (4.121) 1s based on

(Fu/osh), > 0 | (4.125)

R }2 82 2
and TN (FuN A TUN ) (4.126)
3s2 ) \ av? osdv

as was shown before for the positive definiteness condition. The terms in
Eq. (4.1258) and (4.126) are evaluated readily in terms of 7, P, and cy.
From du = Tds — Pdv.{du/ds), = T and therefore
(Fu/osh), = (3T /0s),. (4.127)

From Iq. (3.123) of Chapter 3, {3s/07T), = cy /7', and therefore

(u/ds), = T/cy |. (4.128)

From du = Tds — Pduv, (du/dv), = —P, and (8 u/d*), = —(3P/dv), which
when combined with Eq. (3.128) of Chapter 3 gives

(8%u/007), = ~(cp/cy )OP/dv),. (4.129)

From the expression for du, (du/ds), = T, and (Fu/ asdu), = (81"/ov);.
The expression for (37'/8v), is glven by
(as/au)l (db/ab)y

700 = = s, = e

(4.130)
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Combining Egs. (1.201) of Chapter 1 and (4.130),

(8%1/8s0v) = T@%E"’—T&. (4.131)
Vv
We also can write
_ (Bv/aT)p
@P/oT), = 0P e/Cy, (4.132)

where e is the thermal expansivity and Cp is the isothermal compressi-
bility. Combining Egs. (4.131) and (4.132),

(8*u/3sdv) = —Te/cy Cp (4.133)

From Egs. (4.125) and 1(4.26), T'/cy > 0 which gives ¢ > 0; therefore,
the thermal stability condition is established. This is the same relation-
ship as that developed earlier from the entropy approach. Substituting
Egs. (4.128), (4.129), and (4.133) into Eq. (4.126) and using
(3P/3v)y = —vCp and cp =cy + Tve?/Cp (see Example 3.8 and Eq.
(8.126) of Chapter 3),

T/(cy Cv) > 0. (4.134)

Therefore Cr > 0. Note that since ¢y and Cp are positive for a stable
system, the implication i1s that ¢p > 0 when a system is stable.

Stability analysis in a two-component system

Consider N moles of a binary mixture of composition x; and x, (mole
fractions) at temperature T'and pressure P. Let us compare the stability
of the single-phase system with that of the two-phase system at the
same temperature and pressure. Similarly to the single-component
system 1n the preceding section, we assume N moles of primed phase
and N” moles of double-primed phase, in the two-phase state. The
composttion of primed and double-primed phases are x; + Ax; and
x, + A%, respectively, for component 1 (see Fig. 4.16).

This time we will work with the Gibbs free energy function. The Gibbs
free energy difference between the two states shown in Fig. 4.16 is

AG = Gy phase — Gsingle phaser (4.135)
where ‘
Guuvo phase = N'(& + Ag) + N"(g + A%8)
and Giingie phase = (N + N")g.

Therefore, AG = N'Ag + N"A%. (4.136)
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N',g+A°g,
x, +A°x,
N r ———————
4
N g+ Ag,
X, + Axy
(T,P) (T,P)

Figure 4.16 Stability of a two-component mixture at constant T, Pand .

In Eq. (4.136), Ag is the molar Gibbs free energy difference between
the primed phase and the original single phase, and A’g is the molar
Gibbs free energy difference between the double-primed phase and the
original phase. The constraints (see Fig. 4.16) are constant temperature
and pressure and mole numbers of components 1 and 2; N; = N/ + N/,
i=1,2(N=N,+N,, N=N]+N;, and N =N+ N;). From the
mole constraints,

N'Ax, + N"A%; =0, (4.137)

The molar Gibbs free energy g = g(T', P, x,) and since T and P are held
constant, then

" Ag = (3g/dx,)Ax; + (1/2)(3g/0xi N A%, ) + -+ (4.138)
and A%g = (3g/0x)A %, + (1/2)(3*g/0xt)(A%x,) + - -, (4.139)

where Ax; and A’x, are assumed to be small. Combining Eqgs. (4.135) to
(4.139),

AG = (N'N/2N"X3g/ox)Ax )2 + - - - (4.140)
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and AX” = (AX, AX, ... AX.,,); AX" is the transpose of the column
vector AX = (AX], AX,, ..., AX ;). Note that we have commas between
the entries of the column vector AX to write it on a horizontal line!
There is no comma between the entries of the row vector AX?. The
Hessian matrix, which has a pure quadratic form, is used to study the
problem of maxima and minima for functions of many variables. From
the Taylor’s series expansion of U(X + AX) (see Example 4.1),

UX +AX) = UX) + AXT(VU) + 1/2AX"HyAX
+ higher-order terms, (4.164)

where VU represents the gradient of U. The gradient of I/ when set to
zero provides the stationary point of U(X); at a stationary point,
VU =@QU/X,,3U/aX,, ..., 8U/8X.5) 1s a vector of =zeros:
oU/aX, =0,3U/3X, =0...,38U/3X, 5 = 0 (see Strang, 1988). However,
a stationary point can be either a maximum, a minimum, or a saddle
point. The maxima and minima are, therefore, decided on the sign of
AXTH yAX. Uhas a minimum when AX7 HAX is positive. The Hessian
matrix Hy; should be positive definite in order to have AX TH oAX > 0.
There are various tests for positive definiteness of the symmetric
matrix Hy;. One such test is that all the pivots of Hy; should be positive
(see Strang, 1988). Another test is that a positive-definite matrix has
positive eigenvalues (also see Strang, 1988). For a single-component
system, the dertvations for positive and negative definiteness were
straightforward because of dependence of S or U on two variables.
When the number of variables exceeds two, a knowledge of the positive
and negative definiteness of the Hesstan matrix becomes helpful.

Let us return to Eq. (4.161b) and write it in the form of the sum-of-the-
squares,

c+2 .
d*U =Y 5%7V(Az)° (4.165)
i=1

The expression for AZ; and yghl) will be derived next. Equation (4.165) is

often written without full proof. The criteria of stability and criticality
rely on the use of intermediate steps in the expressions for the sum-of-
the-squares in our derivations.

The double summation can be expanded as

2 c+2 e+2
Jj= =
e+2

= Y [UnAXAX, + UpAXAX, + UpAXAXy+ -], (4.166)
=1
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which can be rearranged to

d*U = Z[UJ1AXAX1]+2[ UpAX,AX, + UyAXAXy + -]

=

c2

= U, (AX,)) + z( AAXAX)) + [Upp AX AX, + UppAX AX + -]
c+2
+ | 2 UpAXAXy + UgAXAX + -+ 1. (4.167)
j=2

Use of Uj; = Uj; and further rearrangement gives

c+2 c+2
d*U = U (AX) + 2 Z UjAX\AX; + ) 3 UpAXAX,.  (4.168)
j=2 k=2

The above equation can be expressed as

2 2
c+2 c+2
d*U = Uy, [AX1 + (1/U11)(§ UUAXJ) :l — (1/U11)(Z UUAX})
J= J=2

c+2 c+2
+Y Y UpAXiAX,, (4.169)

j=2 k=

provided U, # 0. We have already shown that U, = 0 for a single-
component system to be stable; that also applies when there is no
change 1n composition or when composition is held constant for multi-
component systems (see Eq. (4.125)).
The squared single summation (E°+2 U, AXj)2 in Eq. (4.169) in terms
of double summation is
42 ct+2 42 -
%(UleXj)z 2 > Uy U AXAX, (4.170)
J:

j=2 k=2

Equation (4.170) is derived by opening the double summation:

o
+
b
£
N

4 c+

U]}‘UlkAX}AXk - kZ:[UIZUIkAXQAXk + UISUIkAX3AXk + ]

= ([UL(AX,)" + Uy, UpAX,AX; + -]
[U12U13AX2AX3 4 UL(AX)? + -]+

c+2

= Z(UUAX) (4.171)

L
1l
!
=
™
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Defining AZ, and U, a

c+2

AZ, = AX, + (1/Upy) Y (UyAX;) (4.172)
j=2

Ufi} = Uy~ UWUGU,, L kz2 (4.173)

Combining Egs. (4.169), (4.170), and the above definitions,

c+2 e+2 1
U = Uy(AZ) + 3 Y UYAXAX,. (4.174)
j=2 k=2

The double summation in the above equation can be written as (simi-
larly to Eq. (4.169))

2
ct2c+2 c+%
> 2 Up/AKAX, = U“J[Axg U Y UJ?M(?}
j=2 k=2 J=
: c+2 42
—(1/Uss) {2 Uﬂax} +J§:% kz U AX,AX,

(4.175)

provided U;lz) # 0. The squared single summation can be written as
(similarly to Eq. (4.170))

2
c+2 c+2 ¢+2
(Z Ung)i:,-) = Z Z U (AXAXL). (4.176)
J: :'.

=

Define AZ, and U(ﬁ) as
an §5
AZy = AXy + (1/Ugy) > Uy’ AZ, (4.177)
Jj=3

U = [UR ~ /U UU) | k=3 (4.178)

From Eqgs. (4.174) and (4.178),

9 ) c+2 ¢t2 @)
d*U = Up(AZ)Y + URAZ) + 3 ): UG AXAX,. (4.179)
J=8 k=
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The above procedure can be continued to obtain the final expressions:

Uy = Uy j k=1, c+2

U(}?_ U}l ”—(1/Uﬁ 1)) U(z 1)U(z 1)] ik
J,k=2,...,c+2
I=1,...,¢c+2 (4.180)

AZ; = AX; + (1/UL™) 2 USTVAX,  j=1,....c+2

k=j+1

d*U = Uy (AZ) + UDAZ) + -+ USED (AZ, )"

Let us define

0
y(n) = Uy
1 .
Whl=u" j=2.., ¢+ 2. (4.181)

The y(ﬁ) yU U and AZ; in Eqgs. (4.180) and (4.181) define the variables of
Eq. (4. 165) The purpose of introducing y in place of U is to emphasize

that Eq. (4.165) represents not only U but other thermodynamic fune-
tions, H, A, and G.

Alternative expression for U Equation (4.161b) can also be written as

Ull U12 U13
Ui, Up Up Us Uy
U U. U. U :
d2U — U]]_(AZI)Z + U21 22 (AZ2)2 + 31 32 33 (AZ3)2 R
U4 Un Up
U21 U22

(4.182)

This form of d2U is very useful for the derivation of the criteria of stabi-
lity. The key steps in the derivation of Eq. (4.182) are provided below.
The coefficient of (AZ,)? is UL, From Eq. (4.180),

U
Uy = Ugp — (Y Up)(UpUyy) = { U: Ulz

/ Uy,. (4.183)

Similarly, the coefficient of (AZ3)*, UL, is

e ) (4189
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The expressions for UYy, Uy, and Usy from Eq. (4.180) when substituted
into Eq. (4.184) result in

U1 1 U12 Uld
U21 U22 UZ?
Uy Uy U
(2) 2
Uy, =2 Uf’l) 3 (4.185)
22

Other higher-order expressions are obtained in the same manner. The
algebra is tedious, but the method is straightforward. Another compact
form of Eq. (4.182) 1s

c+2 . .
U = S (D5 YAzZY (4.186)
J=1

where /¥ =1, 'V = Uy, and

Ul] UIZ Ulj

) Up Uy - UQj
W=l ' _ j=2 ..., c+2 (4.187)

Ug Up - Uy

Since yclegﬂ = 0 (see Eq. (1.185) of Chapter 1), then Egs. (4.165) and
(4.186) can be written as

c+1 .
d'U =y yi (AZ)? (4.188)
j=1
c+1 . .
and U =Y (V72 %AZ) | (4.189)
j=1

Now we are ready to establish the criteria of stability. From the set of
expressions in Egs. (4.180) and (4.181),

-1 G-2) (-2 (j—2) -
Yi o =i [m]/yim j=2.., ¢+l (4190)

In this equatmn if y(’ 122‘ . and yﬂ’dl approach zero, yJ -1 approaches

zero first and ¥; ]21,_ 1 approaches zero later (provided (y}" =+ 0)). There-

fore, the p081t1v1ty of d?U which is related to the pos1t1v1ty of the coeffi-
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cients of (AZ) simplifies considerably; in place of yg B> 0 for
j=1..., ¢ + 1, one can demand only that
Y er1 > 0. (4.191)

The above simple relationship provides the criteria of stability for
multicomponent systems. When

Yo enn =0 | (4.192)

the multicomponent system ts said to be at the limit of the stability,
3"21{“ provides the locus of the limit of stability (or in fact the limit of
metastability) discussed in Chapter 3. Examples are provided at the
end of the chapter to give a clear picture of stability criteria and their
significance. Let us transform Eqgs. (4.191) and (4.192) in terms of more
familiar variables. From Eq. (4.181),

YOUX, Xy X)) = U VNN, . N, (4.193)

where yL‘iMH 1s simply

¢1 1= \avs —~ - . .
e ch+1 C,.Co . Co X\ 0Xeca C.Cp. . C X

o+

From Eqgs. (1.183) and (1.184) in Chapter 1,
Ci=T.Co=-P C3=u3....,Co=pte 5, Copy = fhey

and
e
Ne /Y i wac+1c+1 =1 —x. 1)/ZN(dx 1)
1S TPy gy oo

Therefore, for a stable system,

(Oe—1/0%c_1)7 Py gy > OW. (4.195)

The expression given by Eq. (4.195) implies that for a c-component
system to be stable, (8u,_;/dx..;) should be positive at constant
T,P,uy, ..., l._s, which is inconvenient in terms of the variables to
which we are accustomed. Figure 4.19 is a plot of u._; vs. x._y. The
curve [ has a positive slope and therefore is stable. The curve II shows
the system can go through a two-phase region; between B and C,
(dp._1/0x._1) 1s negative and the system is unstable. We will transform
Eq. (4.195) in terms of the variables that are convenient for a pressure-
explicit EOS in the examples at the end of this chapter.
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Figure 4.19 Plot of i,_, vs. x._;.

Criticality analysis

In the derivation of the criteria of criticality, we will first use a simple
approach that relies on geometrical representation. Then an alterna-
tive approach will be presented which is more suitable for multicompo-
nent systems with a large number of components.

Consider the vapor-liguid critical point of a single-component system
by studying the P—v graph shown in Fig. 4.20. In this figure, the spinodal
curve is represented by the dashed curve and the binodal curve by the
solid thick curve. The P-v isotherms at four different temperatures
T, Ty, T,, and Ty are shown. Points B and C represent the limits of
stability at temperature 7. Points B’ and ' represent the same limits
at temperature 7T,. According to the criteria of Eq. (4.115), the limits of
stability at temperatures 7) and T, are obtained from (3FP/dv)p, = 0
and (8P/dv)y, =0, respectively. Note that between points B and
C,(3P/dv)y, > 0, and this is therefore the unstable segment of the
isotherm. Also note that the curvature changes between B and C there-
fore, an inflection point where (0P?/ sz)Tl = () exists hetween these two
points.

There 1s another requirement for the inflection point; the third deriva-
tive (odd derivative) should be nonzero. At T, which is higher than 77,
points B’ and ' are closer together than are points B and C, and the
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.
-

» v

Figure 4.20 P-v plot for a single-component system.

inflection point (3*P/3v%) 1, = 0 is an unstable point. As the temperature
approaches T,, the two limits of stability and the inflection point coin-
cide, and since the inflection point 1s now located on the binodal
curve, the inflection point (82P/8v2)TC =0 is a stable point. Points A
and D and A’ and I represent equilibrium phases at T, and T, respec-
tively. Toward the critical point, the points corresponding to A and A’
and D and IV also coincide with the limit of stability. At the critical
point, the gas and liquid phases can be transformed into each other
without going through the two-phase region, which implies the continu-
ity of gas and liquid states. The criteria for the critical point of a
single-component system are, therefore,

(3P/dv)p = (8°Pjov’)y =0,  (PP/av’)y <0]. (4.196)

The last relationship in Eq. (4.196) implies that the critical point is
neither a maximum nor a minimum. This inflection point from the alge-
braic standpoint has to have a nonvanishing odd-order derivative (see
Example 4.3).

Now let us examine the graph of Helmholtz free energy, A vs. v, at
constant temperature; A(T, v) 1s a function of temperature and volume
and a natural choice as the thermodynamic function for the criticality
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Figure 4.21 Plot of A vs, v for a single-component system.

criteria. Figure 4.21 shows a schematic diagram of the A-v plot for a
single-component system. |

From the general criteria of stability given by Eq. (4.191), ylez) >0
for a single-component system. If y@ = U, then yY =A and
Yoy = (PA/0V:)p y from dA = —SdT — PdV + udN. The stability is,
therefore, given by (2A4/0V%)y x > 0 or (¥ A/8v%)7 > 0, and the limit of
stability by (3?4 /3v?); = 0. Let us now examine the isotherm at 7} in
Fig. 4.21. In the stable segment, (3*°A/8v*); > 0, and in the segment
between B and C, (3*A/ 8v2)T < 0, implying 1nstab111ty Note that when
(FA /81)2)T < 0, the Helmholtz free energy curve is convex (like the
surface of a ball as seen from inside). Points 4 and D are on the concave
side, (°A/ 8!)2)Tl > 0, and are stable. Since these two points have a
common tangent, (JA/0v)p, |ga = (3A/) 1 |@p, they are at the same
equilibrium pressure. Between B and C because of convexity,
(®A/8v%)y, > 0. As the temperature rises, points B’ and C' get closer.
Finally, when T = T, points corresponding to B’ and C' as well as A’
and I) coincide. At the critical point,

@A/ )y =@ A/0)y =0, (FA/0), > ﬂ. (4.197)

At temperature, Ty > T, (?A/3v?) > 0 and the system is stable.
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Now let us examine the criteria of criticality for a multicomponent
system. The criterion of stability is 3’531, cr1 > 0 (see Eq. (4.191)), and
since y(cﬂl‘cﬂ = (0C41/8X.11)¢, c,....C, X, then for a phase to be stable,

(3Ces1/0Xev1)e,. €. Xy = O (4.198)
Let us examine the curve for C., vs. X, at fixed C;,..., C, X_,,.
Figure 4.22 shows three curves; for each curve, the G, ..., C,, X, vari-

ables are fixed. The fixed variables for each curve are selected in such
a way that curve [ is in the two-phase region, curve II passes through
the critical point, and curve IIT stays in the singe-phase region. For
curve I, B and C are the stability limits; these two points are
obtained from (3C.,,/0X.1)¢, c,.. c.x.,, = 0- At the inflection point, E,
between B and C, (82Ccﬂ/E:U(CQH)C1 ‘‘‘‘‘ c.x,, = 0. Between B and
C(Cer/0X 11)e,. ¢, x.., <0, which implies instability. As X, 1s
varied, curve I may move upward and points B and C come closer
together. When points B and C and inflection point E coincide,

(3C.41/0X s )e, . cox.,, = @FCorn/0X e, o x,, =0,
(4.199)

e+l

> Xc+l

Figure 4.22 Plot of C,,, vs. X, for a c-component system.
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In terms of ¥, the criteria of criticality are

(c) _ () _ {c)
3’;+1‘c+1 =0, Yetletlier1 — 0, Yetlo4lc4+1.041.041 = 0. (4.200)

The inequality provides the criterion that the critical point is an inflec-
tion point. If the third derivative vanishes, the next higher-order odd
derivative should be positive. We will use the above criteria to establish
the critical point for a pure component and for binary and multicompo-
nent systems.

Single-component fluid. For a single component, y(212) _ygz’z =0 and

Yoo > 0. From 0 = U, dy”) = —SdT — PdV + udN (see Eq. (1.175) of

Chapter 1). Therefore, y5) = (3yV/aV)p y = =P,y = —(3P/8V)p 5 =
(1) 2 2 (1) 3 3 :

0, y990 = (=0°P/3V?)p y =0, and yy9, = (—0°P/3V°)py > 0. Since

V = Nu, then (3P/dv); = (32P/3U )p =0 and —(8°P/dv¥); > 0 where

T = T.. These are the same expressions as Egs. (4.196).

Two-component fluid From Eq. (4.200), y3 3 = yg%)a =0 and yq33 5 > 0.

