
Creating and using JavaScript objects

Presented by developerWorks, your source for great tutorials

ibm.com/developerWorks

Table of Contents
If you're viewing this document online, you can click any of the topics below to link directly to that section.

1. About this tutorial 2

2. What is object oriented programming? 4

3. Using built-in JavaScript objects 8

4. Creating custom objects 13

5. Using inheritance 20

6. Objects as properties 28

7. JavaScript objects summary 34

Creating and using JavaScript objects Page 1

Section 1. About this tutorial

Should I take this tutorial?
This tutorial is for programmers who wish to take advantage of object oriented programming
(OOP) using JavaScript -- either within the browser or on the server side -- by using
custom-built JavaScript objects and their properties and methods.

This tutorial assumes that you already understand JavaScript in general, and that you have at
least a familiarity with built-in objects such as document, though the basics are reviewed in
the tutorial. An understanding of OOP is helpful, but not required, as the basic required
concepts are also covered in this tutorial. (References to further information on these subjects
are also included in Resources on page 34.)

What is this tutorial about?
Object oriented programming (OOP) is a means for dividing a program into objects with
predefined properties and behaviors, known as methods. JavaScript is frequently used more
as a procedural language, where a script proceeds through a series of steps. However, it is at
heart an object oriented language (similar to other object oriented languages, such as Java or
C++) which can be used to create objects.

This tutorial explains the very basics of OOP and how to use it within JavaScript. Concepts are
covered by using the built-in JavaScript objects many programmers already use. These
concepts are then extended to cover custom objects you can create yourself.

This tutorial covers the creation of objects, the nesting of objects within one another as one
object becomes the property of another, and the creation of properties and methods (including
dynamically created methods). It also explains how one JavaScript object can inherit the
properties and methods of another, and how to alter the structure of an object after it has been
created.

Tools
This tutorial helps you understand the topic even if you only read through the examples without
trying them out. If you do want to try the examples as you go through the tutorial, make sure
you have the following tools installed and working correctly:

* A text editor: HTML pages and the JavaScript sections within them are simply text. To
create and read them, a text editor is all you need.

* Any browser capable of running JavaScript version 1.2 or above: This includes Netscape
Navigator 4.7x and 6.2 (available at http://browsers.netscape.com/browsers/main.tmpl)
and Microsoft Internet Explorer 5.5 (available from
http://www.microsoft.com/windows/ie/downloads/archive/default.asp).

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Creating and using JavaScript objects Page 2

http://browsers.netscape.com/browsers/main.tmpl
http://www.microsoft.com/windows/ie/downloads/archive/default.asp

About the author
Nicholas Chase has been involved in Web site development for companies including Lucent
Technologies, Sun Microsystems, Oracle Corporation, and the Tampa Bay Buccaneers. Nick
has been a high school physics teacher, a low-level radioactive waste facility manager, an
online science fiction magazine editor, a multimedia engineer, and an Oracle instructor. More
recently, he was the Chief Technology Officer of Site Dynamics Interactive Communications in
Clearwater, Fla. He is the author of three books on Web development, including Java and XML
From Scratch (Que). He loves to hear from readers and can be reached at
nicholas@nicholaschase.com .

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Creating and using JavaScript objects Page 3

mailto:nicholas@nicholaschase.com

Section 2. What is object oriented programming?

Procedural programming
Most programmers learn their craft by creating programs that proceed more or less
sequentially: Do this, do this, do this, then if this is true, do that. Sometimes these programs
branch off into modularized sections such as subroutines and procedures. For the most part,
however, data is global in nature, meaning that any section of the program can modify it, and a
small change in one section of code can have a profound effect in other parts.

This style of programming, known as procedural programming, has been around since the
beginning. While there is nothing inherently wrong with it, in many cases there are better ways
to get things done.

Object oriented programming
Consider a trip to the grocery store with a very specific list of items to pick up. A procedural
program for this trip must attempt to find each item, determine the correct brand and size if it's
located, and determine an alternative if it's not. Each item must then be put into the cart, and
when the list has been processed, checked out. None of this is particularly daunting, of course,
but what about taking into account distractions, such as knocking over a jar of pickles, or
running into your first grade teacher? Because of the variety of distractions and environments
in which they can occur, adding the capability to handle the distraction and go back to
shopping in a procedural language can have a major impact on the application as a whole.