Rewriting Eq. (1.176) of Chapter 1,

dy? = dG = —SdT + VdP + p,dNy + u,dN,, (4.201)

(2) o ) . 9
where % (aym/aN 7PN, =, Yas = (011 /AN p py, = 0, Yy =
(03 /0N 7 p. v, =0, and yqrm = (013 /0ND) 1 p. n, > 0. The above expres-
sions in terms of mole fractions can be written as

Oy /3x1)p, p = (93 /3x1)p p =0

(0p3/9x)y p > 0

, (4.202)

where x; = Ny /(N; + Ny), (3ﬂ1/8N1)T,P.3\»'2 = (alul/axl)T.P(axl/aNl)T.P.Ng!
and (axl/aNl)T‘P‘Nz = (1 - xl)/(Nl + NQ)
In terms of fugacity, (dy, = RTd Inf))r, then

(3!11/33‘71)7’.}7 = (RT/fL)(afl/axl)T‘p,
(Puy /0x3)p p = RTI(—1/F0f /02,5 p + (1/F )3, /8% x) 1 p),

and for the third derivative a similar procedure is applied. The criteria
of criticality are, therefore,

(0f/8x1) 7 p, = 0, (Ff1/0x)r p =0, and (8°f,/8x)p p > 0.
(4.203)
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Multicomponent fluid Equations (4.196) and (4.203) derived from the
criteria of criticality are in a form that can readily be used to calculate
the critical point of a single component and a binary mixture For a
three-component system, the criteria are of the form y4{1 =0 and
y3 =0. Let us use y® = U(S, V, N}, Ny, Ny). Then dy® = —-SdT +
VdP — N1dH1 +Z; o 1;dN; (see Egs. (1.21) and (1.181) of Chapter 1)
and y4 = uy. Therefore, at the critical point for a ternary mixture,

(3,&2/3N2)T‘P_p1_N3 =0 (4204)

(313/0N 1 p v, = 0. (4.205)

The inequality constraint, yﬁ@ > 0, results in (®uy/dNp p o, >0,

which is generally not tested. One may apply a stability analysis check
on the critical point,

The above equations are not very practical to use! How can we keep yy
constant when a system 1s undergoing a change? An alternative proce-
dure may be more convenient for the calculation of the critical point of
mixtures with three or more components. Since we often use a pres-
sure-explicit equation of state, P = P(V, T, N), the following deriva-
tions are almed towards the use of such equations. The first equation
for criticality can be written as

Yoy opr = AT/, (4.206)
where /'s are defined in Eq. (4.187). Since yﬁl .41 = 0 at the critical
point, therefore

A€t - g, (4.207)

The second equation for criticality is y +1 e+l.e41 = 0, which 1s

(Byﬁl.c +1/8X,.1) = 0. Taking the derivative of Eq. (4.206) with respect

to Xc+1=
2
1
W heren = 00 =012 =0 @209)
Since 2™V = ( at the critical point, therefore )E‘_’;” =0, where the

~{c+1}

subscript ¢ + 1 is used to denote the derivative of A with respect to

variable X, .

per) _ [81“*”/8 1]C1 """ C.X%:o. (4.209)

Using the Jacobian transformations discussed in Chapter 1,

Jern) _ HCy, ..., Co ATV X, 10)
A, G Xy, Xos)

— Q. (4.210)
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The above equation can be reduced to

8(Cy, ..., C, 2D

, =0. (4.211)
HCy, ..., C,, Xt‘ﬂ)'c].

Xc+2

The reduction is intended for the use the Helmholtz free energy
A =A(T,V,N). Dividing the numerator and denominator by
aX,, ..., X, ) (see Eq. 1.185),

Gy, ..., C., 2N a(X,, ... X, X

= 0. 4.212
(Cyr s Cos 2en WXy o X Ko | (4.212)
In determinant form,
(aC,/3X,) (0C,/0X3) -+ (8Cy/0X..;)
(0C./8Xy)  (8C./0Xy) -+ (8C/3X.;y)
PATD/0X,) (@ATV/0Xy) oo @ATV/8X )| (4.213)
(0Cy/0X,)  (0C,/8X5) ... (9Cy/0X.q) | '
(3C /39Xy (8C/3X5) ... (3C./0X. 1)
(0X,,,/0X,) (0X,,./0X5) ... (8X,,/0X,.,,)
Since (0X,,,/0X;)=0 for i=2,..., ¢ and =1fori=c+1, assuming

that the resulting determinant in the denominator is not zero, then
the numerator is zero. The (3C;/3X)) elements are in the form yf}),
since for all of them €, and the Xs are held coFstant, 1.e.,
(BCo/9X0)e, x,... X, =Yoo and (3Cy/0X3)c, x, %, X, =Y (see Eq
(1.183) of Chapter 1). From Eqs. (4.207) and (4.213), we can write the criti-

cality conditions, respectively:

[
(1) () {1}

Ya9 Yoz 0 Yaen

yc,2 yc,B U yc,c+1

(1 (1) (1)
Yerr,2 Yer13 70 Yetlest
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©» O )
Yaz Yag v Yaet1
and ' ' ' =0 (4.215)
(1) (1) (N
Ye2 Ye,3 ot Yoot
{c+1) (c+1) {c+1)
Ay A e )°cc-+1

Since yU' = A(T, V, N, ..., N.), the elements of the above equations
can be expressed as the derivatives of A with respect to V and
(N{,N,,...,N._;). The above set of equations were used by Baker
and Luks (1980) to calculate the critical points of multicomponent
systems.

Alternative approach for critical-point
calculation

As we have already seen, the critical point can be calculated in a variety
of related ways. However, the basic expressions that define the critical
point involve setting two determinants equal to zero (that is, Eqgs.
(4.214) and (4.215)). Of the two determinants, one (that is, Eq. (4.215))
requires much effort, especially for multicomponent systems; it is neces-
sary to evaluate the derivatives of certain determinants.

In 1980, Heidemann and Khalil introduced an alternative approach
for the calculation of the critical point that 1s mathematically different
from the expressions in Eqgs. (4.214) and (4.215), but the concept is not
different. As we have already seen, the critical point 1s a stable point
at the limit of stability. Let us expand on this concept. Consider the
P-v diagram of a multicomponent system of fixed composition sketched
in Fig. 4.23. The thick solid curve on the left represents the bubblepoints
and the thin solid curve on the right represents the dewpoints. The
bubblepoints and dewpoints are stable equilibrium states; a perturba-
tion in P, for example, results in a stable state. Critical point CP is the
point at which bubblepoint and dewpoint converge and in addition to
being a stable state, it is at the limit of stability. These two features
were used by Gibbs in 1876 to derive the expressions for the critical
point. We will repeat the use of stable and stability limit concepts in a
more straightforward approach in this section.

Let us consider the Helmholtz free energy of the closed ¢-component
system at constant T and V sketched in Fig. 4.24. The perturbed two-
phase state consists of N' moles of the primed phase and N” moles
of the double-primed phase. We assume N” « N’. Similar to the U
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Limit of

stabi]ity\

stable

stable

Limit of
stability

-}

Figure 4.23 Critical point representation in a multicomponent
system.

representation, the Helmholtz free energy change from single-phase to
two-phase state is given by

AA = AA +AA", (4.216)

where AA" and AA” are the free energy changes of V'V moles from the
original single-phase state to the primed phase, and the free energy
change of N” moles from the original single-phase state to the double-
primed phase, respectively. The restrictions of the Helmholtz free
energy change are

AV=AV +AV" =0 (4.217)

T = constant. (4.219)
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AN
N’
N=N+N" N A"=N"d"
= I r ! V’:N’v,
A= Na A =N
V =~Nv Vf:erf
(T'!V’ﬁ) (T$V1£)

Figure 4.24 Stability of a multicomponent mixture at constant 7.V, and N,

Variables AV’ AV”, AN/ AN/ are defined in Egs. (4.150} and (4.151).

Manipulations similar to those for Egs. (4.152) to (4.158) result in the
following expression for AA:

AA — 17201 + (N”/N”)]I S (P A/8N,ANJANAN,) + (PA/dVIAVY

i=1j=1

+ f(a2 V /3N dVYAN;3V)

=1

ey

+1/31[1 — (N'/N")] l >3 Y(PA/ONAN;ONY)
i—1 j=1 k=1

x (AN;AN,AN,) + (P A/aVHA V)

+ 30 Y (P V/aVaN N YAN,AN,AV)

i==14=1

+ higher-order terms.

(4.220)

Let us represent the second- and third-order variation by d24 and d3A
without the coefficients [1 + (N'/N")] and [1 — (N'/N")?*], respectively.
For the original state to be stable, AA > 0, which requires d*A4 > 0. If
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d?A = 0 then d*4 should be zero and d*A > 0. Note that the coefficient
of d*A,[1 + (N'/N")%, is positive. Therefore, at the critical point

d?A =0 (4.221)
d*A =0 (4.922)
diA > 0. (4.223)

If d*A = 0, d°A should be zero, and the next higher-order even term,
that is, d®A should be positive, and so on. d?A = AXTAyAX where
AXT is the row vector AXT = (AV AN, AN, ... AN,), AX is the column
vector AX = (AV, AN, AN,, ..., AN,), and Ay is the Hessian matrix A
given by

Avy Ayn - Ayn

(.‘

Ay = : : (4.224)
Anv Any, o AN,

For d?A > 0, the matrix Ay should be positive definite. The matrix
Ap 18, positive definite if the principal submatrix By is posttive definite
(see Strang, 1988). The principal submatrix By is obtained by removing
any ith row and ith column of Ay, i =1, ...,(c + 1). Therefore, By is an
n X n matrix, whereas Ay 1s an (n+ 1)(n + 1) matrix. Heidemann and
Khalil (1980) based on physical grounds argue that when
AV/V =(AN;/N;) =kforalli =1, ...c(kis a constant), such variation
does not qualify as a variation in the phase; the Helmholtz free energy
A 1is simply multiplied by the constant k. Therefore, the quadratic,
cubic, and higher-order terms can be contracted to eliminate the case
of AV/V = AN;/N; =k, it =1,...,c. The criticality in the contracted
(by removing volume variable) form can be written as

5" 3 (RA/8N,0NAN,AN;)

i=1j=1

ANth e AvaNc ANI 0
= (AN;AN, ...AN,) : 5 : =] (4.225)
1‘-‘»;\;,N1 e ANC.NC AN 0
and
[ ¢ [ 44
> Z(?A/BNiBMBNk)(ANiAMANk) =0 (4.226)
i=1 j=1 k=1
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The inequality constraint given by Eq. (4.223) is generally not tested.
Heidemann and Khalil (1980) have proposed the use Egs. (4.225) and
(4.226) to calculate the critical point. One distinct feature of the critical-
ity criteria in terms of Egs. (4.225) and (4.226) in comparison with Egs.
(4.214) and (4.215) is that the vector AN should be evaluated. Equations
(4.214) and (4.215) bypass this step. At the limit of stability, the quadra-
fic term represented by Eq. (4.225) is positive semidefinite; there will
be some variations in the phase for which the quadratic is positive, but
for some other variations it will be exactly zero. These variations will
make the cubic form in Eq. (4.226) zero.
From Eq. (4.225), it follows that the determinant

AnN, 0 Ann,
. |=0. (4.227)

Av N, 0 AN

[

When the above determinant 1s zero, then from Eq. (4.225),

Ann, o AN (AN, 0
An.n, o ANnN. AN, 0

which can have a nonzero solution. By fixing one of the
ANis(i=1,...,c), other AN;s can be found from Eq. (4.228). With
vector AN = (AN,,AN,, ..., AN,), the cubic form of Eq. (4.226) can be
solved. In other words, Egs. (4.225) and (4.226) can provide two
unknowns such as critical pressure and critical temperature or any
other two unknowns. Note that Eq. (4.227), which provides the limit of
stability, is the same as the result from Eq. (4.214), when instead of the
vector (V, ANy, ..., AN__,), the vector (AN, ..., AN,) is selected. Also
note that in Eaqs. (4.225) to (4.228), we could have selected the vector
(AV,AN;,...,AN,._ ;). There are certain advantages in the vector of
AN = (AN, ..., AN,) (see Problem 4.11).

In the following, we will further discuss the use of Eqs. (4.225), (4.227),
and (4.228) for the calculation of the critical point of a single-component
system and binary and ternary mixtures. We will also use Eq. (4.215)
for the binary mixture to show that more computational effort is
required in the calculation of the critical point when the cubic Eqg.
(4.226) 1s not used.

Single-component fluid For a pure substance from Eq. (4.225),
d*A = AN'N(AN)z = 0, and from Eq (4226) d3A = AN,N.N(AN)s = 0 are
established at the critical point. Assign a nonzero value to AN, then
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Ayn=0, and Ayyn=0. From dA = —-SdT — PdV + udN, one
obtains (8u/0N)p y = 0 and (8%u/IN%) 1 v = 0. If AV is selected instead
of AN, one obtains (3P/3V)r 5 = 0 and (3°P/3V?); » = 0; these are the
same expressions as in Eq. (4.196).

Two-component fluid. For a binary mixture from Eq. (4.227),

Ay nAn, N, — Ak N, =0 (4.229)

From Eq. (4.228),
Ay N ANy + Ay v AN, =0 (4.230)
Ay 3, AN, + Ay AN, =0 (4.231)

Using Eq. (4.229), both Egs. (4.230) and (4.231) collapse into the follow-
ing equation,

Ay AN, + Ay, y AN, =0 (4.232)
We canset AV, = Ay n,, then AN, = —Ay .. From Eq. (4.226),
AN NN, (AN,)” + AN, N,.N, (AN,)* + 3AN N, N, (AN )*(ANy)
+ 345 N, 5, (ANDANY =0 (4.233)
Substituting for AN, and AN, in Eq. (4.233), we obtain
Ay v A a) — Any v, (A ) — 34k N v (An v, ) (A, x)
+ 3AN,.Ng.Nz(ANI‘Nz)(AN,.N1)2 =0 (4.234)

Substituting for A?\H‘Nz from Eq. (4.229) in the first term of the above
equation results in

i
AN, N, AN AN, ) = ANy, 8 A, 3 = AN, NN (AN, N,
+3AN, NN, (AN, N, AN ) = 0. (4.235)

Equation (4.235) provides the same expression as Eq. (4.214) when AN,
and AN, are selected in place of AV and AN,. However, Eq. (4.214)
requires much additional work. We need to find the derivative of the
determinant in Eq. (4.214) with respect to Ny;

AN, N AN, N, T AN, vnAN N, — 2AN N, AN NN,
and N,;

ANl‘leNzANz,N2 + ANLMANz'Nz‘Nz - 2ANIsN2ANl~N2vN2'
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Then these derivatives should be substituted in appropriate entries of
the determinant in Eq. (4.215). We also need to combine the result with
Eq. (4.229) to obtain Eq. (4.235). '

Three-component fluid. For a three-component system, Eq. (4.227)
results 1in

- An N(AN AN N, — ANN) — AN n(An, AN N, ~ AN, N AN, N
+ AN, N (AN, N AN, N, — AN, N, AN, N,) = 0. (4.236)

From Eq. (4.228),

An.n, Ann, Ay \ (AN 0
An, v, Ann, Ann, [LAN, |=]0]. (4.237)
An,n, AnyN, Awn,N, J \AN; 0
and from Eq. (4.226)
Ay, v, 5 (AN + Ay, 3, v, (ANY + Ay, v (AN

+ 34N, n, N, (AN (AN,)

+ 3An, N, N, (AN (ANG) + 3AN1,NZ,N2(AN1)(AN2)2

+6Ay, n, n,(AN;AN;ANy)

+3Aw, N, 5, (ANDANY' + 34, y, n, (AN AN3)

+3Ap, N, N (AN )AN,)? = 0. (4.238)

There are different ways to solve the above system of nonlinear equa-
tions (Egs. (4.236) to (4.238)) to obtain two unknowns at the critical
point. Heidemann and Khalil used Eq. (4.236) to solve for the critical
temperature at a given critical volume, and then used the result to
obtain AN, and AN; in Eq. (4.238). Note that one AN, e.g., AN;, can be
fixed. With values of AN known, Eq. (4.238) is used to estimate critical
volume. With known critical volume and critical temperature, the
EOS is used to calculate critical pressure. Use of the nested calcula-
tions was successful for every mixture that had a vapor-liquid critical
point, including mixtures with more than 40 components (Heidemann
and Khalil, 1980). It should be pointed out that some mixtures may
have more than one critical point for any given composition and some
may have none.

Michelsen (1982b) and Michelsen and Heidemann (1981) have
proposed methods for computational variation of the critical-point
calculation. Michelsen’s method relies on numerical differentiation of
a single variable to abtain the cubic form of Fq. (4.226).
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Examples and theory extension

Example 4.1 Write the expression for the Taylors series expansion of the
internal energy U = U(X) = U(X,, X,. ..., X..2) around point X in vector
representation.

Solution The Taylor’s series expansion of U around the perturbed point X
can be written as

c4-2 1 c4+2e42

UX+AXy=UX)+ 3 UAX;+ . 3 3 UAX AKX, + higher-order terms,
i=1

2! =] j=1

where U, = (aU/4X;) and Uy; = (8°U/8X;3X;). The second term on the right
side of the above equation can be written as the inner product or the dot
product of the transpose vector AX” = (AX,AX, ... AX,.,,) and the gradient
vector VU = (80U /3X,,8U/3X, ... 8U /80X, 5)

JU/0X,
, 9U joX cr2
AXTVU = (AX,AX, .. . AX,,5) f P =3 UAX,
. =1
BU/0X,,

Matrix multiplication is used to derive this equation. We also use matrix multi-
plication to show that

Ui Uz o Uieys AX,
T Uz Uy - Upess AX,
Uc+2.1 UC+2,2 T U{-+2,c+2 AXC-J.»Z
AX,
c+2 c+2 c+2 AX2
- (2 UsbX, 3 UpAX,.. 3 Ui_c+2AX£)
AXota
e4-2 42

f

U,AXAX,

1
L
S,
i

Example 4.2 The initial estimate of the K; values for the calculation of three-
phase vapor-liquid equilibria (VLLE) can be made from the following expres-
sions.

K£V = J’f/x{ -= (P{(z)/q);;ref
KF = /2l = oL, i/0}(2)
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In the above expressions x! is the mole fraction of component i in the reference
phase, which can be the light liquad phase. The definition of other parameters
are: x!/ is the mole fraction of component { in the heavy liquid phase (phase
1), », the mole fraction of component i in the vapor phase; cp" (2) and (,a” (2}
are the fugacity coefficients of component i in the reference phase I and phase
II, respectively with the overall composition z; (ppure ; and (ppm ; are the fuga-
city coeflicients of pure component ¢ in the vapor and liquid phases, respec-
tively. Trebble (1989) suggested the above expressions for VLLE calculations.

What is the basis of those two expressions?

Solution Consider Eq. (470), and assume that the feed composition 1s the

same as the light liquid phase composition xf = z;. If the amounts of the

vapor and heavy liquid phases are very small, then from Eq. (4.70),
InY; = Inx! —Ing,) + Inp,(x")

1nXL-” =ln xf —~1In (pi(xH) +1n (pi(x")

Now assume that ¢,(y) = pm .» and ¢, (xh) qopm ;» then from the above two
expressions,
i
KVL _ Y, edx)
R L
3 pure t
H
LL _ x:'r - (Ppurei
i X;'H fPi(xI)

Note that x! = z;, and Y; and X}! are close to normalized values y;, and x//,
respectively.

Example 4.3 Derive the criteria for the maximum and minimum of a single-
variable function.

Solution Let us write the Taylor’s series expansion of f(x)} around x =

s R "0
o= ¥ e — o+ £ 0
where fI9(0) = f(0), and f, f2, .., are the first-, second-, and higher-order

derivatives of f, respectively. At the stationary point, f(0) = 0; to develop the
criteria for-a maximum or minimum, one needs to examine the higher-order
derivatives at x = 0. Close to the point x = 0,

(m) "
Fa) — oy ~ L0
.

where m is the first nonvanishing term of the Taylor’s series expansion. If m is
odd, the function f(0)x™/m! may look like the graph in Fig. 4.25a. The func-
tion f(x) has an inflection point at x = 0. However, if m is even, depending on
the sign of f/™(0)x™/m!, one may have either a maximum or a minimum. If
fU™(0) is positive, the graph of f(x) — f(0) vs. x may look like the sketch in Fig.
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4.25b and if f™™}(0) is negative, f(™)(0)x™ /m! vs. x may look like the sketch in Fig.
4.25¢. Therefore, for f(x) or f(x) — f(0) to have a maximum at x = 0, the first
nonvanishing higher-order odd derivative of f(x) should be negative (see Fig.
4.25b). Similarly, for f(x) or f(x) — f(0) to have a minimum at x = 0, the first

nonvanishing higher-order even derivative of f(x) should be positive (see Fig.
4.26¢).