Object oriented programming provides a different way of thinking about this problem. Instead
of constructing a series of steps, the programmer creates a series of objects that all know how
to behave when various things happen. The Shopper object knows how to search for a
particular Item object, and if that's located, the Shopper can initiate the process of putting it
into the cart. (It might also know that if the Item cannot be located, it should use the Phone
object to query the Wife object for a replacement Item.) When the time comes, the Shopper
object also knows how to work with the Cashier object to check out the groceries.

The advantage here is that all the Shopper knows about, say, the Cashier, is how to interact
with it, such as to present it with a series of Item objects to check out. If the process for
checking out an Item changes -- with a new scanning system, for example -- the Shopper
object isn't affected. All of those changes are taken care of within the Cashier object.
Similarly, adding the capability for dealing with Distraction objects is taken care of within
the Shopper object, without major impact to the rest of the application.

In its simplest form, OOP is a way of incorporating information and behaviors into objects so
that they can interact with each other to get a particular job done.

What is an object?

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Creating and using JavaScript objects Page 4

An object is a collection of data and behaviors, or information about what it is and what it does.
Slight differences between languages exist, but in general these are known, respectively, as
properties and methods.

A Shopper object might have properties that provide information such as name, amount of
available cash, debit card PIN number, and where the car is parked. These properties are
typically designated as private, which means that they are kept within the object and accessed
only through methods.

For example, the Shopper's name may be accessible through the getName() method. In
traditional OOP, properties generally have get and set methods to allow for read and write
access, as appropriate. (JavaScript allows for the creation of these methods, but it does not
allow for the designation of private data, so it is much more common to access properties
directly.)

The Shopper object may also have methods that provide for specific functionality, such as
searchForItem() and useCoupon(), or methods that provide a way for other objects to
interact with it, such as payBill(). The methods that are made available for other objects to
call make up an object's interface.

Interfaces
An object's interface is the collection of methods through which other objects can interact with
it. For example, the Item object may have getPrice(), getUnitPrice(),
showCoupons(), and addToCart() methods that the Shopper object can call.

Notice, however, that there is no setPrice() method available to the Shopper object. That
makes sense, because the Shopper shouldn't be able to set the price. Naturally, this
functionality must exist somewhere, perhaps in a method that is only available to the Manager
object. But in a traditional OOP application, this isolation provides a way to control access to
data, limiting the amount of damage that can be done by any one section of the application.

Again, JavaScript doesn't actually provide a way to isolate that data, but you can achieve this
effect if you make a habit of only referring to properties through these methods.

Inheritance
One major aspect of OOP is inheritance. Inheritance is the ability to base one type of object on
another type of object. For instance, an Item might be the basis for SaleItem and
HeavyItem objects. Both are Items, but each has its own idiosyncrasies.

The advantage of using inheritance is that the base properties and methods of the original
object can be retained while any extras or differences can be added. For example, all Items
may have a price property (or a getPrice() method), but a SaleItem also needs an
originalPrice property (or a getOriginalPrice() method).

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Creating and using JavaScript objects Page 5

HeavyItem, on the other hand, may not need any extra properties or methods, but it requires
changes to the addToCart() method to accommodate the fact that it needs to be placed at
the bottom of the cart, and not to the actual basket.

In both of these cases, the original Item methods and properties take precedence unless they
are superseded by new properties and methods. For example, when the application calls
addToCart(), what happens next depends on the object involved. If the Item involved is a
HeavyItem, the application uses the HeavyItem version of addToCart(), and adds it to the
bottom. On the other hand, if it is a SaleItem, the application doesn't find a local version of
addToCart(), so it uses the Item version.

Constructors
A constructor is a routine that is executed when an object is first created in memory for use by
the application. For example, when a new Cashier is created (i.e., when another register
opens) certain steps need to be taken. The register is activated, the light is turned on, and the
Cashier announces, "I can take the next person in line ..."

Constructors can be general, as in the previous example, or they can be more specific, as in
an Item constructor that takes in an identifier such as a Product Look-Up (PLU) and uses it to
set the values for properties such as price and unit price.

In some languages, an object may have more than one constructor. For example, the
Cashier may have been sent to open the first available register, or the Cashier may have
been sent to open a specific register, in which case the constructor would take the register
number as an argument, overloading the constructor.

Unfortunately, JavaScript doesn't support overloading. However, it does allow for the building
of constructors with some of the same logic to take into account optional arguments.

Classes vs. prototypes vs. objects
Those who have worked with OOP languages -- particularly Java -- in the past may be
wondering why the discussion so far has specifically avoided using the word class when
describing objects.

In traditional OOP, a class is a template for an object. It lists the properties and methods for
the object and provides implementations for those methods. The object itself is an instance of
that class. For example, the objects joe, mary, and frank may be instances of the Shopper
class. The application deals with these instances, which are built with guidance from the class.
Java is one example of a class-based language.

In a class-based language, the classes are typically defined when the class is compiled. Once
an instance is created within an application, adding or removing properties or methods is
impossible.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Creating and using JavaScript objects Page 6

JavaScript, on the other hand, is a prototype-based language. In a prototype-based language,
the objects that are based on a prototype remain connected to it. New properties and methods
can be added both to an individual instance and to the prototype on which it is based. If the
definition of the prototype changes, all objects based on that prototype change as well.

This change in ideology provides a great deal of flexibility. For example, a programmer can
add elements to an HTML page programmatically using the built-in JavaScript objects.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Creating and using JavaScript objects Page 7

Section 3. Using built-in JavaScript objects

The document object: using methods
If you've worked with JavaScript, you have undoubtedly used objects already, even if they are
just the objects that are already built into the language (and the browser). Use of custom
objects is identical to use of these built-in objects in many ways, so it helps to look critically at
how they are used and how they are structured.

The most common and most basic object used in JavaScript is the document itself. In addition
to providing a reference point for many other built-in objects (as discussed in the next panel)
the document object has several useful methods.

The most useful of these is the write() method, which enables the output of information to
the browser page. This information may be static text, or it may be variables or other object
properties or methods. For example:

<script type="text/javascript">

document.write('Hello there!')
document.write('
')
document.write('Today is
)

</script>

In this example, the write() method of the document object outputs information to the page.
Note the format: object name, dot (.), method name, and arguments in parentheses.

The document object: properties
A script also accesses an object's properties using dot notation. For example:

<script type="text/javascript">

...

document.write('This document is: ')
document.write(document.location)
document.write('.
')

</script>

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Creating and using JavaScript objects Page 8

In JavaScript, any information about an object is considered a property, whether it is
information about the location of the document object (as shown in the above example), or
information on how to do something. In other words, methods are also considered properties of
an object, because they provide information (in this case, about what the object should do).

An object property can also contain another object. For example, the document object is
actually a property of the window object, and in turn has many properties that are objects. In
fact, in a well-formed document, the entire content of the page can be referenced from within
the document object. The structure of the information depends on the HTML elements
involved.

Objects as properties: form elements
One common use for the chain of objects and properties involves form elements. JavaScript is
often used to validate a form before it is submitted. In order to do that, the script must be able
to access the various elements that are part of the form. Consider the following form:

<form id="sampleForm" name="sampleForm" action="bogus.asp" method="post">

Please enter your name: <input type="text" name="yourName" />

Please choose a flavor: <select name="flavor">

<option value="no choice">Please Choose ...</option>
<option value="chocolate">Chocolate</option>
<option value="vanilla">Vanilla</option>
</select>

<input type="button" onclick="checkForm()" value="Submit Form" />

</form>

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Creating and using JavaScript objects Page 9

This form, sampleForm, is a property of the document object, and itself has properties, as
seen below:

<script type="text/javascript">
function checkForm(){

var confirmString = 'You entered: \n Name = '+document.sampleForm.yourName.value + "\n"+
'Flavor = '+document.sampleForm.flavor.value +
'('+document.sampleForm.flavor.selectedIndex+")" +
'\n\n OK? '

if (confirm(confirmString)) {
document.sampleForm.submit()

} else {
alert('Please adjust your answers.')

}
}

</script>

Here the sampleForm form object is referenced as a property of the document object. The
sampleForm object itself has properties that are objects with their own properties, such as the
yourName and flavor form element objects.

The sampleForm object also has methods, such as the submit() method called within the
if-then statement. Like the other properties, this method can be accessed from the
document object by walking down the chain of objects.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Creating and using JavaScript objects Page 10

Arrays of properties: forms
Sometimes the object being referenced is not a simple value or object, but an array of values
or objects. For example, a page might have more than one form on it. In that case, the script
can access it using the zero-based array of forms, as in:

document.forms[0].flavor.value

The script can also refer to the form as part of an associative array, which uses the name of
the object instead of the index:

document.forms['sampleForm'].yourName.value

Properties can also be accessed as part of an associative array, where the name of the object
acts as the index. For example:

document.sampleForm['flavor'].value

and

document.sampleForm.flavor['selectedIndex']

This flexibility allows you to decide programmatically what properties to retrieve, then use
variables to determine the associative array index.

Creating objects: the Image prototype
All of the objects seen so far have been automatically created by the browser, but objects can
also be created explicitly. Not all of these objects have to be custom objects, however. Many
objects are already defined, such as the Date, History, and various form-related objects,
such as Text and Button.