FNx™ /m

F70)<0 S "0y>0

1
1
1
i
]
A

)
Y

b
~

{a)odd m

Fm0Yx™ [m)
4

f{ﬂﬂ (O) <0

X

(h)even m

£y 2" [m!

SP0>0

> X

Figure 4.25 Plots of f(x) — f(0) ~
FO)™ fml vs. x.

(c)even m
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Example 4.4 Derive the following expressions:
2 ! i
N U - N FU
3N;3N; aN;aN,
FUY (80 U\
N’ 2fv v — (N" 2(v ~
o (28 -2

. 32 83U 2 2 83U !
&) (aNl-aNjaNk) =) (aNiaNjaﬁ;) '

Solution To derive the first expression, we write

(3*U/8N;0N}) = 8/3N,(3U /aN ¥,

where (8U/3N;) is at the original state and is equal to y;. Similarly, (3U/aN,)"
is at the original state and is equal to ji;. Therefore,

(U/ON;0N}Y = (du;/N,).

Next we can write 3/dN] = (3/9x;)(0x,/3N]), where x; is the male fraction of
component i in the original smgle phase state. Smce x; =N/ Nl =

N/N', then
9 fox,] a7 & (NP 1 9
ey e —,) =g (L= x)
dx; | ON; | ox; [NV \ N N’ ox;
a 1 d
and therefore, BN’ N’_(l — x|
.. a 1 4
Similarly, N7 = NI (1 —x;) |.

Combining the above results would lead to the first expression.
The derivation of the second expression is straightforward:

(8°U /8% = 3/3S'[6° U /8% = (8/908' W8T /38y
Since at the original state, S’ = N's, then
(U /8% = (1/N'Y(3*T/0s%).
Similarly, (33U /88%)" = (1/N"Y(8*T/as%).

Therefore, (N @ U3S%Y = (N"Y(@PU/aSPY".
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The third expression is derived in a similar manner. Higher-order derivatives
follow the same trend:

(N)H@U/8SYY = (N U/aSYy .

Example 4.5 Criteria of criticality in terms of derivatives of G Derive the
criteria of criticality in terms of the derivatives of G.

Solution We can start from Eq. (4.210) and reduce it to

HCs. ..., Cp AT —0
HCo - Ce Ky g g
Dividing the numerator and denominator by 3(Xs, ..., X, 1)
HCs o, Cos A7) /8K, - X Xoh) g
HCo. oo Co X0, Ko Kol oy
Since Cy, C;, and the Xs are held constant, (3C3/3X3)c,.c,.x,..X.., =
Y532 0C3/0X 11 )c, 0 X Ky = Yoosys €tC. (see Eq. (1183) of Chapter 1), AletD =
0 can be expressed as

@ ) 42
Yas Y34 o Yien
et — | ' ' ' =0 |, (E4.5.1)
£2) (2) (2}
J'C,S Ye.d e Yool
2) (2) (21
Yer13 Yerr1.4 0 Yerlerl

and the second criterion becomes

(2) (2) A2
Yagy Yag 0 Yaeql
' ' ’ ' =0 | E4.5.2
(2) (2} {2) ( )
yc‘S Ye.d o Yeeq
(c+1}  1(c41) (e+1)
’13 Ay T et

From y® = G(T P, N), one obtains ¥ = (G/aN,)% p ~, and all the other
elements of the two determinants above. Therefore, only derivatives of G with
respect to N are required. These are the set of equations that were used by
Peng and Robinson (1977) to predict the critical points of multicomponent
systems.
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Example 4.6 Show that for a stable binary homogeneous phase, the following
inequalities should hold:
(@) (g/3Tp, <0
(b) (g/oP%p, <O.
Solution For a stable homogeneous phase, whether a pure component, a
binary mixture, or a multicomponent system, the heat capacities cp and cy
and the isothermal compressibility C; should be positive. The derivations for
a single-component system were presented in the text. Example 4.10 provides
the derivation for Cr. The derivations for ¢y and cp are straightforward (see

Problem 4.8).
Let us write the expression for dG of a multicomponent system,

dG = —8dT + VAP + 3" udn,.

i=1
At constant moles,

[dG = —8dT + VdP),.
Then (0G/3T)p, = —S

and (PG/aT%p ,, = —(85/8T)p .

But (85/07)p ,, = ncp/ T (see Eq. (3.110)).
Since ¢p > 0, then

(3°G/aT")p, <0
and for a binary system to be stable
(8g/8T™)p,,, <0.

The second relationship, (82‘.‘;’/31‘32)3,«_Jcl < 0, can be obtained from
(0G/aP)y , = V

and (@G/3P) g, = (BV/0P)y,,.
Since (E)‘V/Ellf’);r_E = —VCyp and Cr > 0 for a stable system, then

(@g/oP%)p, <O.

Example 4.7 Stability of pure substances and binary mixtures The purpose of
this example is to have an appreciation of supersaturation in pure hydrocar-
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bons and binary mixtures. Supersaturation can be defined as the difference
between the equilibrium pressure at the saturation point and the pressure at
which an infinitesimal amount of a new phase 1s formed. The temperature is
held constant in the process.

(a) Consider pure hydrocarbons nC;, and nC,. Calculate the limits of stability in
the gas and liquid states. Plot the results on a P-T diagram and compare
them with the vapor pressure curve. Skripov and Ermakov (1964) have
measured the limit of stability of liquid nC; and nC,. Compare the results of
calcutation with the measured data of these authors.

{b) Compute the stability limits of a mixture of 70% C, and 30% nC;, a mixture of
70% C, and 30% nC,, and a mixture of 70% C, and 30% nC;, both in the gas
and liquid states. Plot the results on a P-T diagram. Show also the saturation
pressures of the above systems on the P-T plots.

Solution (a) For a pure substance, the stability limit 1s given by the first
expression of Eq. (4.196), (8F/dv)y = 0. The PR-EOS can be used to evaluate
(AP /dv)y = 0. The results are presented in Fig, 4.26 for both the vapor and
liquid phases. In the same figure, the experimental data of Skripov and Erma-
kov (1964) for the liquid-phase stability limit are also presented. Note that
there is qualitative agreement between the experimental data and calculated
results. The difference between the pressure at the limit of stability and the
vapor pressure at a given temperature i1s the maximum supersaturation in
pressure. Note that close to the critical point, supersaturation is small.

Figure 4.27 provides the calculated limit of stability for the gas and liquid
phases, the vapor pressure, and the measured limit of stability for the liquid
phase (Skripov and Ermakov, 1964) for nC.. The PR-EOS was used in the stabi-
Iity limit calculations. The results presented in Fig. 4.27 for nC. are very simi-
lar to the results in Fig. 4.26 for nC;. Similarly to the nC;, the supersaturation
in pressure for nC- (at a given temperature) is higher for the liquid phase
than the gas phase. Note that because of supersaturation, the pressure in the
liguid phase can be zero or even negative.

(b) The limit of stability for a binary mixture is caleulated from
(3f,/0x1)7 p = 0 (the first expression in Eq. (4.203)). The results of the calcula-
tion for the C,/nC; mixture are presented in Fig. 4.28a. The same figure also
shows the saturation pressure. Note that on the bubblepoint side over a large
range of pressure in the neighborhood of the critical point, the supersaturation
in pressure is negligible.

Figures 4.28b and 4.28c¢ show both the stability limits and saturation pres-
sures for the C,/nC,; and C,/nC;, mixtures. The results are very similar to
those presented in Fig. 4.28a for the C,/nC, mixture. The maximum supersa-
turation in pressure for the liquid state becomes more pronounced for the
C,/nC,q mixture than for the C;/nC; and C, /nC; mixtures.

Example 4.8 Various derivatives of the Helmholiz free energy for the PR-EOS
Derive the expressions for the following derivatives using the PR-EOS:
(34/0V), (PA/OVE), (8BA/0V?), (BA/3N)), (FA/BVAN)), (FA/ANON;), (FA/
aV3N;3N;), and (83 A/IN;dN;aN,).
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35
30
25
20
15
10
5
0 4 P Vapot pressure
4 a  Limit of stability for liquid phase {measured)
-5 N = —Lmit of stability for vapor phase {calculated)
. = = = Limit of stability for liquid phase {calculated)
.1 0 ’
-15
-20
300 350 400 450 500
K

Figure 4.26 Limit of stability for nCs in the gas and liguid states.

P, bar

Solution Software such as Mathematica have made life easy for deriving

550

the

expressions for derivatives of the equations of state. Earlier, such softwares
were not available and apparently Baker and Luks (1980) spent considerable
effort to derive the above derivations for the SRK-EQOS, although the deriva-
tions for this EOS are much simpler than those of the PR-EQS. In the follow-

ing, the derivatives from Mathematica are presented.

30 t —em=— Yapor pressure cp

& Limit of stability for liquid phase (measured)
= = = Limit of stability for liquid phase (calculated)
20 t — — Limit of stability for vapor phase (calculated)

25 7

20 + ——

35 “

300 350 400 450 500
T‘ K

Figure 4.27 Limit of stability for #C; in the gas and liquid states.

550
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Figure 4,28 Calculated saturation pressures and stability limits for three binary hydrocar

bon mixtures {(x,; = 70%).

The PR-EOS can be written as (see Eq. 3.6)

p_ NET _ o
V-2 V(V+B)+ BV -B)

o = N¥q = Zc: iNiNjaij

i=1j=1

B=Nb=Y Nb,

i=1

where
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300
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Figure 4.28 {(Continued)

Introducing the above equation into the expression given in Example 1.5 of
Chapter 1 yields (using Mathematica)

V-2 o V4 (V24 1) c
A=~NRTIln—=—— 1 RTY N.InN,
"TRT 3/an " V_(Ji-1A 2 Niln

+ XC: Ni(u? _ TS?)

i=1

The various derivatives of A are also obtained by using Mathematica:

NRT o

BA/IV) =
ARV =~ g " Vit ova _ &
#aavh = VBT 24 (V + B)

(V=B (V242VRB — B)?
2NRT  24(3V2+6VAB+5%4%)

FPAVH = — +
A7V (V — 2)° (V2 +2VZ — #%)°
i Nb, V-3

N [ AVb, (b,A— A'B) IVt (V2 + 1)@]
BB 28V -V 2./2% V-(2-1)%
+ () — T5))

RT(V —B+Nb) (V:+2VAB—B)A, +24b(B— V)
(V — #)? (V2 +2VH — B

(*A/OVAN,) = —



- cHapiEer rour

RT(2Nb; +V - B) 2
(V — By (V2+2V% — #°)°
x (V3 +3V2B 4 VA — B + b (—3V2 +2VR + 397)

(BPA/BVEIN,) =

RTS,. RT
FA/3N,ON) = Yoy

{(V — B)b, + (V — 4 + Nb)b)]

1 o , ,,
V+(V2+ D&
x In
V-2-1%
2V2BV , ,
VTSRV =B [B(stb; + A}b;) — 2b,b))
4/3ARBV(V — b)bibj’

(V2 +28V — %)7°

, —RT
2
+ V2 + 28V — B)a (V2 + 28V - B
V198V 7 { Ma( )
+ b B ~ V)] — b LYV + BV — 3BV + B°)
+ Zb(—5VE+ 68V — 387}
RTS,0, RT ]
(PAJININ;ON,) = — Né / @y [(V — B)(b;b; + b;by, + b;by)
1 _
+ 2Nb;b;by] + WrL {[932(650;1@ + by, + byay)
V+(/2+1)% 428V
x|[21n - 5
V-(V2-10)%# V428V -3
4282V
- 5(B(#B - V)

(V24 28V — %%

. 1624 8%V ~ #Y Vbbb, ]
(V2 4+ 28V — #°)° ’

where o7} = 8.9/ /dN;, o = 34 /ON;, o}, = 85/ /0N, §;; = Lfor i = j, and &;; = 0
fori #j.

Example 4.9 Critical-point calculation of multicomponent mixtures Con-
sider mixtures 23, and 25 of Peng and Robinson (1977) shown below. Calculate
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the critical pressure and critical temperature of these two mixtures using
(1) Baker and Luks (1980), and (2) Heidemann and Khalil (1980) formulations.
Mixture 23: x, = 0.2465. x,, = 0.2176, x,,, = 0.1925, x, = 0.1779, x,¢, =
0.1656 {mole fraction)
Mixture 25 xg = 0.7057, xg, = 0.0669, xo, = 0.0413, x,0, = 0.0508, X,¢, =
0.1353 (mole fraction)

Solution The system of two equations (Eqgs. (4.214) and (4.213)) and two
unknowns (that 13 T, and P,) for the Baker and Luks formulation can be
solved via the secant method. This is just a Newton-Raphson method on numer-
ical derivatives. Computation of the residual in Eq. (4.214) is fairly straight
forward, because it only requires expressions for the second derivatives of the
Helmholtz free encrgy 4 in terms of V and N, These derivatives are provided
in Example 4.8. Equation (4.215) 1s somewhat more complicated; its determi-
nant requires derivatives of Eq. (4.214) with respect to V and N,. The procedure
presented in Problem 4.14 can be used to evaluate the determinant derivatives.
After both residuals are computed, the system of two eguations and two
unknowns are solved by the Newton-Raphson method to convergence.

The Heidemann and Khalil formulation (1980) as was discussed in this chap-
ter retains the equation that provides the stability test limit (Eq. (4.225)) but
utilizes the fact that the critical point is a special minimum of the scalar func-
tion A in the multidimensional space of the mole numbers. It is special in the
way that a perturbation along the most unstable direction has a vanishing
third derivative in that direction. An interpretation is that at the stability
limit, one set of eigenvalues becomes zero while all the others remain non-
zero with the same sign. Along the eigenvector in this direction, the next
higher order dertvative must be zero at the critical point. In other wards, the
“triadic” product of the third derivative tensor with the limiting direction
vector triple product must vanish. The numerical algorithm for implementing
the Heidemann and Khalil formulation is coded as follows. First, at an 1nitial
guess of pressure and temperature, the temperature in Eq (4.225) is deter-
mined via a 1D Newton-Raphson technique. At that point, the Hesslan of A is
singular, therefore, the elgenvector corresponding to this vanishing eigenva-
lue 1s computed. This 1s accomplished using a standard linear algebra
packages such as Lapack (developed by the University of Tennessee and the
Oak Ridge National Laboratory).

The result from the two formulations are the same: Mixture 23,
T, = 540K, P, = 31 bar, Mixture 25: T, = 309K, P, = 152 bar. PR-EOS was
used in the calculations. The Baker and Luks formulation was found to be
more sensitive to the initial guess, requiring a value to be within several
degrees or bars of the final computed temperature and pressure. The Heide-
mann and Khali] formulation was found to be sufficiently insensitive to initial
guess of v, =4b and T, =155 | x;T,;. The run times as suspected were
faster for the Heidemann and Khalil formulation by a factor of three for the
5-component systems, When very small amounts of C}, C,, and C; (less that
0.00001 mole fractions) were introduced to mixture 23, the run time was 10
times faster for the Heidemann and Khalil formulation than for the Baker
and Luks formulation.
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Note: The criteria for stability and criticality can be expressed in terms of
mole numbers N; or mole fractions x,. The mole-nmumber derivatives are
discussed in the text. The mole-fraction derivatives will be presented below.

Consider the criteria of stability in terms of derivatives of G in Example 4.5;
y# = G(T, P, N) can be also expressed by

¥ =G(T,P,N,, Ny, ..., N1, N)

where N = 3¢, N, Therefore, (see Example 1.2, Chapter 1),
e—1
dy? =dG = —SdT + VdP + S (& — p)AN; + p,dN.
i=1

The expression for y_%) , for example, is given by

¥ = (3#1)
3 = VT
INV v pN,. N N

or

o= 5 (1)
33 N 8x1 TPy ..x.q

In terms of fugacity, from dp; = (RTd Inf;),

g =BT (Vnk)
33 N 81’1 T.Pxg, ., _ ‘

1

Similar expressions for ygi) etc., can be obtained. Therefore, there is no change
In the criteria of stability and criticality where mole fractions are used.

Example 4.10 Show that for a stable multicomponent homogeneous fluid
similar to a single-component fluid, the isothermal compressibility should be
positive,

Solution For a stable system the coefficient yﬂ_” of Ui\ZJ,-)2 in Eq. (4.165) should
be positive, and since yf:"fgli 12 = 0 (see Eq. (1.185) of Chapter 1),

WVs0  j=1,..,c+1
I y@=U(S, V,n.,.:.,n), then ¥V =AT, V.n,. ..., n.), and dy =
~8dT — PdV + 37, p,dn; which gives (~3P/3V)y ,, > 0.

Therefore the isothermal compressibility of a multicomponent stable system
~(1/ V)@V /3Py, > 0.

Example 4.11 Consider a binary mixture of C, and nCs; at P =100 bar
T = 350 K. Plot Ag,,;, vs. x5 (mole fraction of nC;) over the whole range (that
15, 0 < x; < 1), assuming that the C,/nCy mixture will stay in the hypothetical
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single-phase state. Then derive

(555), = ()
dx3 TP Xy \0%3/ 1 p

Based on stability criteria and the use of the above equation, show unstable,
stable, and metastable parts of the Ag,,;, curve. Relate the curvatures to the
stability.

Solution In order to plot Ag,,;, (see Eq (4.39)), the expression for (i, — ) is
first evaluated (see Eq. (1.111) of Chapter 1):

#{T, P, x) = u)(T, Py = RT I f(T, P, %)/f{(T, P)
Using the above equation in Eq. (4.39),

2
(Agmix/RT) = gx;- Infi/f}.

The PR-EOS can be used to evaluate f; and f? for the C,/nCy mixture, and for
C,; and nC, pure components at 100 bar and 350 K, respectively. The results
are presented in Fig. 4.29.

Taking the derivative of Eq. (4.41), one readily obtains

(82Agmix) . 1 (a:ul)
dx2 TP Xy \ 0%y T.P.

For a two-component system to be stable, (3y; /9x,) ¢ p should be less than zero
(see Eq (4.144)). Therefore for stability of a two-component system,

(AZ e /RT)

(¢, 'F:o) N

-0.40 7

tine == s~ a13)

.45 7

Figure 4.29 (Ag,,;,/RT)vs. x, for the C,/nC; mixture at 350 K and
100 bar.
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(PAZix/ 3337 p > 0. Points Band Cin Fig. 4.29 represent (*Ag ;. /953)p. p = 0.
For points between B and Conthe Ag, ;. curve (#?Ag,,,,/6x3)y p < 0 and there-
fore are unstable; the curve is convex. In other words, at points B and C the
curvature of the Ag,,;, curve changes. All the points on the curves OAB and
CDE are stable; the curves are concave. The points between A and B and
between Cand D are of metastable nature.

Problems

4.1 In the successive substitution method, sometimes because of a poor 1nitial
guess for K, or other reasons, after a few iterations the vapor phase fraction «
from Eq. (4.12) is calculated to be outside the range [0,1]. Consequently either
Wa=0y=3" Kz;—1<0 or hia =1)=1-); ,2/K,>1 The fact that
A(x=0) <0 or Alu =1) > 1 does not imply subcooled liquid or superheated
vapor. In case A(x = 0) < 0, we may estimate the vapor phase composition from
yi=Kiz;/ 3. K;z; as we set x; = 2;. How would you argue that the estimated
vapor phase composition is reasonable? What would be the similar expression
for the estimation of the liquid phase composition if A(x = 1) > 17

4.2 Consider the total Gibbs free energy of a multicomponent two-phase
mixture given hy G = 37, Zle n i, where ny; is the number of moles of compo-
nent i in phase j and tt;; 1s the chemical potential of component i in phase j.
Derive the basic equation of equilibrium g, = p{t = 1, ..., ¢) by taking the deri-
vative of ¢ with respect to either n,; or n, at constant 7 and P. Note that
np+ne=n; (i=1,...,¢)ls a constant.

Hint: Use the Gibbs-Duhem equation in your derivation.

4.3 Show that at the critical point of a pure substance,

(83,{1/8”3)7'_1; = 0.

Note: The above expression is equivalent to the criterion expressed by
(FPP/aVHp v <0.