One object that gets a lot of use is the Image object. The browser knows that an Image object
is normally displayed on the page, and it knows how to do that by referencing the src property
to find out what image to display. In many cases, such as image rollover animations, the
browser references an Image object that was created through the HTML code on the page. By
changing the value of the src property, the script changes what appears on the page.

An Image object can also be created independent of the HTML. Unless the script explicitly
adds it to the page, it won't be displayed, but the browser still tries to load the image
referenced by the src property. Web authors often use this to preload images into the
browser's cache, so they are available instantly when needed, such as for a rollover animation.

To do this, a new object must be created using the Image object as its prototype. The src
property for that object can then be accessed:

var preLoader = new Image()
preLoader.src = 'images/bluto.gif'
preLoader.src = 'images/pyramid.jpg'

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Creating and using JavaScript objects Page 11

preLoader.src = 'http://www.example.com/images/plants.jpg'

The preLoader object is created just like any other JavaScript variable, but its value is set as
the returned value from the Image() constructor. The preLoader then exists as an object
with all of the properties and methods of the Image prototype, so the script can set the src
property.

Custom objects are created in much the same way.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Creating and using JavaScript objects Page 12

Section 4. Creating custom objects

A simple object and constructor
The foundation of any object is the creation of a constructor. A constructor is the code that
actually creates a new instance of an object. The constructor can be simple, setting one or
more property values. Consider the example of a project tracking application. The constructor
for a Project object needs to set certain information:

function Project() {

this.name = "Miracle Preso"
this.manager = "Alex Levine"
this.status = 0

}

The this keyword refers to whichever object is the current object when the function is called.
When the script calls the function as a constructor, the this keyword refers to the new object
being created.

Actually creating the object is just like creating an Image object, as in the previous panel:

var miracle = new Project()

The variable (in this case miracle) is now a new Project object, just as preLoader was a
new Image object in the previous panel.

Accessing object properties
Once the object has been created, the script can access its properties just as it accessed the
properties of built-in objects:

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Creating and using JavaScript objects Page 13

function Project() {

this.name = "Miracle Preso"
this.manager = "Alex Levine"
this.status = 0

}

var miracle = new Project()

document.write('Name: ' +
miracle.name)
document.write('
')
document.write('Project Manager: ' +
miracle.manager)
document.write('
')
document.write('Status: ' +
miracle.status)

Each of these values has been set within the constructor, so it is accessible via its property
name.

Changing object properties
Just as a script accesses object properties through dot notation, it can make modifications to
those properties:

var miracle = new Project()

miracle.name = "Save the Trees"
miracle.manager = "Connie Gibbons"

document.write('Name: ' + miracle.name)
document.write('
')
document.write('Project Manager: ' + miracle.manager)
document.write('
')
document.write('Status: ' + miracle.status)

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Creating and using JavaScript objects Page 14

Because only Name and Manager were altered, Status retains its original value.

In traditional OOP, it's customary to use methods to get and set property values, but direct
access is common in JavaScript.

Optional constructor arguments
JavaScript does not, unfortunately (or fortunately, depending upon whom you ask), support
overloading of functions, so constructors must be built with all possible combinations in mind.

The most common permutations involve using arguments as values if they exist, and using
default values if they don't. A constructor can accomplish this using if-then statements, as
in:

function Project(projName, projMgr, projStatus) {

if (projName == null) {
this.name = "Miracle Preso"

} else {
this.name = projName

}
if (projMgr == null) {

this.manager = "Alex Levine"
} else {

this.manager = projMgr
}
if (projStatus == null) {

this.status = "0%"
} else {

this.status = projStatus
}

}

Optional constructor arguments (continued)
It can be much more convenient, however, to use "or" notation. Consider the following
expression:

expr1 || expr2

If expr1 is non-null, the "or" condition is satisfied, and that is the returned value. On the other
hand, if expr1 is null, the script goes on to evaluate expr2. If it is not null, then that is the
value returned.

Translating this concept to the Project() constructor:

function Project(projName, projMgr, projStatus) {
this.name = projName || "Miracle Preso"
this.manager = projMgr || "Alex Levine"
this.status = projStatus || "0%"

}

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Creating and using JavaScript objects Page 15

var miracle = new Project()
var kennel = new Project('Kennel Club', 'Jack Ramsey', '25%')

document.write('Miracle:
')
document.write('--- Name: ' + miracle.name + '
')
document.write('--- Project Manager: ' + miracle.manager + '
')
document.write('--- Status: ' + miracle.status + '

')

document.write('Kennel:
')
document.write('--- Name: ' + kennel.name + '
')
document.write('--- Project Manager: ' + kennel.manager + '
')
document.write('--- Status: ' + kennel.status + '

')

In this example, two objects are created from the same constructor. The miracle object didn't
provide arguments, and gets the default values. The kennel object, on the other hand, gets
the arguments as property values.