4.4 (:ibbs presented one of the alternative sets of the criteria for criticality in
the following form:

{B#CXBNCJT. Vi odtey =
(BQHC/BNE)T, Vg, ey =0
(BSNC/BN.?)T, Vot eondle =0

Derive the above set of equations.
4.5 The molar Gibbs free energy of mixing of a binary mixture, Ag,,; .. is plotted

vs. x5 (mole fraction of component 2) in Fig. 4.29 at constant temperature and
pressure. Show that the intercepts of Ag,,; with x, =0 and x, =1 axes are
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t; — 1 and g, — 1, respectively; i, and p, are the chemical potentials at points A
and D, respectively.

4.6 The stability test for a homogeneous phase can be expressed in terms of A
and & for the following inequalities to hold for every possible variation around
the initial state of the homogeneous phase:

[
1=

(8*A/aN;ON)) y(AN;AN)) 42 ZC:(82A/8N;-8V)T‘V(AN£A V)
i=1

£
1j=1

+ (B A/3VH) v + higher-order terms > 0

and (3*G/3N;8N;)r pAN,AN; + higher-order terms > 0.

1

[
i=

C
1j=

Derive the above inequalities in the same manner that Eq. (4.159) was derived.
Note that the derivatives are evaluated at constant mole number of the compo-
nents other than those that are varied.

4.7 Show that Maxwells equal-area rule for multicomponent systems takes the
following form: a plot of —p._; vs. N._, at constant T', P, u;, ..., 4._». N, in the
two-phase region gives two equal areas shown by the dotted region of Fig. 4.30.

4.8 Show that for a stable multicomponent homogeneous mixture, similar to a
single-component fluid, ¢p and ¢y are positive. Can these parameters be positive
at the limit of stability? If the answer 1s yes, why?

4.9 The evaluation of the cubic in Eq. (4.226) can be performed using terms
involving at most double sums (Heidemann, 1994). The triple sums in Eq. (4.226)
can be reduced as follows:

c C C 4 3
>3 3 AN, ANAN, = (Z ANi)

i=1j=1 k=1

2 > BANANAN, = (Z ﬁgANi) (Z .ANi)z

t=1
7 ANANAN, = (Z > 'yijANEANf) (é aN,;)

i=1j=1

5
=

¥
C

Jl‘:

[

2

1j=1 k=1
Derive the above relationships and relate §; and y; to the coefficients in Eq.
{4.226).

4.10 Show that c different matrices of the form given by Eq (4.225) can be
composed. Why do permutations of the component index not produce a new
matrix?



290 Chapter Four

—He
i

- N

c-1

Figure 430 Maxwells cqual-arca rule for multicomponent mixtures.

4.11 The first criterion for the limit of stability (at the critical point) in terms of
the Helmholtz free energy can be written as

Ay y AV.NI o Avia

AIVC_l ' “! ANF__ 1 JV] e Al\ﬂ._l .1'\2._]

where Ay v = (8°A/0V3:)r y  n and Ay y = (FFA/IVIN)p y,  n . etc. The
same criterion can also be written as

Anv N Ann, 0 AnN
. . 1_o

An.n, AnnN, - AN
where Ay n, = (FFA/3ND)r v, v ANy, = (PA/INONG)p y N, . etc. In the
last expression all the derivatives of the Helmholtz free expression are taken at
constant T'and V. What is the advantage of the second equation over the first
equation? Is the second equation simpler than the first for using pressure-explicit
equations of state?
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412 Use Gibbs free energy representation of the criticality criteria from Eqgs.
(4.225) and (4.226) to show that for a binary mixture (dy;/dN;)7r pn, =0 and
(83 /0N 7 p. n, = 0. Note that these two expressions are the same expressions
as those of Eq. (4.202).

4,13 Show that at the critical point of a ¢-component mixture, the following
determinant is zero:

Bui/ayy) (/) - (B /8Yen)
Oua/dyy)  @ua/dyg) oo (Oy/8ye-r) |
Qe /0y1)  (Bpe1/8ys) -+ (Bfenr /0Yeoi)

Note that the above is the determinant of the matrix in Eq. (2.19b) of Chapter 2.
Hint: You may use the results from Examples 4.5 in your derivation.

4.14 Use the second criterion of criticality expressed by Eq. (4.215) for a three-
component system with ! = A(T., V, N,, N,, N;), with index 2 for V, index 3 for
Ny, and index 4 for N,. Show that the derivative with respect to V {or the determi-
nant given by Eq. (4.214) 1s

IS = Aggn(AgsAyy — AL) + Agga(ApAy — AL) + Ayp(ApAg — AL)
+ 2A093( A Ayy — Az Ayy) +24495(Agp Agz — A Aygp)
+ 2A430(Ag0 Agg — AnyAyg),

and the derivative of the same determinant with respect to IV, is given by

i) = Agpy(AgyAyy — Aly) + Agsg(An Ay — Al + Aus(Ap Ay — AD)
+ 2A503(A Ay — AggAyy) + 2A405(AgAsy — Ay Ay)
+ 2A435(Agp Ay — AgaAgz).

Then derive the final form of the expression from Eq. (4.215) given below.

Agsp(Agg Ay AgyAgy — AggAyAgAgg — Ay Ay + A Ay ASy)
+ Agza(8AgpAgs Ag Ay — 2A5 AL Ay, — AggAg Ay Ay + Ay Ay AS,
~ 2A% Ay Ay + AL Ag) + Agp(—Ap Ay Ay Ay + A Al
+ ApAgy Ay Ay — 2A5 A5 A5 + Ay AL Ap) + Aga(—AHAuAy
+ AggAgs Agg Ay + Agg A A%y — Aps AY) + Agus(BAg Ay Agy Asy
— 3AgAg Al ~ BAR Az + BAR Ay Ag) + Apy(Ap Al Ay — Ap Ay i,
+3A% AL, — AR Ay Ay — 4AnAAy Ay + 245, A%) + An(—4AnAnAl
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+ 6A22A24A33A34 ~'2“'3122‘-'!323‘433‘444 +2A%3A44 +2A%3A24A34 _4A23A§4A33)
+ A344(""3A%2A33A34 + 3“&22“433‘434 + 3A22A23A24A33 - 3A33A24)

+ Agag( A% Agg Ay + A5, A%, ~ Apy AS A — 4Ap Ay Ag Ay

— Ap Ay Ady + BALAL) + Ay (AL Al — 245 A5 A%, + ASy) =0

Hint: In order to obtain the derivative of determinant ¥ with respect to Vor
any other variable, the following steps may facilitate the algebra: (1) take the der-
vative of each element of determinant i with respect to Vor any other variable;
call the matrix with derivation elements i, (2) form the cofactor matrix (see

Strang, 1988) of the determinant A, and (3) the sum of the element by element

products of the cofactor matrix and the matrix A% is the determinant of i¥

with respect to Vor any other variable.

4.15 Show that the isothermal compressibility of a stable two-phase multicom-
ponent mixture 1s positive.
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Chapter

Thermodynamics of wax and
asphaltene precipitation

Wax and asphaltene precipitation are scrious problems in production
from some hydrocarbon reservoirs. Wax, which is a solid precipitate,
an oceur in the well, in the production facilities, and in the pipelines.
There i1s a field case in which wax has been reported 1n a natural state
in the reservoir. Wax precipitation can occur for gas-condensate, light-
o1l and heavy-oil fluids at temperatures as high as 150°F. Asphaltene
precipitation may oceur in the reservoir, in the production facilities,
and in the pipelines. Asphaltenes may precipitate from some light oils,
but there may be no precipitation from some heavy oils. Asphaltene
precipitation has not been reported from gas condensate reservoirs.

As we will see in this chapter, the modeling of wax and asphaltene
precipitation requires different approaches because they are fundamen-
tally different. The effect of pressure, composition, and temperature on
wax and asphaltene precipitation s also fundamentally different.

Temperature has a strong effect on wax precipitation from both gas
condensates and crude oils. The pressure effect on wax precipitation
from gas condensates 1s often different from crude oils. In general,
when pressure increases isothermally, wax precipitates from crude otl.
On the other hand, with pressure increase at constant temperature
wax can dissolve in natural gases and prevent precipitation. Asphaltene
precipitation may not be sensitive to temperature, and temperature
Increase may increase or may decrease the onset of asphaltene precipi-
tation. Pressure can have an important effect on asphaltene precipita-
tion; pressurc decrease often causes asphaltenc precipitation. The
effect of composition is also very different on wax and asphaltene preci-
pitation.
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Wax and asphaltene precipitation are old problems, but only recently
have attempts been made to develop a thermodynamic description for
these processes. The asphaltene thermodynamic models have just
begun to evolve. In this chapter, we will first present the thermody-
namics of wax precipitation and discuss the effects of pressure, tempera-
ture, and composition. Then we will present a thermodynamic
micellization model for asphaltene precipitation, and study the pres-
sure and composttion effects. All the calculations for the equilibrium
between the precipitated phase and the crude 01l will be based on
direct minimization of the Gibbs free energy of the total system.

Wax precipitation

Components in a gas-condensate fluid contain hydrocarbons f{rom
methane, C;, ethane, Cy, and other hydrocarbons as heavy as C,, or C;,
or even heavier. Reservoir crudes may contain hydrocarbons as heavy
as Cig- At room temperature (75°F) and atmospheric pressure,
Cy, Gy, Cy, and C, are 1n the gas state, nC; to nC,; are in the liquid
state, and normal alkanes heavier than nC;; are in the solid state. The
broad volatility and melting-point range of these hydrocarbon compo-
nents found in petroleum fluids cause formations of gas, liquid, and
solid phases in response to changes in pressure, temperature, or compo-
sition. Let us consider a mixture of two hvdrocarbons—nC; and nCy.
The melting-point temperature of nC,g is 57°C at atmospheric pressure.
The solubility of nCyq in nC; at atmospheric pressure is 0.5 mole percent
at 14°C. At 40°C and atmospheric pressure, the solubility of nC,; in
nC; increases to 12 mole percent.(It 18 therefore natural that when the
temperature falls, heavy hydrocarbons in a crude or even a gas conden-
sate may precipitate as wax crystals. In the petroleum industry, wax
precipitation 18 undesirable because it may plug the pipeline and
processing equipment.)

Currently, there is no equation of state that can describe the volu-
metric behavior of the solid phase. However, one can relate the chemi-
cal potential of the solid to the chemical potential of the liquid phase
n terms of certain melting properties. Let ;.zgm (P, T represent the
chemical potential of pure solid-component i at pressure P and tempera-
ture T, and ;z;:‘m (P, T), the chemical potential of the pure subcooled-
liquid component i 4t the same temperature and pressure. We are inter-
ested 1n finding an expression for Ay; = pﬁm (P, T) — ygure (P, T). Let
us examine the diagram shown in Fig. 5.1. In this diagram, Ay; repre-
sents the chemical potential difference of pure component i from point
1 to point 6. Since temperature is constant from 1 to 6,

Ap; = Ah; — TAs,, (5.1)
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Figure 5.1 Diagram relating p5 . (P. T) to g}, (P, T).

where Ah;, similar to Ay;, represents Ah; = hé‘ure (P, Ty - pure (P, T).
The same is true for As;. The next step is the calculation of Ak, and As;
where we will follow the path from 1to 2,t0 3, ... to 6. From 1to 2,

according to Eq. (3.113) of Chapter 3,

4
ARZL = J (v — T(3vy/3T)pldP, (5.2)
f)

where Pf is the pressure at the melting-point temperature Tif . From2to

3, using Eq. (8.113) of Chapter 3,

T!
ARSE = J 3 dT. (5.3)
T

From 3 to 4, Ah; represents the heat of fusion at Tf and Pf which is
shown by Ah"r Ah4'*3 Ah From 4 to 6, the pure component 118 1n the
subcooled- 11qu1d state Slmllarly to the previous steps, one can write

T
AR = JTI ckdT (5.4)
P
ARE® = pr [vf — T(8vF /8T)p)dP. (5.5)

Then,

Ah; = ART7" + ARP? + ARE® 4+ ARP + ARP. (5.6)
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Let Acp; = ck; — ¢$, and Av; = vF — v?. Using the above equations,
7 P
T P

Assuming negligible temperature effect on Acp;,

P P
Ah; = AW, + AcpT — T!) — J Av;dP + TJ (3Av;/3T)pdP.  (5.8)
P P

Similarly, one can derive the expression for As,,

AR T (*
Asi = —-"- + ACP: In— —}' J (BAUIXBT)PdP (59)
i Tf P

13 13

Substituting Eqs. (5.8) and (5.9) into Eq. (5.1) results in

T T
ﬂgure i(Pv T - Hﬁure ;’(P; T)= Ah{ (1 - F) + ACP,; [(T — T:r) - T]Il-q—:};:l

i i

P
“J Av,dP. (5.10)
P

Equation (5.10) can be written in dimensionless form when divided by
RT.

ﬂﬁur&’e(}) T)L‘“pure:(P T) Ah Tzf _1 Acp; Tj 1
RT RTf T RA\T

Acp; Tf 1 (7
+ 5 [l ] + ﬁjﬂ Av;dP ). (5.11)

Equation (5.11) allows the calculation of the chemical potential of a
pure solid in terms of the chemical potent1a1 of a pure subcooled liquid
component. Data ne.cessary to calculate ,upure (P, T) are Ah melting-
point enthalpy, 77, melting-point temperature, Ac p;, heat capamty of
fusion, and Av; Wthh may be negligible.

Now suppose that, in a multicomponent mixture, the solid solution
and the liquid solution are in equilibrium. Then one can write

u (P, T, x%) = i$(P, T, x5). (5.12)
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L

Let Acp; = ¢k, — ¢3; and Av; = v¥ — v?. Using the above equations,

Vil P
Ah; = Ah‘: - J Acp;dT +J [—Av; + T(8Av,;/0T)pldP. (5.7)
T r
Assuming negligible temperature effect on Acp;,
" "
Ah; = Ah’;r + Acp(T — T{) — J Av,dP + TJ (0Av;/T)pdP.  (5.8)
P

P

Similarly, one can derive the expression for As;,

A Ah£+A n-L 4 J R((BA /0T) »d P (5.9)
8; = Cp; IN— U; . .
T{ P T{ P P

Substituting Egs. (5.8) and (5.9) into Eq. (5.1) results in

. T T
ﬂg‘ur‘ei(P! T) - )u:;ure ,-;(P, T) - Ah{(l - _7"1'}?) ~+- ACpi [(T — T{) - Th’l;};:]

i i

P
- J AvdP. (5.10)
I)

Equation (5.10) can be written in dimensionless form when divided by
RT.

Bhre P T) = e (P T) _ AW (T{ ) 1) Ack (Tf )
T

St B Pl 3 i
RT RT{ T R

Acp |, TH| 1 ¢
=PIy — | AvdP | (51
+ 5 {m T:l+RTLr v,d (5.11)

Equation (5.11) allows the calculation of the chemical potential of a
pure solid in terms of the chemical potential of a pure subcooled liquid
component. Data necessary to calculate Ju}‘i‘:m(P, T) are Ah’; , melting-
point enthalpy, T{ , melting-point temperature, Acp;, heat capacity of
fusion, and Av; which may be negligible.

Now suppose that, in a multicomponent mixture, the solid solution
and the liquid solution are in equilibrium. Then one can write

(P, T, xb) = 3P, T, x5). (5.12)
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From (du; : RTd In f;)r,

L L
L L L [P T, x%)
P, T, x5 = ik, (P T)+ RTI 22 0) (513)
? f;ure E(P‘ T)
and
S P, S
(P, T, x5 —;me_e AP, T)+ RTIn o ( L.x) (5.14)
pure L(I) T)
Combining Egs. (5.12) to (5.14),
I
Hpur L(P T) wre (P T)
fpure E(P* T) fpure t(P~ T) exp[ e RT p } 5.15)

Note that f-(P. T xy = ff(P, T. x%), but the subcooled pure liguid may
not be in equilibrium with the solid at temperature 7' and pressure P.
If we neglect the Poynting correction term, that is, the last term on
- the right side of Eq. (5.11), and substitute the remaining terms in Eq.
(5.15), we obtain the expression for the pure-solid component fugacity:

(P, T)=fle P, T)

X exp RT{ T R T

Acp. . T!
—-&In—‘j| . (5.16)

pure L

R T

3

An equation of state can be used to calculate £ oure {(E T). The expression
for the PR-EOS for the calculatlon of f‘r;rel(P T) 1s provided by Eq.
(3.22) of Chapter 3. Then with Ah TL, and Acp;, one can calculate
f5 e (T, Py. In order to proceed with the wax- precipitation calculations,
one needs to dssume a proper solid model. Currently, there are two
types of solid models. One is the solid-solution model, and the other is

the multisolid-phase model. These models are presented below.

Solid-solution model. If one assumes that the precipitation forms a solid
solution, then

3P, T, x5 =y (P, T, x5)xf5,,. (P, T), (5.17)
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which requires determining y¥(P, T, x%). Figure 5.2 shows the sketch for
the solid-solution model. For an ideal-solid solution, y¥(P, T, x%) = 1,
and therefore

ff(P, T,x%) = xf fwe (P, T), ideal solid solution. (5.18)
The fugacities in the vapor and liquid phases may be obtained from an
EOS. Alternatively, an activity-coefficient model can be used to
describe the liquid phase to estimate }‘f‘. However, as discussed in Chap-
ter 1, activity coefficient models, in general, may not be suitable for
reservoir fluids because they are based on the assumption of no change
in volume due to mixing. At equilibrium, when liquid and solid phases
are present,

fEP. T, x") = (P, T, x%. (5.19)
With an activity coefficient model for the liquid phase,
fHP. T x*) = wHP, T, x)x[fH(P, T). (5.20)

Combining Egs. (5.17) and (5.20), the solid-to-liquid equilibrium ratio for
component i is given by

wst 5 _[HP. TP T x)

s
=L = : . 5.21
LT P TP T xS o

Equation (5.16) provides the expression for fiL(P, T)/ff(P, 7).

T
'- .
»y

..

Figure 5.2 Solid-sclution model

*
»

% P Y 1pi i .
AN '-”;..:: “.2-}:_. «| for wax precipitation
N ::.c:.. a'.--.. .:..' .. }::..




Thermodynamics of wax and asphaltene precipitation 301

Multisolid-phase model. A number of studies show that when binary
normal alkane mixtures are cooled, the precipitation is unstable and
segregates into two solid phases, provided the chain-length difference
between the two alkanes exceeds a certain value. As an example,
Dorset (1990) reports that the segregated solid phases of binary n-
alkanes consist predominantly of pure components. Snyder et al. (1992,
1993, 1994) have also studied the kinetics of the segregation of binary
normal-alkane mixtures using spectroscopy, calorimetry, and electron
diffraction. They observed that the rate of the segregation is very sensi-
tive to the chain-length difference. Hansen et al. (1991) observed phase
transitions of the precipitated wax from North Sea crude oils. Based
on these observations, Lira-Galeana, Firoozabadi, and Prausnitz (1996)
developed a thermodynamic multisolid-wax model (see Fig. 5.3). In this
model, each solid phase is described as a pure component which does
not mix with other solid phases. The calculations for the liquid/
multisolid phases become very simple once the stability analysis from
Chapter 4 15 used. From stability analysis considerations (see Eq. (4.50)
of Chapter 4), a component may exist as a pure solid 1f

(fi-(P,T,z)_fs (P.T)>0 i=1,....c|. (5.22)

puret

where f; (P, T, z) 1s the fugacity of component : with feed composition z.
The mixture components that fulfill the above expression will pre-
cipitate. Note that the above simple expression is only applicable for
precipitation from a single phase. Precipitation from a vapor-liquid
system 1s formulated in Example 5.4 at the end of this chapter.

Here, we provide both the equilibrium and the material balance
equations for wax precipitation calculations for solid—liquid equilibria,
At fixed temperature and pressure, for every component i, the multiso-
lid-phase model must satisfy

FHP T x") = P.T)  i=(c—cg+1).....c (5.23)

where cg 1s the number of solid phases determined from Eq. (5.22). The
material balances for the nonprecipitating components are

C
zixf‘{l > n}S/F:\-_O i=1,...,(c—cg) (5.24)

J=(e—tg+1)

where njs is the moles of solid phase j and F'is the feed mole numbers.
For the precipitating components where all solid phases are pure,

J=tle—cg+1)

zi_xflilJ i n}q/F:\nf/F:O

i:(C—CS+1)....,C—1,C8>1. (525)
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Figure 5.3 Multisolid-phase model for wax precipitation.