Adding methods
Strictly speaking, a JavaScript object method is simply a property that contains a function.
When the property is accessed, the function executes.

The simplest methods are used to change the properties of an object. In JavaScript, it is
common to change these properties directly, but they can also be changed through methods.
Consider a method that's used to set the status of the Project:

function setStatus(newStatus) {
this.status = newStatus

}

To create the method, assign the function to a property:

function Project(projName, projMgr, projStatus) {
this.name = projName || "Miracle Preso"
this.manager = projMgr || "Alex Levine"
this.status = projStatus || "0%"

this.setStatus = setStatus
}

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Creating and using JavaScript objects Page 16

Note that the names don't have to be the same, though it can make the code easier to
understand. Notice also that although the code refers to a function, it doesn't have parentheses
after it (as in setStatus()).

To call the method, simply reference the property, along with any parameters:

var kennel = new Project('Kennel Club', 'Jack Ramsey', '25%')

document.write('Kennel:
')
document.write('--- Name: ' + kennel.name + '
')
document.write('--- Project Manager: ' + kennel.manager + '
')
document.write('--- Status: ' + kennel.status + '

')

kennel.setStatus('45%')

document.write('New status: '+kennel.status)

Methods can also serve much more complex purposes, but their construction and access are
the same in any case.

Array properties
In some situations, one property holds multiple pieces of data. For example, a project may
have multiple team members. To add them as individual items in a single property, use an
array:

function Project(projName, projMgr, projStatus) {
this.name = projName || "Miracle Preso"
this.manager = projMgr || "Alex Levine"
this.status = projStatus || "0%"
this.team = ["John Smith", "Mary Jones", "August McKendrick"]

this.setStatus = setStatus
}

To access the individual values, add an index value to the property:

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Creating and using JavaScript objects Page 17

var kennel = new Project('Kennel Club', 'Jack Ramsey', '25%')

document.write(kennel.team[0])
document.write('
')
document.write(kennel.team[1])
document.write('
')
document.write(kennel.team[2])

Modifying an object
One of the advantages of a prototype-based language over a class-based language is the
ability to change not only an object, but an entire type of object, after it has been created. For
example, suppose an auditor needs to be added to projects because they have been stalled
for a certain amount of time. Adding a property to a single object is easy. Simply reference it
and assign it a value:

kennel.auditor = "Janine Gottfried"

document.write('Miracle Auditor: ' + miracle.auditor)
document.write('
')
document.write('Kennel Auditor: ' + kennel.auditor)

Because the value has been specifically assigned to the kennel object, the miracle object is
not affected.

But what if an overall lack of progress means that auditors should be assigned to all projects?
If the change is applied to the prototype of the kennel object, all objects based on that
prototype will be affected:

Project.prototype.auditor = "Janine Gottfried"

document.write('Miracle Auditor: ' + miracle.auditor)
document.write('
')
document.write('Kennel Auditor: ' + kennel.auditor)

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Creating and using JavaScript objects Page 18

Because the change is applied to the Project prototype, it affects all Project objects.

JavaScript also allows for the deletion of properties. For example:

delete kennel.auditor
delete Project.prototype.auditor

The rules regarding propagation of deleting a property are the same as those for adding a
property.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Creating and using JavaScript objects Page 19

Section 5. Using inheritance

Adding inherited objects
The running project tracking application example has established a basic type of object, the
Project. This is, of course, an extremely general object. Projects usually have requirements
specific to themselves, or at least specific to the type of project at hand.

Take, for example, three types of interactive media projects: a Web site, a CD-ROM, and a
kiosk. All three have the same requirements as a general project: a name, a project manager,
a status, and a team of employees working on it. Each also has specific requirements. For
example, a Web site project also has a base URL, a CD-ROM has a target platform, and a
kiosk has a target input device, such as a keyboard or a touch screen.

All of these objects are, however, Project objects, so it makes sense to extend the Project
object when creating them.

Using a prototype
The first step in creating new objects is to determine their prototype. In absence of other
declarations, JavaScript uses the generic Object object, but the Project object can be
explicitly set as the prototype for the new objects:

WebSite.prototype = new Project

function WebSite(webSiteURL) {
this.URL = webSiteURL || "http://www.example.com"

}

In this way, when the script creates a new WebSite object, it has not only the original
properties of the Project object, but also the additional URL property:

var kennel = new WebSite()

document.write('Name: ' +
kennel.name)
document.write('
')
document.write('Project Manager: ' +
kennel.manager)
document.write('
')
document.write('Status: ' +
kennel.status)
document.write('
')
document.write('URL: ' + kennel.URL)

Even though no name, manager, or status properties are defined within the WebSite()

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Creating and using JavaScript objects Page 20

constructor, they exist because they are inherited from Product.

The "is-a" relationship
In OOP, it is often convenient to know whether one object is descended from another. This is
known as the "is-a" relationship, as in "kennel is a WebSite" so "kennel is a Project."

Suppose the project required the further breakdown of WebSite objects into type, such as
CommerceSites:

function CommerceSite(creditCards){
this.credit = creditCards || "none"

}

CommerceSite.prototype = new WebSite

var shawlsAreUs = new CommerceSite()

document.write('Name: ' + shawlsAreUs.name)
document.write('
')
document.write('Project Manager: ' + shawlsAreUs.manager)
document.write('
')
document.write('Status: ' + shawlsAreUs.status)
document.write('
')
document.write('URL: ' + shawlsAreUs.URL)
document.write('
')
document.write('Credit Cards: ' + shawlsAreUs.credit)

(This object clearly needs a way to access the parent constructors; this is discussed in the next
panel.)

The hierarchy of these objects would be Object -- > Project -- > Website -- >
CommerceSite -- > shawlsareus. To see this programmatically, access the __proto__
property. (That's with two "_" characters at both the start and end.)

if (shawlsAreUs.__proto__ == CommerceSite.prototype) {
document.write('shawlsAreUs is a CommerceSite
')

} else {
document.write('shawlsAreUs is not a CommerceSite
')

}
if (shawlsAreUs.__proto__ == WebSite.prototype) {

document.write('shawlsAreUs is a WebSite
')

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Creating and using JavaScript objects Page 21

} else {
document.write('shawlsAreUs is not a WebSite
')

}

Notice that shawlsAreUs does not appear to be a WebSite object, even though
CommerceSite is descended from WebSite. This is because the __proto__ property
contains a reference to the actual object. To move up the chain:

if (shawlsAreUs.__proto__.__proto__ == WebSite.prototype) {
document.write('shawlsAreUs is a WebSite
')

} else {
document.write('shawlsAreUs is not a WebSite
')

}

Note that the __proto__ property is not supported by Internet Explorer 5.x, which limits its
usefulness at this time.

Accessing the "parent" constructor
In the creation of a CommerceSite object, the object does inherit all of the properties of
WebSite and Project objects, but there appears to be no way to set those values. One
solution is to set them within the commerceSite constructor:

function CommerceSite(projName, projMgr, projStatus, projURL, projCreditCards){
this.name = projName || "Commerce Site"
this.manager = projMgr || "Alex Levine"

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Creating and using JavaScript objects Page 22

this.status = projStatus || "0%"
this.URL = projURL || "http://www.soap-to-shawls.com"
this.credit = projCreditCards || "none"

}

Unfortunately, this defeats the whole purpose of inheritance. That's not to say it's not useful, of
course. There may be times when program requirements demand that the inherited property
be overridden by a local version. The goal here, however, is to use the original constructor to
set the values for this object.

The idea is to execute the constructor in such a way that it is tied to this particular object
instance. The solution is to execute the constructor explicitly as a method:

function CommerceSite(projName, projMgr, projStatus, projURL, projCreditCards){
this.projectBase = Project
this.projectBase(projName, projMgr, projStatus)
this.webSiteBase = WebSite
this.webSiteBase(projURL)
this.credit = projCreditCards || "none"

}

CommerceSite.prototype = new WebSite;

var shawlsAreUs = new CommerceSite('ShawlsAreUs', 'Jack Ramsay', '10%')

document.write('ShawlsAreUs:
')
document.write('--- Name: ' + shawlsAreUs.name + '
')
document.write('--- Project Manager: ' + shawlsAreUs.manager + '
')
document.write('--- Status: ' + shawlsAreUs.status + '
')
document.write('--- URL: ' + shawlsAreUs.URL + '
')
document.write('--- Credit Cards: ' + shawlsAreUs.credit + '
')

In this way, the constructor functions are explicitly executed in relation to this object, with the
appropriate arguments passed. Note that this is not a substitute for creating inheritance
relationships using the prototype attribute. While it may provide the appropriate properties,
simply calling the constructor does not create inheritance.