The constraint equation for component ¢ in the liquid phase 1s

It

Yoak=1. (5.26)

i=1

There are (¢ + ¢g} equations and (¢ + ¢g) unknowns. The unknowns are
x andn}s(j:l,...,cs).

When a vapor phase is present, some of the above equations should be
modified (see Example 5.4). One can use the direct minimization of
(ibbs free energy to solve the general problem of vapor-liquid-multi-
solid phase equilibria (see also Example 5.4). Simulated annealing can
be employed to provide the global minimization of the Gibbs free
energy (Pan and Firoozabadi, 1998a). Equation (5.16) requires the melt-
ing-point properties of the precipitating components. Normally wax
consists of hydrocarbons heavier than C,;; there is a significant differ-
ence in the melting-point properties of heavy paraffins, naphthenes,
and aromatics (PNA). Therefore, there is a need to provide the melt-
ing-point and physical properties of PNA groups.

Melting-point properties. The precipitated wax consists mainly of par-
affins and some naphthenes; the aromatics are absent. Lighter hydro-
carbons from C, to C,; are also absent in the wax (Philp, 1994). As
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shown by Eq. (5.16), the fugacity of solid-component i depends on the
melting-point properties of component i. In the following, the melting-
point properties of the components which appear in the wax are
provided.

Melting-point temperature T/. Won (1986) has given a correlation for the
melting point of pure n-alkanes:

T! = 374.5 4+ 0.02617M, — 20172/ M, (5.27)

where 77 is in degrees Kelvin and M is the molecular weight. In some n-
alkanes, there may exist one, two, or more solid-solid transitions below
the melting point (see Example 5.3). Eq. 5.27 and Eq. 5.29 (to be
discussed later) provide average values. The melting-point tempera-
tures for naphthenes, aromatics, and iso-paraffins are given by (Pan,
Firoozabadi, and Fotland, 1997b)

T/ = 333.45 — 419 exp[—0.00855M,], (5.28)

where 7' is in degrees Kelvin. Figure 5.4 provides a plot of Egs. (5.27)
and (5.28). This figure clearly shows that n-alkanes would form wax in
preference to other species in the gas condensates and crude oils.

400

350
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250

——q. 527 n-alkanes
200
s F . 5.28: naphthenes, isoparaffins,

and aromatics
150

Melting-point temperature, K

100
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0 ——
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Melecular weight

Figure 5.4 Melting-point temperature of hydrocarbons.
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Enthaipy of fusion aAh{. Won (1986) developed a correlation for calculat-
ing the melting-point enthalpies (enthalpy of fusion) of paraflin hydro-
carbons:

ARl = 0.1426M; 7", (5.29)

where Tf is in degrees Kelvin and Ah’; is in calories/gmole.
The enthalpy of fusion for naphthenes and iso-parathns 1s given by
(Lira-Galena et al., 1996),

AR = 0.0527M,T. (5.30)

The enthalpv of fusion for aromatic species is given by (Pan et al.,
1997b):

AR =11.277. (5.31)

Note that from the above correlation the entropy of fusion, Ahf /Tf .
for aromatics 1s independent of the molecular weight. Figure 5.5 shows
the entropy of fusion using Eqgs. (5.29) to (5.31); there 1s a substantial
difference between the entropies of fusion of paraffins and naphthenes.

7 |
— 05200 paraffing
60 Ed. 530 naphthenes and so-paraftins
ﬁ Eq. 5.31: aromatics

2
£ 50|
£ | |
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240 1 |
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"t l
Z 30
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() T T
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Figure 5.5 Entropies of fusion of hydrocarbons,
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Heat capacity of fusion Acp,.  The correlation proposed by K. S. Pederson
et al. (1991) can be used to calculate Acp; for all, P, N, and A species:

Acp; = 0.3033M; — 4.635 x 107*M, T, (5.32)

where Acp; 1sin calories/(gmole-K) and T'is in degrees K. For the limita-
tion of the above equation, the discussions by Lira-Galeana et al. (1996)
may be useful.

Critical properties and acentric factor. The correlations for critical prop-
erties discussed in Chapter 3 are based on the properties of light hydro-
carbons (<Cy). Those correlations do not differentiate between
paraffins, naphthenes and aromatics. Riazi and Al-Sahhaf (1995) provide
a general correlation of critical properties and acentric factors for
PNA species. Pan, et al. (1997b) have modified the correlation of Riazi
and Al-Sahhaf for the critical pressure of PNA species with a molecular
weight of more than 300 g/gmole:

P,=A — Be “¥, (5.33)

where M is the molecular weight. Coefficients A, B, and C are listed in
Table 5.1. P., A, and B have the units of bar, and C has the unit of
gmole/g. The correlation of Riazi and Al-Sahhaf for 7', is satisfactory:

In(0, — 6) = a— bM® (5.34)

Coefficients 0, a, b, and ¢ for various PNA species are given in Table 5.2
for both & = T, (boiling-point temperature) and 6 = 1% /T, (reduced boil-
Ing-point temperature).

Pan et al. (1997b) proposed the following expression for estimating w
of aromatics:

Inw = —36.1544 + 30.94M>025%6L (A1 < 800). (5.35)
When M > 800, w = 2.0. Riazi and Al-Sahhaf’s expressions for the acen-

tric factor of paraffins and naphthenes are given by Eq. (5.34) with the
coefficients given in Table 5.2.

TABLE 5.1 Coefficients of Eq. (5.33) {from Pan et al., 1997b)

Coefficient Paraffins Naphthenes Aromatics
A 0.679091 2.58854 4. 85196
B —22.1796 —27.6292 —42.9311

C 0.00284174 0.00449506 0.00561927
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TABLE 5.2 Constants of Eq. (5.34) (from Riazi and Ai-Sahhaf, 1995)

0 Pavaflinsg Naphthenes Aromatics
§=T,
0., 1070 1028 1015
a 6.9829 6.9565 £.91062
b 0.02013 0.02239 0.02247
c 2/3 2/3 2/3
= Tb/Tt
0. 1.15 1.2 1.03
a —0.41966 0.06765 —0.29875
b 0.02436 0.13763 {.06814
c 0.580 0.35 0.5
9 =
0, 0.3 0.3
o —3.06826 —8.25682
b —1.04987 —5.33954
c 0.20 0.08

Let us now use the multisolid model described above to study (1) wax
compostition, (2) the effect of pressure, and (3) the effect of composition
on wax precipitation.

Wax composition. Consider a model fluid consisting of normal pentane
and PNA Cyg, Cyi;, Cy, Cos, Cyg, Cas, Cyp, and Cy5 with the compositions
listed in Table 5.3. Figure 5.6 shows the wax precipitation process at 1
atm as the temperature decreases. This figure was obtained using the
multisolid-wax model (Pan et al., 1997b). The results reveal that (1) the
precipitated wax does not contain aromatics, (2) the normal parafhins
with the same carbon number as the naphthenes precipitate first, (3) at
high temperatures, n-parafling constitute the wax, and (4) the lightest
component that can be found in the wax phase 1s P-C,; which precipi-
tates around 237 K. The multiphase nature of precipitation and other
features were also observed expertmentally by Renningsen et al. (1991),
and by Coutinho and Ruffier-Meray (1997). The model results and experi-
mental data indicate that if a light crude or a gas condensate has high
concentration of paraffins, wax precipitation may be encountered in
production and transfer in pipelines at temperatures as high as 150°F.
Now let us examine the effect of pressure on wax precipitation.

Effect of pressure on wax precipitation. Pressure increase causes the
cloudpoint temperature (which is the temperature at which wax first
begins to precipitate) to increase for a liquid mixture of fixed composi-
tion.
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TABLE 5.3 Composition and
Molecular Weight of the Modei-
Synthetic Oil (from Pan et al.,

1997b)
Comp.* Mole% M, g/mole
P-Ch 40.0 72
P-C10 5.0 144
N-C10 5.0 142
A-Cl0 5.0 136
P.Cl5 5.0 212
N-C15 5.0 210
A-Cl5 5.0 204
P-C20 2.0 234
~N-C20 3.0 282
A-C20 2.0 276
P-C25 1.0 352
N-C25 3.5 350
A-C25 2.5 344
P-C30 1.0 424
N-C30 2.0 422
A-C30 2.0 116
P-C35 1.0 492
N-C35 2.5 490
A-C35 1.5 484
P-C40 0.5 562
N-C40 1.0 560
A-C40 1.5 554
P-Ci5 0.5 632
N-C45 1.0 630
A-Ci1hp 1.5 624

*P-nermal paraffins; N-iso-paraffin and
naphthenes; A-aromatics

The solubility of the first precipitating component in the liquid,
which is expected to be a heavy normal paraffin at the cloudpoint
temperature (CPT), can be expressed as (see Example 5.1)

(5.36)

P(oE — bS
xf%F(T)exp[—~—~—(U‘ i )},

RT

where x¥ is the mole fraction (solubility) in the liquid, F(7) is a para-
meter that 1s a function of temperature, and U{‘, and U;q are the molar
volumes of component ¢ in the liquid and solid phases, respectively.
The liquid molar volume is a weak function of pressure, and the effect
of pressure on solid molar volume is negligible. According to Eq. (5.36),
a pressure increase results in a decrease in the solubility of the precipi-
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Figure 5.6 Calculated wax amount and precipitating species for the model-
synthetic o0il: P = 1 atm (adapted from Pan et al., 1997h).

tating component in the liquid phase. Consequently, the cloudpoint
temperature (CPT) may increase as a result of pressure increase.

Figure 5.7 shows the effect of pressure on the cloudpoint temperature
for three different stock tank oils. Note that these results are based on
calculations from the multisolid model. For all three oils, the CPT
increases as pressure increases. However, oil 2 is more sensitive to pres-
sure than the other two oils. As we will see in Problems 5.7 and 5.8, the
effect of pressure on wax precipitation in gases is different than in
liquids.

Effect of composition on wax precipitation. Wax precipitation is often
measured using the stock-tank oil at atmospheric pressure. When some
gas 18 dissolved into the crude oil, the cloudpoint temperature may
decrease, which is desirable. Low cloudpoint temperature implies that
one may be less concerned about wax precipitation.

A very clear effect of composition on CPT can be seen from the data
presented in Table 5.4. The composition of the light crude oil (that is,
01l 4) is shown in Table 5.5. The CPT at 38.3 bar is 318.9 K for the stock-
tank oil. When 30 mole% C,; is dissolved in the crude oil as a result of
pressure increase, the CPT 18 316.8 K. The change in CPT is the result
of two effects: (1) pressure, and (2) composition. The pressure increase
from 38.3 to 106.2 bar raises the CPT say by 0.6 K. The net effect of
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Figure 5.7 Calculated cloudpoint temperature vs. pressure for three stock-
tank oils {(adapted from Pan ef al., 1997b),

TABLE 5.4 Measured results for solvent
effect on cloudpoint temperature of oil 4
(from Pan et al,, 1997b)

Solvent, mole% Pressure, bar CPT. K
0 38.3 318.9
€, 30 106.2 316.8
Cs, 30 73.5 316.8
nCs, 30 37.2 314.4
nCs, 30 37.6 314.2
nCyy, 30 36.2 316.0
ﬂclg, 30 355 3220
nCys, 30 . 35.5 323.0

composition change is, therefore, 1.6 K. The effect of nC;, and nC; is
more pronounced than the effect of C;; 30 mole% nC; lowers the CPT
to 314.2 K, which is 4.7 K lower than the CPT of the stock-tank oil. For
normal alkanes nC,, and nC,; the trend reverses and the CPT increases.

Madsen and Boistelle (1976, 1979) have measured the solubilities of
nCog, nCss, and nCag in normal-alkane solvents from nCjy to nC,, at atmo-
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TABLE 5.5 Qil 4 Composition
Data (from Pan et al, 1997b)

Comp. Mole% M, g/mole;
c, 0.0041 30
c, 0.0375 44
iCy 0.0752 58
nC, 0.1245 58
iCs 0.3270 72
nCis 0.2831 72
Cy 0.3637 86
C, 3.2013 100
Cy 8.2920 114
Co 10.6557 128
Cyo 11.3986 142
Ciy 10.1595 156
C 8.7254 170
Cs 8.5434 184
Cis 6.7661 198
Cis 5.4968 212
Cre 3.5481 226
Cr 3.2366 240
Cyg 2.1652 954
Cyo 1.8098 268
Co 1.4525 282
Cy) 1.2406 296
Cp 1.1081 310
Cy3 0.9890 324
Cay 0.7886 338
Cys 0.7625 352
Cog 0.6506 366
Cyr 0.5625 380
o 0.5203 304
Cyy 0.4891 408
Cyo 0.3918 422
Ci 0.3173 436
Cy 0.2598 450
Cyy 0.2251 464
Cay 0.2029 478
Cys 0.1570 492
Ci 0.1461 506
Cy 0.1230 520
O 0.1093 534
Cy 0.1007 548
Caos 3.0994 700

spheric pressure. The results reveal that the solubility of a heavy hydro-
carbon in a solvent first increases with the carbon number and then
decreases. As an example, at 298 K, the solubility of nCs; increases
from nCs to nCs, then decreases as the solvent carbon number increases.
Crude oils may have a similar behavior, as the data in Table 5.4 show.
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Asphaltene precipitation

A variety of substances of diverse chemical nature comprise a crude oil.
In order to study asphaltene precipitation, these substances can be clas-
sified into two groups (1) nonpolar hydrocarbons such as paraffins,
naphthenes, and aromatics of moderate molecular weight, and (2)
polar polyaromatic materials. The polar aromatics, which may contain
metals and nitrogen, are part of the heavy-nonvolatile end of the crude
oil and can be subdivided into resins and asphaltenes; resins are less
polar than asphaltenes. Under certain conditions, resins and asphal-
tenes precipitate from the crude oil.

The chemical structure and physicochemical properties of asphal-
tenes and resins are not well understood. The operational definitions
of asphaltenes and resins are based on their solubility in different dilu-
ents. Asphaltenes are defined as the fraction of crude oil insoluble in
excess normal alkanes such as n-pentane but soluble in excess benzene
and toluene at room temperature. Resins are defined as the fraction of
crude oil insoluble in excess ligquid propane at room temperature.
Resins are adsorbed on silica, alumina, or other surface-active material.
Figure 5.8 shows the precipitation when a bitumen oil 1s mixed with
various diluents. The normal alkanes used are n-pentane, n-hexane, n-
heptane, n-octane, n-nonane, and n-decane. According to the opera-
tional definition stated above, the asphaltene content of the bitumen

15
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normal alkanes
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per gram of bitumen oil

Q- T T T
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Diluent density at 20 °C, g/cm’

Figure 5.8 Effect of various diluents on precipitation from bitumen oil at 20°C: 40 ¢m®
diluent/cm® bitumen oil (adapted from Wu, 1998; data of Mitchell ang Speight, 1973).
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oil from Fig. 5.8, is about 17% (wt). Note that cycloparaffins result in
precipitation of a very small amount. The cycloparaffins used in Fig.
5.8 include cyclopentane and decalin. Since the density of toluene and
benzene at 20°C is about 0.88 g/cm?, according to Fig. 5.8 there will be
no precipitation. This figure also implies that C, to nC, should result
in greater precipitation. One reason for greater precipitation is that C,
to nC4; may cause precipitation of resins in addition to asphaltenes; C,
diluent may also precipitate components other than asphaltenes and
resins.

Since asphaltenes and resins are polar, they may associate. Associa-
tion between asphaltene molecules in different diluents results in differ-
ent molecular weights ranging from 800 to 50,000 or even higher.
Small-angle X-ray scattering (SAXS) measurements suggest that all
asphaltene molecules are of similar size and molecular weight (Lin et
al., 1991). (We will later discuss the molecular weight of asphaltenes
and resins.) Association of different species in a crude is schematically
shown in Fig. 5.9. This sketch 1s based on comprehensive studies of the
asphaltene aggregation in crude oils using SAXS, small-angel neutron
scattering (SANS), rheology, and specific-heat measurements (Storm
and Sheu, 1995; Storm et al., 1995; Wiehe and Liang, 1996). Storm ef al.
(1995) suggest that the asphaltene micelles have spherical shape.
Other shapes have also been assumed. The asphalt-free species in Fig.

Liguid Phase

= Monomeric asphaltene
" Manomeric resin

XNA sphalt-free oil species
Micelle

Precipitated Phase

Liquid mixture of asphaltenes and resins

Figure 5.9 Schematic representation of a crude/prempltate system (adapted from Pan and
Firoozabadi, 1998b).

[
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5.9 are all the species except asphaltenes and resins. The asphaltene
molecules can be found as monomers (that is, single molecules) in the
bulk phase and in the micellar core. The resins are also found both in
the monomeric state in the bulk phase and in the micellar shell. The
nonpolar asphalt-free species are also found both in the bulk phase
and in the micellar shell. Figure 5.10 portrays a single micelle in the
crude o1l. This sketch shows that the micellar core is comprised only of
asphaltene molecules. The shell surrounding the asphaltene core
contains the resins and the asphalt-free oil components. The sketch in
Fig. 5.10 is very similar to the micellar structure suggested by Wiehe
and Liang (1996) with the exception that those authors assume a high
concentration of aromatics in the shell. Figure 5.11 depicts the sketch
for the shell when a crude is diluted with an aromatic. Note that the
aromatic solvent does not adsorb onto the asphaltene core.

As a result of change in pressure, composition, and temperature to a
lesser degree, the micellar size shown in Figs. 5.10 and 5.11 may change
(Nielsen, et al., 1994). The equilibrium between the precipitated phase
and the bulk-liquid phase will be effected as a result of the micellar
size. This is one main reason that cubic equations such as the PR-EOS,
which have been used so successfully 1n vapor-liquid equilibria, may
not be suitable for asphaltene-precipitation and asphaltene-precipita-
tion inhibition calculations. This point will become clear later.

Various methods have been used for asphaltene-precipitation calcu-
lations. Most models in the literature are based on the classical Flory-
Huggins polymer-solution theory (see Chapter 1) coupled with the
Hildebrand regular solution (see Chapter 1} (Hirschberg et al., 1984;
Burke et ¢l., 1990; Kokal et al., 1992; Kawanaka et al., 1991: MacMillan

= Monomeric asphaltene
<& Monomeric resin
™~ Asphait-free oil

Micellar core

/ Micellar shell
/

|

Figure o Sduenidiin represstoiion of wniealls in.ande (adanted from Pan.

gfEraantadilgasny
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=== Monomeric asphaltene
P . .

‘~—?:‘ Monomeric resin

~+  Asphalt-frec oil

O Aromatic solvent

| Micellar core
| Micellar shell

Figure 5.11 Schematic representation of a micelle in a mixture of the crude/
aromatic solvent (adapted from Pan and Firoozabadi, 1998¢).

et al., 1995). Those models do not consider (1) the change in association
between asphaltene molecules, and (2) the peptizing effect of resin mole-
cules (the term peptizing means the dispersion of asphaltenes in the
crutde by a substance such as resins and amphiphiles (Gonzales and
Middea, 1991)). The EOS-approach has also been used to model asphal-
tene precipitation (Nghiem et al., 1993). Leontaritis and Mansoori
(1987) proposed a colloidal model that 1s based on the assumption that
the insoluble solid asphaltene particles are suspended 1n the crude o1l
the suspended asphaltene particles are stabilized by the adsorbing
resins on thelr surface. In this model, resins are necessary for the
asphaltenes to exist in solution. The above models have not been
tested for the effects of pressure, temperature, and composition includ-
ing aromatics and polar material when added to the crude oil.