Modifying inherited objects
As seen in Modifying an object on page 18 , one of the advantages of a prototype-based
language is the ability to modify an object after it has been created. Also as discussed,

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Creating and using JavaScript objects Page 23

modifying an object's prototype also modifies the object. This comes into play with inheritance,
as well. For example, a change to the Project prototype propagates down through WebSite
and CommerceSite:

var miracle = new Project()
var kennel = new WebSite()
var shawlsAreUs = new CommerceSite()

document.write('Miracle host: ' + miracle.host)
document.write('
')
document.write('Kennel host: ' + kennel.host)
document.write('
')
document.write('Shawls host: ' + shawlsAreUs.host)
document.write('
')

WebSite.prototype.host = "MyHostingCompany"

document.write('
')
document.write('Miracle host: ' + miracle.host)
document.write('
')
document.write('Kennel host: ' + kennel.host)
document.write('
')
document.write('Shawls host: ' + shawlsAreUs.host)

Because the property is added to the WebSite object prototype, it doesn't propagate back to
the Project objects, but it does propagate forward to the WebSite and CommerceSite
objects.

Inherited values and scope
It should be noted that there is a difference between properties that are local to an object --
either because they were defined for an instance or within the object's constructor -- and
those that are basic to the object prototype.

When an application requests an object's property, the return value is going to depend heavily
on how the object was built. If there is a value specific to that object or class, that is returned
first. If not, JavaScript travels up the inheritance chain until it finds a value (or runs out of
objects to check). For example:

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Creating and using JavaScript objects Page 24

function CommerceSite(projName,
projMgr,
projStatus,
projURL,
projCreditCards){

this.projectBase = Project
this.projectBase(projName, projMgr, projStatus)
this.webSiteBase = WebSite
this.webSiteBase(projURL)
this.credit = projCreditCards || "none"
this.start = "10/28/2001"

}

var shawlsAreUs = new CommerceSite()
var bedOfRoses = new Project()

document.write('Shawls start: ' + shawlsAreUs.start)
document.write('
')
document.write('Roses start: ' + bedOfRoses.start)
document.write('
')

Project.prototype.start = 'ASAP'

document.write('
')
document.write('Shawls start: ' + shawlsAreUs.start)
document.write('
')
document.write('Roses start: ' + bedOfRoses.start)

Because CommerceSite defines the start property within the constructor, it becomes local
to any CommerceSite objects. As a result, even though a start property was added through
the Project prototype, the local value took precedence. Because bedOfRoses had no such
"local" declaration, the change took effect.

It should be noted that even if the property is created globally, as it is here, locally changing
the value creates a local value that overrides the prototype value:

...
document.write('Roses start: ' + bedOfRoses.start)
document.write('
')

bedOfRoses.start = 'Today'
Project.prototype.start = 'Tomorrow'

document.write('
')

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Creating and using JavaScript objects Page 25

document.write('Shawls start: ' + shawlsAreUs.start)
document.write('
')
document.write('Roses start: ' + bedOfRoses.start)

To ensure the ability to globally alter properties, be certain to declare them within the prototype
and to always use the prototype to change them.

Simulating multiple inheritance
Some languages allow an object to inherit from multiple ancestors, drawing properties from all
of them. JavaScript doesn't actually allow this -- the prototype property can hold only one
object -- but it is possible to simulate some of the effect.

Because JavaScript objects are created by executing constructors, and because those
ancestor constructors can be referenced directly within an object constructor, executing
multiple constructors can simulate multiple inheritance even if they don't actually create it.
Consider this example:

function CommerceSite(projName,
projMgr,
projStatus,
projURL,
projCreditCards){

this.projectBase = Project
this.projectBase(projName, projMgr, projStatus)
this.webSiteBase = WebSite
this.webSiteBase(projURL)
this.kioskBase = Kiosk
this.kioskBase('mouse')
this.credit = projCreditCards || "none"

}

function Kiosk(projInput) {
this.inputDevice = projInput || "touchscreen"

}

CommerceSite.prototype = new WebSite

var houseOfFish = new CommerceSite()

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Creating and using JavaScript objects Page 26

document.write('Name: ' + houseOfFish.name)
document.write('
')
document.write('URL: ' + houseOfFish.URL)
document.write('
')
document.write('Input: ' + houseOfFish.inputDevice)
document.write('
')
document.write('Duration: ' + houseOfFish.duration)
document.write('
')
document.write('Platform: ' + houseOfFish.platform)
document.write('
')

WebSite.prototype.duration = '1 month'
Kiosk.prototype.platform = 'Linux'

document.write('
')
document.write('Input: ' + houseOfFish.inputDevice)
document.write('
')
document.write('Duration: ' + houseOfFish.duration)
document.write('
')
document.write('Platform: ' + houseOfFish.platform)

Because the Project, WebSite, and Kiosk constructors are all executed as part of the
CommerceSite constructor, the houseOfFish object gets all of their properties. But because
the Kiosk prototype isn't in the inheritance chain, adding a property to it doesn't affect the
houseOfFish object, even though adding one to the WebSite prototype does (because
CommerceSite inherits from WebSite).