It was stated earlier that wax and asphaltene precipitation are differ-
ent processes; the effects of composition, pressure, and temperature on
wax precipitation can be in the opposite direction to those on asphal-
tene precipitation. As an example, an increase in pressure often
increases the CPT in a crude oil; that is, pressure increase enhances
wax precipitation from crude oils (see Fig. 5.7). On the other hand, as
we will see soon, pressure increase can inhibit asphaltene precipitation.
Wax precipitation is strongly effected by temperature; temperature
may weakly effect asphaltene precipitation, and may enhance or inhibit
it. The composition effect is also very different on wax and on asphal-
tene precipitation. An increase in concentration of light hydrocarbons
such as C4 and nC; and nonhydrocarbons such as CO, decreases the
CPT (see Fig. 5.24, to be discussed later). On the other hand, an increase
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in the amount of these species can significantly enhance asphaltene
precipitation. The composition of the precipitate is also very different
in wax and asphaltene precipitation. The precipitated wax does not
contain asphaltenes, resins or other aromatics. Asphaltenes and resins
are the principal components of the precipitate 1n asphaltene precipita-
tion. The mixing of a crude o1l with some polar species in small amounts
may have a strong effect on asphaltene precipitation, whereas it may
have very little effect on wax precipitation. These substantial differ-
ences between wax and asphaltene precipitation are the main reasons
that we have opted to present a thermodynamic micellization model
(Victorov and Firoozabadi, 1996) for asphaltene precipitation. In the
following, we will first present the standard Gibbs free energy of micelli-
zation, then briefly review the state of the precipitated phase followed
by Gibbs free energy expressions for the liquid and the precipitated
phase. The solution of the equilibrium problem and results wiil
complete the presentation on asphaltene precipitation.

Standard Gibbs free energy of micellization

The micelle sketched in Fig. 5.10 contains an asphaltene core with n;
asphaltene molecules; n, resin molecules are adsorbed onto the surface
of the core. In addition to resins that are part of the solvation shell
surrounding the core, asphalt-free 01l species are also present in the
shell. The formation of the solvation shell around the asphaltene core
lowers the Gibbs free energy. The standard Gibbs free energy of micelli-
zation, AGY, represents the standard Gibbs free energy difference
between (1) n, asphaltene molecules in the core, ny resin molecules in
the shell, and (2) those n; and n, molecules in an infinite-dilution petro-
leum mixture:

AGS? = Ju;kn - nlﬁglka - n?.lufrﬂ (53T]

where ¥, 1s the standard-state chemical potential of the micelle and g},
and i}, are the standard-state chemical potentials of the monomeric
asphaltenes and resins, respectively. The standard state is the infinite-
dilution state with respect to micelles, monomeric asphaltenes, and
resins (see Chapter 1). The magnitude of AGY reflects many complex
physiochemical factors, such as the lipophobic effect, the interaction
between asphaltene molecules in the micellar core, the micellar core—
bulk crude interfacial effect, and the adsorption of resin molecules
onto the surface of the micellar core. Here we will explain the term lipo-
phobic. Because of the synonymity with the term hydrophobic, we will
explain the terms hydrophobicity and hydrophilicity first. Water is
composed of tiny H,O dipoles and, therefore, polar substances dissolved

\_—
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in water are called hydrophilic substances, that is, water-loving
substances. On the other hand, hydrocarbons such as paraffins, which
are nonpolar and have a nonpolar bond between carbon and hydrogen,
will not dissolve in water and are called hydrophobic or water-fearing
substances. A group of substances that can be dissolved in lipids are
. called lipophilie, and those that cannot dissolve in lipids are called lipo-
phobic. Since the asphaltene molecules are polar and the asphalt-free
o1l is nonpolar, the asphaltene molecules are lipophobic and transfer
from the crude to form the micellar core. It should be mentioned that
adjectives hydrophobic, hydrophilic, lipophobic, and lipophilic denote
only general trends. Pan and Firoozabadi (1998b) suggest a reversible
micelle formation process sketched in Fig. 5.12 for the evaluation of
AGY  There are four steps in the process.

1a Free energy transfer of asphaltene molecules. Part of the first step is
the change in free energy as a result of the transfer of n; asphaltene
molecules from the infinite-dilution solution to the aggregated state
(see Fig. 5.12). The aggregate state is assumed to be a pure-liquid
asphaltene state; (AGY),, expresses the free energy change due to this
transfer:

(AGD), = m (i — 14,): (5.38)

where 47 is the liquid chemical potential per asphaltene molecule in the
micellar core. In order to evaluate i, we assume that the Gibbs free

(6620'&
(AGE) pef

(AG.'?: )lnf

Figure 5.12 Schematic representation of the reversible process of micellar formation
{adapted from Pan and Firoozabadi, 1998h).
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energy of an asphaltene molecule in the micellar core consists of: (1)
association and (2) standard state:

= (Ag) s + uUT, P), (5.39)

where (Agl),, 1s the association free energy and u is the chemical poten-
tial of an asphaltene molecule in the pure-liquid state at temperature
T and pressure P. The expression for y,,, the chemical potential of the
monomeric asphaltenes is

e =tUT . PY+kTnx,, + kTlny,,. (5.40)

where x,, 1s the molecular fraction of the monomeric asphaltenes in the
solution and v, is the activity coefficient. In Eq. (5.40), k 18 the Boltz-
manh constant which replaces the gas constant R when molecules
rather than moles are uscd as a basis. [The relation between the
number of molecules n, and the number of moles N, can be readily
obtained from PV = NRT where R 1s the gas constant, and
PV =nkT . n = (k/RIN = NyN, where N, 1s the Avogadro number.]
When infinite dilution 1s used as the standard state, the expression for
1y, 18

fhy = W (T, PY+ kT Inxy, + kT Inv],. (5.41)

where 71, is the activity coefficient of the asphaltene molecules using

infinite dilution as the standard state, Since the left side of Eqs. (5.40)
and (5.41) are the same, then
W0yt = —kTIn’e (5.42)

+
¥

la

which 1s also valid at infinite dilution (that 1s, x;, — 0),

W @t = —kTin-a (5.43)

n|*-‘ -
fla

At infinite dilution, 77,° = 1 (see Eq. (1.140) of Chapter 1), and Eqg. (5.43)
simplifies to

1 — ut, = kT InyE, (5.44)

The activity coefficient ;5 can be estimated from

4900
A o S 5.45
J‘]_(I (pg(T,P), (O O)

where ¢ and ok (T, P) are the asphaltene fugacity coefficients at infi-
nite dilution and the pure-liquid state, respectively, both at temperature
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T and pressure P (see Problem 1.14, Chapter 1). The fugacity coefficients
@2 and ¢ can be estimated from an EOS (in the estimation of ¢%, one
may use Eq. (3.32) of Chapter 3 and set x, = 0). Combining Egs. (5 38),
(5.39), (5.44), and (5.45),

(AGg), = m [(Agﬁ)as —kTln ‘—:;;] (5.46)

&

The first and second terms in Eq. (5.46) are negative. The association
results in lowering the Gibbs free energy. As a result, the Gibbs free
energy of transfer in Eq. (5.46) lowers the Gibbs free energy and, there-
fore, micellar formation and growth are favored. The transfer of asphal-
tenes also results in the deformation of asphaltene molecules, which is
desecribed next.

1b Free energy of deformation of asphaltene molecules. The Gibbs free
energy of deformation of asphaltene molecules can be obtained from
the expresston (Flory, 1953; Nagarajan and Ruckenstein, 1991; Nagara-
jan and Ganesh, 1989a, 1989b),

ET| R2 ver |
(AG ) ger = n‘z { NE +23~R—2‘i3j), (5.47)

oil
where R 1s the radius of the asphaltene core, m, is the ratio of the mole-
cular volumes of asphaltene and asphalt-free oil species, V,/V,;, and
L, 1s the characteristic length of the asphalt-free oil molecules (see
Example 5.5 for the calculation of molecular volumes). The characteris-
tic length is estimated from (V,;)! /3 In order to deform asphaltene mole-
cules, one needs to perform work; therefore, (AGa)def is positive, which
prevents the micelle from infinite growth.

2 Interfacial free energy of asphaitene-core formation. In order to forma
bubble or a droplet from a bulk phase, as we have seen in Chapter 2,
work must be performed. Therefore, the contribution of the interfacial
effect (AGY),,, to the standard Gibbs free energy of micelle formation is
positive and prevents the micelle from infinite growth. The Gibbs free
energy of formation of a micelle is given by

(AG);,, = 6 A, (5.48)

where ¢ is the asphaltene core-bulk crude o1l interfacial tension and A
is the total surface area of the micellar core, A = 4nR?. There are
three implicit assumptions in the above equation: (1) the pressure is
assumed to be the same in the surrounding liquid and in the asphaltene



Thermodynamics of wax and asphaltene precipitation 319

core, (2) the interfacial tension is assumed to be independent of the core
radius, and (3) the osmotic pressure effect is neglected. Equation (5.48)
can be written in an alternative form by dividing A into n, equal surface
areas and using the symbol a to represent the surface area of one unit,
a = 4aR?/n,,

(AGY),,.; = nyoa. (5.49)

3 Transfer free energy of resin molecuies. The expression for the trans-
fer free energy of n, resin molecules from an infinite-dilution solution
to the shell is given by

(AGg)tr == n2(4ur - aufr)r

where p, is the chemical potential of a resin molecule 1n the shell. The
expression for u, 1s

tt, = u(T, P+ kT Inx, g + kT Iny, . (5.50)

In the above equation, i (7,P) is the chemical potential of a resin
molecule in the pure liquid state, x, ;, is the molecular fraction of resin
in the shell, and . ;, 1s the activity coefficient of the resin in the shell.
Similarly to Eq. 5.44,

w— i, = —kT Inygy, (5.51)

where 7§¢ is the activity coefficient of the resin in an infinite-dilution
solution with the standard state being a pure liquid state. Combining
Egs. (5.49) to (5.51),

(AGE)N - n2kT[1n Vrsh®rsh — In J)ix;l] (552)
Both 7{¢ and y, ,; can be evaluated by an EOS: |

_or

iy = (5.53)
Tl
L
P sh .
a))r'sh _ _(P_r EJ [) (5.04)

where qo,{“sh is the fugacity coeflicient of the resin in the shell and ¢ is
the fugacity coefficient of the resin at infinite dilution. Combining the
above three equations, one obtains

L er
Proshrsh | (5.55)

(AGY),, = nZkTIn[ pes
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The expression for x, ;, can be derived as follows:
Ver = 12V 4+ 1t Vou, (5.56)

where V,; is the volume of the micellar shell and n,; 1s the molecular
number of the asphalt-free oil species in the shell. Equation (5.56) can
he written as

(Vg —ny V)

o= 5.97
Reoii ‘/:)“_ (3 )
Therefore,
n2 ' ng -

DL S A—— 5.58
Ty gy g+ (Vi — naV))/ Vi) (5:58)

The shell volume is given by

4

Vi = o UR + D - R, (5.59

where D denotes the shell thickness. The final expression for (AGY),, is
given by

I .
S T

(AGY), = nghTIn of g { ——-————"—
ng +'—3~[(R+D)3 — R~ n,V.I/V,,

(5.60)

The above term is also negative, implying that the transfer of resin mole-
cules from the bulk phase to the solvation shell is the preferred state.

4a Adsorption free energy of resins. When n, resin molecules adsorb
onto the surface of the micellar core at constant temperature and pres-
sure, without consideration of the interfacial effect, the Gibbs free
energy change is given by n,[(ARY),,, — T(As,),,). The adsorption of
resins, however, decreases the contact surface between the asphaltene
core and the asphalt-free oil species by n,0a;, where g, is the contact
area of the resin molecule onto the surface of the micellar core. This
decrease of interfacial free energy is called the interfacial screening
effect 1n micellar science. The screening free energy for each resin mole-
cule adsorbed onto the micellar core is ga,. Therefore, the adsorption
free energy for each resin molecule consists of three parts: (1) adsorp-
tion enthalpy, (AAD)_;., (2) adsorption entropy, (As®)_,,, and (3) interfa-
cial screening energy:

(AG) s = Mol(ARD)ogs — TUAS,)ogs — 0. (5.61)
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In the above equation, (AR?) ;. is a measure of heat interaction
between asphaltene and resin molecules. The adsorbed resin molecules
generate steric repulsion among the polar heads, which results in a
loss of entropy compared with the unadsorbed molecule; the entropy
change is shown by (As,),s,. While (Ah?) can be measured directly or
estimated as we will see later, (As,),4, can be calculated from (Nagara-
jan and Ruckenstein, 1991)

(88,)oa, = k1n[1 - %P] | (5.62)

where a, is the effective cross-sectional area of a resin molecule
attached to the polar head. The adsorption enthalpy is negative,
whereas the adsorption entropy term is positive. The interfacial screen-
Ing energy 1s also negative. Once we add the last term of Eq. (5.61) to
Eq. (5.49), the term n,o(a — ¢;) also represents the interfacial effect,
which is positive.

4b Free energy of resin deformation. The deformation free cnergy of n,
resin molecules 1s also expressed by an equation similar to that of
asphaltene deformation,

nkT [ D? m?
(AG)) s = 22 [mrL2 +25~3], (5.63)

oif
where m, is the ratio of the molecular volumes of the resin to the
asphalt-free oil species.

Now we can sum up all the terms to provide the expression for AGY:
AG = [(AGD),, + (MG g} + (MG Ying + [(AGD,] + [(AG gy + (AG eyl
(5.64a)

Substituting from Egs. (5.46), (5.47), (5.49), (5.60-5.62), and (5.63) into
Eq. (5.64a),

AGY A8y, 9k 1( B md’Ly
m — 1 143 o 2 o
kT ”1[ T T lhex T\ miz V4T R 3)

o1l

— ho L )
+R2M+n2[(A F)ads_ln(l_%)_i_ln(pr,sh r.sh

rRT kT a o0

r

1 Dt
+2(m - +2mD -3 (5.64b)

ot
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be unity. An EOS can be used to calculate }?i. Combining Eqs. (56.66) and
(5.67) gives

S A it 3 L
Goopoent = 2 0 WD) +RT Y n Inf; (T, P,ny*.....n").  (5.68)
= bt

The calculation of the Gibbs free energy of the solute components is
more complex (see Pan and Firoozabadi, 1997a). We can divide G
into three parts,

solute

Gsm’ute = GO + sz'x + Ginter* (569)

where G, G,,;,, and G, are the standard state, the mixing, and the
iteraction Gibbs free energies. The standard-state Gibbs free energy
1s given by

L * L * * -~
G’ = ny} o + NG, A Rty (5.70)

The material balance equations in the liquid phase are

I L

n,' =ny +nn, (5.71)

nl = n‘{“; + nyn,, (5.72)
where nf:T and n* are the total number of asphaltene and resin mole-
cules and n,, is the total number of micelles in the liquid phase L,.
Combining Eqgs. (5.37) and (5.70) with (5.72), one obtains,

G° = nhvyy, + nluyd, +n,,AGY. (5.73)

The mixing Gibbs free energy 1s given by (see Example 1.4, Chapter 1)

mix = kT[n{‘; Inx, + n{; Inx,, +n,Inx,], (5.74)

G
where x;, and x,, are the species fractions of the monomeric asphal-
tenes and resins, respectively, and x,, 1s the molecular fraction of the
micelles.

The interaction Gibbs free energy of solute species, G,,,.,, which
represents the interactions between the micelles, the monomeric
asphaltenes and resins, and the asphalt-free oil species 1n the liquid
solution L, can be estimated using the mean-field approximation,

Ginter = RT[nE In$% + nfrIn$7), (5.75)
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The first bracket on the left represents the Gibhs free energy transfer of
n, asphaltene molecules and their deformation. The second term repre-
sents the interfacial Gibbs free energy, and the second bracket repre-
sents various terms for resin contribution to the micellization process.
In Example 5.6, an alternative form of Eq. (5.64a) will be presented.

Next we will derive the expression for the Gibbs free energy of the
liguad phase, making the assumption that all the micelles are of the
same size (that 1s, they are monodispersed). The monodispersity assump-
tion, although supported by experimental data (Storm et al., 1995) can
be relaxed at the expense of computational complexity.

Gibbs free energy of the liquid phase

As the sketch in Fig. 5.10 shows, the bulk liquid phase consists of
micelles, monomeric asphalts and resins, and asphalt-free o1l monomers
in the bulk phase and in the shell. Let us denote asphaltenes and resins
as the solute and the rest of the species (that is, asphalt-free o1l species)
as the solvent. Then the Gibbs free energy of the liquid phase, G%, can
be written as

GL] = Gsoh:ent T Gsoiu!e' (565)

Later we will represent the precipitated phase by L,. We assume a total
of ¢ components/pseudocomponents 1in the crude oil. The component
indices for the asphaltenes and resins are ¢ and (¢ — 1), respectively.
Therefore, the number of species in the asphalt-free oil 1s (¢ — 2). The

expression for G ., 18

c—2 [
G.«cohrenc = Z 1, lfJ;' h (5.66)
i=1

where nfl 18 the molecular number and yfl 1s the chemical potential of
the sglvent species i (that 1s, the asphalt-free o1l species). The expression
for u! is

i

;t?] = ul(T) + len}’if{“(T, P, n{“, onln i=1,...,(c—=2), (5.67)

where u(7T) is the chemical potential per molecule of the asphalt-free
oil species in the reference state at temperature T and £, is the fugacity
of solvent-species i in the liquid phase using the mean-field approxima-
tion. In mean-field approximation, one can picture the molecules
immersed in a continuum having the fluid’s average properties. The
symbol “”” denotes the mean-field approximation. Note that in Eq.
(5.67) the fugacity of the reference state for component i is assumed to
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be unity. An EOS can be used to calculate fi. Combining Eqgs. (5.66) and
(5.67) gives

c—2 L c-2 I L I I3
Geptvent = 2. ni‘,u?(T) + kT 3 n Inf[Y(T, Pn", ..., 0" (5.68)
i=1 i=1

The calculation of the Gibbs free energy of the solute components is
more complex (see Pan and Firoozabadi, 1997a). We can divide G
into three parts,

solute

G.e-'ofure =G° + Gmix + Gincer' (5.69)

where G, G,,;,» and G,,,, are the standard state, the mixing, and the
interaction Gibbs free energies. The standard-state Gibbs free energy
1s given by

G = byl + il + k. (5.70)

The material balance equations 1n the liguid phase are

L = -
nﬁ‘ = ny, +nn, (5.71)

L =
nh = nyy 4+ non,, {D.72)

where nf;“ and n,{" are the total number of asphaltene and resin mole-
cules and n,, is the total number of micelles in the liquid phase L,.
Combining Eqgs. (5.37) and (5.70) with (5.72), one obtains,

G° = nlvl, + nbd, + n, AGY. (5.73)
The mixing Gibbs free energy is given by (see Example 1.4, Chapter 1)
Gopix = kT[n{; Inx, + n{‘; Inx,, + n, Inx,l (5.74)

where x,, and x;, are the species fractions of the monomeric asphal-
tenes and resins, respectively, and x,, is the molecular fraction of the
micelles.

The interaction Gibbs free energy of solute species, G,,,,,, which
represents the interactions between the micelles, the monomeric
asphaltenes and resins, and the asphalt-free oil species 1n the liquid
solution L,, can be estimated using the mean-field approximation,

Giner = RT[nE In 3% + nlt In 7], (5.75)
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where }* 1s the activity coeflicient; 1t 1s a function of the gross concentra-
tion of all species in the liquid solution. The chemical potentials of the
asphaltene and resin molecules using the mean-field approximation
can be expressed as

it = (7Y + kT In x5 4 kT In (T, P, n™, ... nl)P
i=(c—1)and ¢ (5.76)

ubt = (T, Py + kT In 2™ + kT In33(T, P, k1, ... nh)
i={(c—1)andc, (5.77)

where x¥°* is the gross molecular fraction of asphaltenes or resins in
liquid phase L,. From Eqgs. (5.76) and (5.77),

WA(Ty+kTInGP = (T, P)+kTIn5f  i=(c—-1andec. (5.78)
Combining Fqgs. (6.75) and (5.78) gives

Ginrer = 1 8(T) + nf* () + RT[nE In §,P + nf1 In P
= [l (T, Py + b (T, P)). (5.79)

Substituting Eqgs. (5.73), (5.74), and (5.79) into Eq. (5.69) provides the
Gibbs free energy of the solute species,

Gootute = kT[nlL; Inx,, + n{‘; Inx,, +n, Inx, ]+ n, AGY

+ LT + kT In & Pl + nb T+ kTIn g, Pl.  (5.80)

The Gibbs free energy of the liquid phase, L,, is obtained by adding Eqgs.
(5.68) and (5.80)

r—

¢ c—2 ~
Gh = Y n WD) + kT Y nfff
i=1 i=1

+ kT[nf{; Inx,, + n{“; Inx,, +n,Inx,]
+ 1, AGY + kTRl In g P+ nbng, Pl . (5.81)
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To repeat again, at constant 7" and P the fugacities and fugacity coeffi-
cients in Eq. (5.81) are a function only of gross concentrations of all the
species:

P, T L L, L L .

fi =f(rhny o oonlanlnky  i=1,...,(c—2) (5.82a)
- ~ o L ) L L . -

¢, = Pilnyt ng®, o only mety ) i=(c—1)andc, (5.82b)

according to the mean-field approximation.

Gibbs free energy of the precipitated phase. In order to evaluate the
Gibbs free energy of the precipitated phase, first the state of this phase
should be ascertained. Most of the asphaltene precipitation calcula-
tions are based on the assumption that the precipitate is a solid phase.
This assumption is most probably true at room temperature but may
not be valid at reservoir temperatures which are often higher than 330
K. Experimental studies have shown that the precipitated phase is in
the form of dark solid particles when a crude o1l 18 diluted with propane
at room temperature (Kokal et al.,, 1992). When the same crude oil is
diluted with n-pentane or a heavier normal alkane at room temperature,
the precipitated phase has a crystalline state (Kokal et al., 1992).
Chung et al. (1991) also observed the precipitate to be in a solid state
when a crude oil was mixed with n-pentane at room temperature.

At high temperatures, Kokal et ¢l. (1992), Hirschberg et al. (1984) and
Godbole et al. (1995) observed the precipitation of a black-liquid
mixture. A transition from solid to liguid state was observed by Storm
et al. (1996) at above 330 K. Here we will formulate the Gibbs free
energy of the precipitated phase as a liquid. The expression for the
Gibbs free energy of the precipitated solid phase will be presented in
Example 5.7.

In the following, we will assume that the precipitated phase only
consists of asphaltenes and resins. We will also assume that the precipi-
tated phase does not form a micellar solution; there will be no associa-
tion either between asphaltene molecules or between asphaltene and
resin molecules in the precipitate. The Gibbs free energy expression
for the precipitated liquid phase L, will be simply

Gl = nL [ 0T + kT Infl2] + nl(T) + kT Inf5), (5.83)

where f;r‘E and ff 2 are the fugacities of the asphaltenes and resins in
phase L, (see Fig. 5.9). Note that Eq. (5.83) does not assume an 1deal
liquid solution. An EOS can be used to readily calculate fugacities in
the above equation.
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Gibbs free energy of the liquid and the
precipitate system and equilibrium

The total Gibbs free energy of the light-liquid phase L; and the precipi-
tated phase L, is given by G = G¥ + G2, Using Fqs. (5.81) and (5.83),

c c—2 -
G=> nu(TY+ kT nf‘l lnff‘
i=1 i=1

+ kT(nfé In xf‘é + n‘lr“; In x‘;‘; +n,lnx,,)

+ 1, AG® + kT (nf1 In o P + nl 1In 611 P)

+ RT(nk Infl 4 nk In fle), (5.84)

The material balance expressions for asphaltene and resin molecules
are

n, = n{é + nyn,, + nk (5.85)
n, = n‘;; + non,, + nf (5.86)

In the above two equations, n, and n, are the total number of molecules
of asphaltenes and resins in the system, which are fixed quantities.

The minimization of Gibbs free energy of the total system with respect
to the independent variables subject to the constraints of Egs. (5.85)
and (5.86) provides the amount and composition of each phase. In
general there are eight variables for the calculation of an equilibrium
state at constant T and P. Those are n,, n,, D, n‘lr‘é, nf; Py a2, and np?.
Once these variables are obtained, the micellar size can be readily
determined. Pan and Firoozabadi (1997a) have used the feasible
sequential quadratic programming (FSQP) to minimize G (Zhou, Tits,
and Lawrence, 1996).

Parameters of the micellization model

A number of parameters are introduced in the standard Gibbs free
energy of micellization (that is, Eq. (5.64b)) and the total Gibbs free
energy expression (that is, Eq. (5.84)). These parameters can be esti-
mated from the chemical structure of the species and other measure-
ments. In the following, numerical values for these parameters will be
discussed.

Adsorption enthalpy (AAD),;- The nature of the resin adsorption onto
the asphaltene core is a weak acid-base interaction, similar to a hydro-
gen bond. Therefore, the formation enthalpy of a hydrogen bond can be
used, (ARY), 4, = —11.2 x 103 J/gmole (see Prausnitz et al., 1986).
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Interfacial tension between liquid asphaltene and bulk crude oil. There is
no reported measurement of the interfacial tension between the asphal-
tene liquid and the asphalt-free oil species in the literature. A value of
about 37 dynes/cm may be reasonable at room temperature (Firooza-
badi and Ramey, 1998; Firoozabadi, et al., 1998). The interfacial tension
will change as the oil composition changes because of dilution with
different amounts of a diluent. It will also change with temperature.
Based on the work of Nagarangan and Ganesh (1989a, 1989b), Pan and
Firoozabadi (1997a) proposed the following expression for the interfa-
cial tension to be used in Eq. (5.49) and Eq. (5.64):

0.55 2 . . 1.3
o =0, (1) Loil *aa B Ooil (587)
Ty Loity ] \9a0 — Oaut,

where 0, = 37 dynes/cm 1s the interfacial tension between the asphal-
tene liquid and the asphalt-free crude oil at stock-tank conditions.
Other symbols 1n Eq. (5.87) are 0,;, the solubility parameter of the
asphalt-free oil species at temperature 7' (that is, asphalt-free oil); 4,,.
the asphaltene solubility parameter at temperature T'; .y, and 9, , the
solubility parameters of the asphaltene and asphalt-free o1l species at
temperature T}, respectively, and L,; and L, , characteristic lengths
of asphalt-free oil species at 7 and T, respectively. The estimation of
solubility parameters 1s discussed in Problem 3.10 of Chapter 3 using
an EOS.

Gibbs free energy of association, (Ag,%).,. Based on the experimental
data of Storm and Sheu (1995), the Gibbs free energy change due to asso-
ciation of asphaltene molecules 1s estimated to be around
(Ag%),, = —10kT. This term is an important parameter of the micelliza-
tion model and results in a substantial reduction of the system Gibbs
freec energy.

Asphaltene and resin molecular parameters. The molecular weights of
asphaltenes and resins are M, = 1000 = g/gmole (Storm and Sheu, 1995)
and M, = 850 g/mole, based on the work of Lian, Lin, and Yen (1994).

The contact area of a resin on the surface of a micellar core is
ay, = 21 A% (assuming that the polar head of the resin being the OH
group), and the effective cross-sectional area of a resin attached to the
polar head is a, = 40 A? using the cross-sectional area of one benzene
ring (Nagarajan and Ruckenstein, 1991).

The estimated molar volume of asphaltene molecules is V,, = 0.9 m?/
kgmole (see Example 5.5), and that of resin, V, = 0.7 m3/kgmole. The
molar volume of asphalt-free o1l can be readily estimated from an EOS.
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Results from the micellization modei

Pan and Firoozabadi (1997a, 1998b, 1998c¢) have used the model
described above to study asphaltene precipitation from several crude
oils. Some results from their work will be presented here.

Figure 5.13 shows the effect of pressure on precipitation from the
crude 2 in Hirschberg ef al. (1984) with propane at a temperature of
367 K (94°C). The composition of crude o1l is provided in Table 5.6.
Note that the measured asphaltene and resin contents in the stock-
tank oil are 0.6 and 5.4 percent (weight), respectively; the ratio of resin
to asphaltene is very high. The crude oil of Table 5.6 is mixed with
propane at a weight ratio of 1 to 7. The resulting crude/propane mixture
has a bubblepoint pressure of about 40 bar at 367 K. According to Fig.
5.13, at pressures above 1250 bar, there i1s no precipitation. At about
1250 bar, precipitation begins. The amount of the precipitation
increases slowly until a pressure of 300 bar and then increases rapidly
to the saturation pressure of 40 bar. Below the saturation pressure, as
a result of rapid change of composition of propane in the light liquid
phase, the amount of precipitate decreases very fast. At about 34 bar,
there 1s no precipitation. Figure 5.14 provides the precipitation
amount of the asphaltenes and resins. Note that the precipitation is
expressed in welght percent of tank oil. At the precipitation onset,
both asphaltenes and resins precipitate. As the pressure decreases
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Figure 5.13 Pressure dependence of precipitation for the mixture of ¢crude oil of Table 5.6
with propane at 367 K (adapted from Pan and Firoozabadi, 1997a).
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TABLE 5.6 Composition of
Hirshberg Stock-Tank Oil 2 (from
Victorov and Firoozabadi, 1996)

Comp. Mole% M, g/mole
CO, 0.0
C 0.07
C, 0.07
C; 0.87
i, 0.53
nC, 2.44
iC 1.7
nCs 2.36
C, 4.32
C-. 87.63 2217
CP1 30,737 140
CpP2 20,785 191
CP3 18.951 239
CP4 12,288 309
CP5 3.443 601
r 1.302 850
a 0,123 1000

Weight% of asphaltenc and resin in tank oil is
0.6 and 5.4, respectively.
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o e A sphaltenc, predicted
. = = Resin, predicted
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Figure 5.14 Predicted pressure dependence of asphaltene and resin precipitation from the
mixture of crude oil in Table 5.6 and propane at 367 K (adapted from Pan and Firoozabadi,
1997a).
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below 300 bar, the amount of resin increases much faster than that of
asphaltenes. At the saturation pressure, all asphaltenes and nearly all
resins precipitate (see Table 5.6).

In asphaltene precipitation calculations, 7', P., @ and interaction
coefficients should be provided for the EOS. The calculations in Figs.
5.13 and 5.14 are based on the PR-EOS. The critical pressures of resins
and asphaltenes were sct to 8.8 and 8.2 bar, respectively. The acentric
factors of resins and asphaltenes were sct to 1.8 and 2.0, respectively.
The Cavett (1964) correlation was used to estimated T, and P, except
for asphaltenes and resins. The binary interaction coeflicient between
asphaltene and resin is set to zero, and between methane and asphal-
tene, and methane and resin are set to 0.14 and 0.1, respectively. Other
binary interaction coefficients are set according to Table 3.3 of
Chapter 3.

When CO, is mixed with some crude oils, asphaltene may precipitate
above a certain concentration. Figure 5.15 depicts the amount of the
precipitation vs. CO, concentration for the Weyburn reservoir fluid at
160 bar and 332 K (Kokal et al., 1992). The composition of the Weyburn
oil 1s given in Table 5.7. Note that the amounts of the asphaltenes and
resins in the stock-tank o1l are 4.9 and 8.9 weight percent, respectively
(see Table 5.7). In Table 5.7, the C,5, composition is 13.75 mole percent
which comprises fractions CPl, CP2, resins and asphaltenes. Figure
5.15 shows that when CO, content in the Weyburn oil is less than 50

4.0

35 Asphaltene, predicted
' = - = Asphaltene and resin, predicted

3.0 4 Asphaltene, measured

2.5
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1.5

Precipitate, wt % live oil
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0.5

0.0 = e &
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Mole fraction of COy

Figure 5.15 Amount of precipitated asphaltene and resin from the Weyburn reservoir fluid
(see Table 5.7) and CO, mixture at 160 bar and 332 K (from Pan and Firoozabadi, 1997a).
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TABLE 5.7 Composition of
Weyburn Reservoir Fluid {from
Pan and Firoozabadi, 1997b)

Comp. Mole% M*, g/mole
N, 0.96
Co, 0.58
H,S8 0.30
C, 4.49
C, 2.99
C, 4.75
(C, 0.81
nC, 1.92
iC, 1.27
nCs 2.19
Cs_s 25.73 105
Crooss 26.98 179
Cis_ar 13.28 312
Coga 13.75 576
CP1 6.69 442
CP2 4.359 h&2
r 1.839 850
a 0.862 1000

Weight% of asphaitene and résin in tank oil is
4.9 and 8.9, respectively,
* Estimated from TBP data.

mole%, there is no precipitation. Above 50 mole%, precipitation begins
and increases sharply with CO, concentration. Note that the resin preci-
pitation is a small part of the precipitant. The experimental data are
also presented in Fig. 5.15. The effect of resin concentration in precipita-
tion is shown in Fig. 5.16. Note that there 1s a modest effect of resin
concentration in precipitation inhibition. Figure 5.17 provides the effect
of CO, concentration and resin concentration on the micellar core
radius in A. The predicted micellar-size changes due to the resin effect
are in agreement with experimental data (Espinat and Ravey, 1993). The
predicted concentration effect is also 1n line with experimental data
(Ferworn, Svrecek, and Mehrotra, 1993). Figure 5.18 provides the asphal-
tene precipitation onset vs. mole fraction of the separator gas in a North
Sea separator crude oil. The compositions of the separator oil and separa-
tor gas are provided in Table 5.8. The amounts of the asphaltenes and
resins in the stock tank oil are 0.9 and 2.9 wt%, respectively. The results
in Fig. 5.18 show that temperature variation of 32°C has a small effect
on the onset of precipitation (Fotland et al., 1997). Different trends have
been reported concerning the effect of temperature on asphaltene preci-
pitation from crude oils. The amount of asphaltene precipitation may
increase for a mixture of crude o1l and propane as temperature increases
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Figure 5.16 Effect of resin concentration on asphaltene and resin precipitation {rom the
Wevburn reservoir fluid and CO, mixture at 160 bar and 332 K (adapted from Pan and
Firoazbadi, 1997a).
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Figure 5.17 Effect of resin concentration on micellar size of the Weyburn reservoir fluid

and CO, mixture at 160 bar and 332 K {adapted from Pan and Fircozabadi, 1997a).
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Figure 518 Onset pressure for asphaltene precipitation of the mixture of separator oil and
separator gas of a North Sea reservoir fluid (adapted from Pan and Firoozabadi, 1997a).

TABLE 5.8 Composition of separator oil and
separator gas of the North Sea reservoir crude
{from Pan and Firoozabadi, 1997a})

Sep. oil Sep. gas
Comp. mole% mole% M, g/mole
N, 0.0 2.357
CO, 0.0 0.426
C, 8.365 67.496
C, 4.848 12.793
C, 7.888 9.733
iC, 1.486 1.215
nC, 5.586 3.027
iCs 2.201 0.815
nCs 3.263 0.761
Cy 4.530 0.619 86
C, 7.620 0.517 93
Cy 8.348 0.201 107
C, 6.515 0.040 121
Cios 39.348 0.0 282
CP1 15.648 189
CP2 11.786 261
CP3 7.9565 338
CP4 3.370 548
r 0.459 850
a 0.130 1000

Molecular Weight of separator oil is 190 g/mol.
wt% of asphaltene and resin are 0.9 and 2.8 in tank oil,
respectively.
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(Andersen, 1994). For normal-alkane diluents with carbon number above
5, the precipitated amount may fall with increasing temperature (Fuhr
et al., 1991; Ali and Al-Ghannam, 1981). Temperature may also have a
negligible effect as the data in Fig. 5.18 reveal.

In conclusion to this chapter, we would like to point out that the term
precipitation, whether used for wax or for asphaltene, is synonymous
with thermodynamic equilibrium. Wax and asphaltene deposition,
which are more complex, include kinetics and require detailed knowl-
edge of the deposition process and the associated transport phenomena.
The topic of deposition is in a very early stage of development and,
therefore, 1s not covered.

Examples and theory extension
Example 5.1 Derive Eq. (5.36) of the text.

Solution At equilibrium at the wax precipitation onset,
f2(T.(P)=f{(T, P,x"),

where the index i represents the precipitating component. From Egs. (142) and
(1.94) of Chapter1

v (T, P)
dInf3 (T, (P) = (J )dp] ,
[ nfi (T, (P} =T .

where v? is the molar volume of the precipitating component. One can write
5 S US
TP~ [T Pyexp| P - )|

where ff‘s is the fugacity of solid component at pressure PY. In the above equa-
tion, 1t 1s assumed that v;.s i1s independent of pressure. The vapor pressure of
solid component (which is a heavy normal-alkane) at temperature 7, is often
very small in comparison to P (that is, P° « P); therefore one may make a
further approximation,

S . £0.5 Py}
3T, Py~ f (T,Po)exp[ﬁ].

For an ideal liquid solution (see Eq.1.122, Chapter 1) fX(T, P, xly = xfff‘(T, Py,
one can also write the expression for f2(7, P) similar to f5(7, P),

(T, Py~ fOH(D, PY) exia[fi’f-].
! ’ ¢ ’ RT
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Combining the above equations,

L TP [_ P(v} — v?)]

x; Wf?'L(T, Po)ex RT

where the )‘?'S /ff"r‘ ratio is a function of only temperature, and therefore Eq.
(5.36) is established.

Example 5.2 Vapor -solid equilibrium model Consider the vapor-multisolid
equilibrium system sketched in Fig, 519, Write down the system of equations
that can be used to solve the problem,

Solution Similarly to the liquid-multisolid equilibrium at constant tempera-
ture and pressure, one can write

[P T 3 = foe dP. T i=(c—cg+Dh e

The material balances for the nonprecipitating components are

zi—ya-l:l.— 3 n}S/F:l:O i=1,...,(c —¢g),

J=le—cy+1)
where the symbols were defined earlier. For the precipitating components,

where all the solid phases are pure,

zi—yi\:l— > nJ;S/F]—n;g/F—_-D I={c—cg+1),...,c—1

jz(C—Cs+1]

[ a [ * -
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Figure 5.19 Vapor -multisolid-phase model for wax precipitation.
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The constraint equation for component i in the gas phase is given by-

Zyi =1].

i=1

The above (¢ + cg) equations define the (¢ + ¢g) unknowns: c¢g unknowns in n
and ¢ unknowns in y,. The criterion for the formation of solid phases is given
by Eq. (5.22).

Example 5.3 Wex precipitation from natural gases Consider a natural-gas
fluid of composition shown in Table 5.9 at P = 563 bar and T = 338 K, where
the fluid 1s in the gaseous state (Ungerer et al., 1995), Use the multisolid-wax
model to calculate the temperature at which the solid precipitates at 563 har.
Ungerer et al., measured the phase transition from gas to (gas+solid) at a
temperature of 62.0°C at constant pressure of 563 bar. Also calculate the
amount of the precipitated solid vs. temperature at P = 563 bar.

Solution The model described in Example 5.2 can be used to calculate the
temperature at which the solid phase precipitates, The composition and the
properties of the synthetic fluid are given in Table 5.9. This mixture is denoted
by SHF4 in the work of Ungerer ef al.

Note that AR’ values in Table 9 are different than values calculated from Eq.
5.20. Some n-alkanes undergo a solid-solid transition below their fusion-point
temperature. As an example, nCsg undergoes two transition solid states; from
melting temperature of 348.9 K, the first transition temperature 1s 346.8 K,
and the second transition temperature is 341.5 K. The melting point enthalpy
at the melting point is 21,230 cal/gmole, and the sum of enthalpy changes at
the two transition temperatures is 9670cal/gmole. Therefore, the total
enthalpy change from the liquid state to the solid state after the second transi-
tion state is about 30,900 cal/gmole. Finke, et al (1954) and Shaerer, et al.
(1955) provide the data in solid transitions for nC,; and nCgq, respectively.
Also note that in this problem, there is no need to obtain the enthalpy differ-
ence between the gas and the solid state at 7"/,

We can use the PR-EOS (Peng and Robinson, 1876) to caleulate fugacity and
density. The interaction coefficients from Chapter 3 are used in the PR-EOS,
we set d¢ _¢, = 0.12 and é¢, _yopene = 0.05. Figure 5.20 plots the amount of the

TABLE 5.9 The composition and physical properties of synthetic fluid mixture
SHF4 from Ungerer et af. (1995)

! Comp. zmol. M, 7..K P_, bar w . K AR

f fraction g/gmole cal/gmole

‘: C 0.756 16 190.6 46.0 0.008 90 —

’ G, 0.113 30 305.3 48.8 0.098 90 —
nC, 0.049 58 425.3 37.9 0.193 138 —
Toluene 0.020 92 591.7 41.1 0.253 113 —
nCy 0.027 114 568.8 24.8 0.394 1434 —
nCiq 0.023 226 717.0 14.2 0.742 2913 12,050

alley oA t8g, [ELT - o “2%) D SRS
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Figure 5.20 Wax precipitation from the synthetic gas: P — 563 bar.

precipitated solid phase (wt% of solid with respect to the weight of the origi-
nal synthetic fluid) vs. temperature. Note that the predicted solid-phase forma-
tion temperature is around 56.5°C, which is in fair agreement with the
measured value of 62.8°C. The multisolid model predicts the precipitation of
only nCqq in the whole temperature range. In fact, below 45°C very little nCy
remains in the gas phase.

This simple example indicates that in certain cases, wax may precipitate
from a natural gas before the dewpoint pressure is reached.

Example 5.4 Vapor-fquid-multisolid equilibrium formulation. Set up the
equations that can be used to solve the vapor-liguid-multisolid system
sketched in Fig. 5.3.

Solution We will use two approaches to solve the vapor-liquid multisolid
phase equlibrium. The first approach will be based on the flash-type calcula-
tions, and a second approach from direct minimization of the (Gibbs free
energy.

(1) Flash dpproach. The fugacity equalities, material balance expressions,

and contraints define the problem.
(a) The equilibrium between vapor and liquid phases provides

PP Ty Yer) =FEP. T2k k) i=1,.. e
(b) The equilibrium between liquid and solid phases provides

AP Toxb, o xl ) =0, (P T i=(c—cg+1),...,c
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(¢) Material balance for the nonprecipitating components 1s

zfmx?[l“ > n;SfF]’K?”Lx?(V/F):o i=1.....(c—cg)

I=le—eg+1)

(d) Material balance for the precipitating components is

2 — X [1 - Y n¥F- (VXF)} - nf/F — K "<} (V/F) =0

J=le—cg+1)

t=(c—cg+1)..., c—1.

(e} The constraint equations are

[

2.y =1
i=1

Yxk =1
=1

The above (2¢ + cg + 1) equations provide the (2¢ + cg + 1) unknowns, which
are y;, x-, n?, and V. Newton’s method can be used to solve the above system of
equations. The KiVLs are given by oX(P, T. x")/@Y(P, T, ). The Wilson correla-
tion discussed 1in Chapter 4 can be used for the first estimate of KI.VL to initiate
calculations,

(2) Direct minimization of Gibbs free energy. The Gibbs free energy of the

system in Fig. 5.3 is given by
G=G"+G" +G%

In terms of chemical potentials,

C , c ¢
G =Y n/u¥(T.P.y)+ 3. nkuH(T, P.xb) + 3 nSus(T, P).
=1 t=1

=1

The chemical potentials u’, uF and ¥ are given by
v 0 fY(T,P.y)
u (T, P'y)":!‘i(T)ﬂLRTln‘L‘W i=1,...,c
(T, P, x"") = ;IQ(TH—RTlnM, i=1,...c
L fAT)
y?(T,P):;z?(T)—i—RTlné-Sf%?-Y‘,—fl, 1,...,¢

Note that we do not know how many solid phases will precipitate. There-
fore, we agsume that all the components can precipitate as a solid phase. The
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material balance equation for the nonprecipitating and precipitating compo-
nents is

nl:n?]+n{‘+n§ i:l,..-sc'

The above equations can be combined to obtain the following expression for
the total Gibbs free energy of the system:

G = {i nud(T) — RT3 n, lnf?(T)}
=1 =]
+ RT[i nY Inf¥(T, P,n¥)+ 3 nkInfH(T. P, n*)
i=1 i=1
+ ¥ - Y — Y Inf(T, P)]
=1

At constant temperature 7T and pressure P, for given overall moles
n, (=1, ...,¢), the terms inside the braces { }, in the above expression are
constant and do not vary with nL-V and n‘ir“ (i=1,...,c). Therefore, at equili-
brium, in order to obtain the 2¢ unknowns, niv and nf‘, ohe can minimize the
function given by

G =3 n¥ WfY(T,P,n")+ 3 nFInfH(T, P, n)
i=1 ' i=1

+ 3 (i —nY — nB)Inf(T, P)

i=1

with respect to those 2¢ unknowns. An algorithm such as simulated annealing
discussed in Chapter 4 can be used to perform the minimization. Once n?,

and n‘f are obtained, the amount of the vapor, liquid, and solid phases can be
calculated.

Example 5.5 Molecular volume of asphaltene and other substances, and asphal-
tene-micellar core radius Calculate the molecular volume in A% from mass
density and molecular weight. Calculate also the number of asphaltene mole-
cules in the asphaltene core from the asphaltene micellar core radius of Fig.
5.17.

Solution Avogadros number gives the number of molecules in a mole:
N, = 6.02 x 10%2® molecules/gmole. Therefore, the relation between mass
density, p, molecular weight, M, and molecular volume, V, is given by

£
MZNAV

. 3 .
Let us use the units of g/cm3, g/gmole, and A for p, M and V, respectively. Then

10 \ M
V= (6.028) o
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For nC,yy, M =142 g/gmole, and p =~ 0724 g/cm® at 20°C; then the molecular
volume 1s

V = (10/6.028)/(142/0.724) = 35 A®,

For asphaltenes, if we asume M = 1000 g/gmoale and p &~ 11 g/cm? at 25°C
(molar volume = 0.9 m®/kgmole), then the molecular volume is V = 1500 2.

From Fig. 517 the micellar core radius of the Weyburn reservoir flurd before
mixing with CO, is about 30 A. The number of asphaltene molecules in the
core is given by

4
Hy V = E?TR:B.

For R = 30 A,V =~ 1500 A3, one obtains n, ~ 75.

Example 5.6 Show that the standard Gibbs free energy of micellization can
be expressed by
AGY! = (AGD),, + (AGY) gof] + (AGY)y + (AGY) g5 + (AGD) 4]
+ (Ang)int + (‘AGg)sir*
where (AGY),,. is the steric repulsion energy of resins in the shell, What is the
advantage of the above alternative expression for AGY?
Solution Consider Eq. (5.64a), and let us write the expression for (AG?),;,
from Eq. (5.61),
(AGS)ads = n2[(AhE)ads o T(Asr)ads - 000]-

We can designate the steric repulsion term -n,T(As, ).z by (AGY),, and
exclude it from (AG?)_;.. We can also exclude —nyoa, from the (AG?),,, term
and add it to (AGY);,, to obtain (AGY);,, = noo(a — ay) as was stated earlier.
The advantage of this alternative expression for AGY is that the formulation
for co-adsorption of the amphiphiles onto the micellar core can be facilitated,
as we will see in Example 5.9.

Example 5.7 Derive the Gibbs free energy expression for the precipitated
asphaltene phase when 1t 1s in a solid state.

Solution The expression for the Gibbs free energy of the precipitated solid
phage comprised of asphaltene and resin moleculas is given by

s_ .58 85 g 8
G” = njug +np;,

assuming that only asphaltenes and resins constitute the solid-solution phase.
For the 1deal solid solution

G® = ndl(T) + kT Inuxpf3) 4+ nPld(T) + kT In %7 f7).

In the above two equations, n is the number of molecules, f& and £ are the fuga-
cities of pure asphaltene and resin solids at temperature T and pressure P,
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respectively, and x is the molecular fraction in the precipitated-solid phase.
The fugacity of pure solid-component i can be obtained from Eq. (5.16). Acevedo
et al. (1995) suggest the enthalpy of fusion and the melting-point temperature
for asphaltenes to be 7300 cal/gmole and 583 K, respectively. Pan and Firooza-
badi (1998a) suggest the enthalpy of fusion and the melting-point temperature
for resins to be 5000 cal/gmole, and 483 K, respectively. The last two terms of
the exponent in Eq. (5.16) may be neglected in asphaltene precipitation calcula-
tions when the state of the precipitate is solid.

Example 5.8 Effect of aromatics on asphaltene precipitation Some aromatic
solvents have been used to inhibit the asphaltene precipitation in crudes
(Cimino et al., 1995), although aromatics such as benzene and toluene in
general may not be very effective for asphaltene-precipitation inhibition
because high concentrations may be required. When an aromatic such as
benzene or toluene is mixed with a crude, the micellization model described
in this chapter should be modified. The modification is necessary because as a
result of crude/aromatic mixing, the aromatics mainly appear in the solvation
shell and reduce the interfacial tension between the asphaltene-liquid core
and liquid solution outside the core. Modify the formulation presented earlier
for this purpose.

Solution Figure 5.11 provides the sketch for a micelle when an aromatic
solvent is added to the crude oil. The effect of aromatic solvent in asphaltene
precipitation is mainly because of the decrease of the interfacial tension.
In other words, when aromatics are added to a crude oil, the term (AGR);,,, =
n,oa in Eq. (549) or the term nyo(a — ay) reduces. The first step is, therefore,
the calculation of ¢ between the pure asphaltene liquid and the liquid mixture
of asphalt-free crude oil and the aromatic. Pan and Firocozabadi (1998b)
provide the following expression for the interfacial tension between the
asphaltene liquid phase and the surrounding liquid:

i < 7065
kT Va(oshell - ()a)
Iz . 6k T

k)

g =

where 3, and d,;,.;; are solubility parameters of the asphaltene liquid and the
asphalt-free oil/aromatic mixture, respectively. The solubility parameter d;,;
1s given by (see Eq. (1.162) of Chapter 1),

5shell = ‘Soild)oil + 5ammazic(baramat£cs

where @_; and @, .. are volume fractions of the asphalt-free oil, and the
aromatic solvent, respectively, and 6,; and J,,,,...;. are the solubility para-
meters of the asphalt-free oil and the aromatic solvent, respectively. Because
Saromatic 18 closer to 8, than 8, (see Problem 5.10), ¢ decreases as a result of
high concentration of aromatics in the shell.

The expressions for AG® and Gt (see Eqgs. (5.64) and (5.81)) are, therefore,
modified for the purpose of studying the effect of aromatics on asphaltene
precipitation. The indices for the asphalt-free oil species are from 1 to (¢ — 3),
the index for the aromatic species is (¢ — 2); resin and asphaltene indices are
(c — 1) and c, respectively. The main modification for G is due to G_,,,,, (see
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Egs. (5.66) to (5.68)). The expression for the Gibbs free energy for the solute
species remains the same (see Eq. (5.80)). The final expression for Gibbs free
energy of liquid phase L, 1s

L, _ < Lo i Ly ~ ook, ~ Iy )
G =3 "W (T)+ET Y n"Ing,(n", ..., 2 )P+ n,AG,
i=1 i=1

c—3 c—3
= L L L L L
+ kT(_él(”f e ngu)nxg -+ 21 RO Inx g+ (hy — 00 W) Inx,,
= i

L L
+ Pgro.sh 10 Xgrg o1 + 170 Inx, + nI} Inx;, +n,n xm).

In the above equation the subscript aro, and b represent the aromatics, and the
bulk phase, respectively; x; , and x; ;; represent the mole fractions of compo-
nent i in the bulk liquid phase and in the shell, respectively. Pan and Firooza-
badi (1998c) have used the above modified formulation to study the effect of
toluene on a crude 0il/CO, system. Figure 5.21 shows the effect of toluene on
asphaltene precipitation from the mixture of the Weyburn crude oil and CO..
Note that as the concentration of toluene increases, the precipitate decreases.

Example 5.9 FEffect of amphiphiles on asphaltene-precipitation inhibition
Chang and Fogler (1994a,b) demonstrate that amphiphiles can be used to
inhibit asphaltene precipitation. Formulate the expression for the standard
Gibbs free energy of micellization and the Gibbs free energy of phase L,,
when polar substance such as amphiphiles are mixed with a erude oil. Amphi-
philes have a polar head and a nonpolar tail.

Solution Since amphiphiles have a polar head, they are expected to co-
adsorb with resins onto the micellar-core surface. Therefore, one needs to
modify both AG% and the Gibbs free energy of the liquid phase L;. In the
following, we will briefly present the modifications to AGY. The standard
Gibbs free energy of micellization, including the co-adsorption of the amphi-
philes, can be expressed as,

00 *
AGy = iy, — nypi, — Nojih, — Ry,

where 7y is the molecular number of the amphiphiles in the solvation shell and
1}, 18 the chemical potential of the monomeric amphiphile molecule at infinite
dilution. AG% can also be expressed by

AGy = [(AGD, +(AG) ) + HAGY) 4 + (AGY),, +(AGY) 4]
+ [(Aq?)ads + (AG?)N + (AG}})dgf] + (AG?n)i.m + (AG?n)ste’

where the terms in the first two brackets and the last two terms were discussed
in Example 5.6. The terms in the third bracket represent the contribution for
the amphiphile. The terms representing the interfacial effect (AGY,),,,, and the
steric effect (AGQY),,, for two paolar species (that is, resin and amphiphile)
differ from the case of a single polar species (that is, resin) which was
presented earlier. Figure 5.22 shows a schematic of a micelle in a mixture of
crude oil and amphiphiles.
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Figure 5.21 Effect of toluene concentration {mole%}) on asphaltene precipitation: Weyburn
reservolr fluid and CO, mixture at 160 bar and 332 K (adapted from Pan and Fircozabadsi,
1998c¢).
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Figure 5.22 Schematic representation of a micelle in the crude/amphiphile
mixture (adapted from Pan and Firoozabadi, 1998c).
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Figure 5.23 Effect of DBSA concentration {mole%}) on asphaltene precipitation: Weyburn
reservolr fluid and CO, mixture at 160 bar and 332 K (adapted from Pan and Firoozabadi,

1998c).

TABLE 5.10 Contribution of various terms to AGY (unit, kT) for the mixture of
Weyburn Oil with 60 mole% CO, and 0.5 mole% DBSA (from Pan and Firoozabadi,

1998c)

Asphaltene: (Agy),, = —4.6 (Ag),, = —6.8: (Agl),, = 0.6
Resin: (Ag))g, = 2.6: (ARD), 4 = —4.1; (AgD),, = 4.6: (AgD), = —4.9: (Ag))yy = 0.07
DBSA: ((—\qu)m = 0.5: (Ahjo”)ads = —20.3; (Ag;q)i'm =35.4; (Ag)?).rr =27 (Ag_}[f])d(jf =0.74

Figure 5.23 shows the effect of amphiphile p-(n-dodecyl)benzenesulfonic acid
(DBSA) when mixed with the Weyburn crude 0il/CQ, system. Note that the
amphiphile has a strong effect on asphaltene-precipitation inhibition. The
reason for the strong effect of DBSA is a large negative (ﬁh?)ads. The forms of
various terms for AGY are provided in Problem 5.11. Table 5.10 shows the contri-
bution of various terms to AG,

Problems

5.1, Derive Eq. (5.9) of the text.
Hint: You may use Eq. (3.114) of Chapter 3 in your derivation.

5.2. Show that a higher entropy of fusion for the first precipitating component
can lead to a higher CPT.
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5.3. How would you reason that an ideal solid ol "™ is a good assumption for
the precipitated wax phase?

5.4. Derive the Gibbs Phase Rule for the qvhed in Fig. 5.3.

ystem ol
5.5. Consider Fig, 5.24 which shows th. caleylnt | CPT of a crude o1l (stock-
tank o1l), as well as the results when the ¢y q,. ol v wmixed with CO,, C,, C;, and
nC;. Explain the effects of pressure and Cohmpaui et CPT from that figure.

5.6. Consider a mixture of nCys and nfi, . (cuperature T'and pressure I°
Suppose the mixture forms a liquid solutinp ,pnd two solid solutions; one solid
solution 1s rich in nCy; and the other solid golyiien is rich in nCsy. Set up the
equations that can be used to solve the lquid- golid =olid equilibrium.

5.7. Effect of pressure on CPT for gases Unlike liquids where a pressure
increase often enhances the wax precipitation at constant temperature. for
gases pressure has often the opposite effect: pressure increase may inhibit the
precipitation at constant temperature. The solubility of nC,; in CO, at 308 K.
and the solubility of nCsyy in C; are provided in Tables 5.11 and 5.12 below. First
derive the expression

UsaI(P _ Psat)
— ant ex 1 1 : P)
Y1 U eXp|——pr /(1
322.0
321.0
¥ 320.0
@
T
2
® 319.0
| =
@
(=8
% 318.0
=]
=
2 317.0
3
2 -~ Original Ol
O 316.0 .~ = = = 30%Co2
- ~ — 0% C1
ss0 [ 30% G3
- - 30%C5
314.0
0.0 100.0 200.0 300.0 400.0 500.0 600.0

Pressure, har

Figure 5.24 Calculated cloudpoint temperature vs. pressure for a
stock-tank oil diluted by various light components (adapted from
Pan et al., 1997b).
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TABLE 5.11 Solubility of nCy; in CO, at
308K (data from Smith et al., 1996)

Pressure, bar Solubility in CQ,, mole%
10.0 0.0039
14.98 0.00532
17.51 0.00647
19.98 0.00689
21.51 0.00724
34.03 0.00858

TABLE 5.12 Solubility of nCy; in C; (data from van der Kooi,
Fléter, and de Loos, 1995)

Temperature, K Pressure, bar Solubility in C,, mole%
305.66 3.0 0.80
305,75 76.5 1.0
305.73 £2.30 2.0

where 3% is the solid-solute molar volume at temperature 7', ¢, is the fugacity
coefficient of the solute component in the gas phase, P{* is the sublimation pres-
sure (at which a solid vaporizes), and y, is the mole fraction of solute component
in the gas phase (that is, solubility). Note that vj® and P{* are functions of
temperature 7. The equation above shows that the solubility of the heavy
normal-alkane solids in CO, and C, gases increases with the pressure increase.
Spell out the assumptions that are made to derive the above expression and
then relate the solubility to CPT. Finally use this expression to predict the solubi-
lities of nCy; in C; and nCy; in CO,, and compare the results with the data.

5.8. A student has simplified the understanding of the effect of pressure on wax
precipitating from natural gases and crude oils through a P vs. T plot shown in
Fig. 5.25. Can you extend the plot for the effect of pressure on wax precipitation
from a mixture of equilibrium gas and liguid phases?

Would there be any change in Fig. 5.25 when a near-critical gas or a near-criti-
cal liquid mixture is considered for wax precipitation?

P
, Liquid
Gas and
Gas and Solid Liquid
Solid
T : - T

Figure 5.25 P-T plot for the multicomponent gases and hguids show-
ing pressure effect on wax precipitation.
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5.9. Show that the thickness of the shell in Fig. 5.11 can be obtained from
4n 3 3
E’ [(R + D)’ -~ R = (ny + Paromatic + Moit) Vsh!

where V; is the volume of the mixture in the shell comprised of asphalt-free oil,
resins, and the aromatic solvent.

5.10. Use the expression for the solubility parameter (see Problem 3.10, Chapter
3) to estimate solubility parameters of nC; to nCy,, and toluene at 20°C and
compare your results with the values below. If the solubility parameter of asphal-
tenes at 20°C is 6, =9.5 (cal/em®)*® and the other values are: dnc, to
Snc,, = T1.12,7.33,7.46,7.53,7.62,7.66 and Sypen, = 8.87 (cal/em®)*®, then plot
the prempltatlon data of Fig. 5.8 vs, the difference between the solubility para-
meter of the asphaltene and the solubility parameter of the above diluents. (The
solubility parameters for nC; to nC,;, and toluene above were obtained from
the PR-EOS. However, the densities were measured values)

5.11. Show that the interfacial effect for the monolayer co-adsorption of resin
and amphiphile onto the asphaltene micellar core can be represented by

(AGO)s'nt = (AG?)mI + (&G?)Ent

where (AG); = ngofa — a,,)
(ﬁG?)mt = nfg(a - aa,r)'

In the above equations, a = 4nR?/(ny + n¢), and q,, and a,; are the cross-
sectional areas of the polar head of resin molecule and the polar head of an
amphiphile molecule, respectively. Note that in the above formulation, the inter-
facial screening energy is included in the expression for (AGY), ..
5.12. In general, in the expression for AG® for an amphiphile—crude oil
mixture, the following terms appear: (1) nllencpa‘/q}al, 2) ny(ARY) 4, (3)
nokT In (pl,shxr sh/ 0%, 4) nf(x_’\.ho)ads, and (5) ny 1r1(,r:n“h/(,o‘1r Explain what each
term represents.

5.13. For a crude oil-amphiphile mixture (Aho)ads = 5(AR?) 4. Would you
suggest the amphiphile is much more effective than the resin in precipitation
inhibition and why?

5.14. Experimental data indicate that for some amphiphiles, once their concen-
tration increases beyond a certain value, their effectiveness for precipitation
inhibition decreases. In other words, there is an optimum concentration for an
amphiphile. What type of micellization model can describe the optimum concen-

tration?
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