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Creating and using JavaScript objects Page 27

Section 6. Objects as properties

Adding other objects
Just as the document object is a property of the window object, an application can use
objects as the values of properties for objects that it creates.

For example, consider the definition of a Project object:

function Project(projName, projMgr, projStatus) {
this.name = projName || "Miracle Preso"
this.manager = projMgr || "Alex Levine"
this.status = projStatus || "0%"
this.team = ["John Smith", "Mary Jones", "August McKendrick"]

this.setStatus = setStatus
}

All of the people listed could also be defined as objects, with properties and methods of their
own. For example, the application might define a Worker object, which is inherited by
Employee, Manager, and Contractor objects. For simplicity's sake, this tutorial simply uses
Employees:

function Employee(empFirstName, empLastName, empPhone) {
this.firstName = empFirstName || "John"
this.lastName = empLastName || "Doe"
this.phone = empPhone || "none"

}

var alex = new Employee('Alex', 'Levine', 'x4535')

document.write(alex.firstName + ' '+alex.lastName)
document.write(' (' + alex.phone + ')')

Adding an object as a property
To add an object as a property for another object, simply reference it like any other value. For
example, the Project object can be modified so that instead of simply taking a name for the
project manager, it takes an object:

function Project(projName, projMgr, projStatus) {
this.name = projName || "Miracle Preso"
this.manager = projMgr || alex

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Creating and using JavaScript objects Page 28

this.status = projStatus || "0%"
this.team = ["John Smith", "Mary Jones", "August McKendrick"]

this.setStatus = setStatus
}

var geena = new Employee('Geena', 'Tungsten', 'x2322')

var houseOfFish = new Project('House Of Fish', geena, '0%')

The actual definition itself hasn't changed much. The constructor still looks for the projMgr
argument to populate the manager property, but now that value is an object instead of a string.

Accessing an object as a property
Accessing an object that has been assigned as a property of another object involves an
understanding of the structure of the objects. For example, in the previous example, an
employee object, namely geena, was set as the manager property of the houseOfFish
object. This means that houseOfFish.manager and geena are equivalent. So the manager
property of the houseOfFish object is geena, which also has firstName, lastName, and
phone properties. In order to access those properties, you need to create a chain of objects:

document.write('Project Manager:
')
document.write(houseOfFish.manager.firstName + ' ')
document.write(houseOfFish.manager.lastName)
document.write(' (' + houseOfFish.manager.phone + ')')

Like the objects in an HTML page, objects can be chained across multiple levels in this way,
so that the manager properties (such as phone) can also be objects.

Functions as objects
In actuality, each object method that has been shown in this tutorial has been an object, albeit
a special type of object.

The Function object constructor takes two parameters*: the name of any arguments to be
passed to the function, and the code for the function itself. For example:

var replaceManager =

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Creating and using JavaScript objects Page 29

new Function('defVal',
'document.write("Default manager: "+defVal)')

replaceManager(geena.firstName)

Understanding the object nature of functions allows you to create them programmatically at
runtime, because they are simply text passed as an argument to the Function constructor.
Granted, it would be inconvenient to create a particularly long function this way, but this ability
creates significant flexibility.

* The actual definition of the Function object allows much more flexibility than this, but for
simplicity's sake, this tutorial will stay with just these two parameters.

Dynamic methods
The ability to create a function, and thus a method, dynamically can make object definition all
that much easier. For example, suppose it were policy to designate a backup project manager
to be assigned in the event that the current project manager leaves without a replacement.
There are several ways to code this.

One way is to create a property for the backup project manager, then create a method that
replaces the project manager with the backup manager if necessary. There's nothing terribly
wrong with that approach, but the same thing can be accomplished using dynamic methods:

function Project(projName, projMgr, projStatus, projDefMgr) {
this.name = projName || "Miracle Preso"
this.manager = projMgr || alex
this.status = projStatus || "0%"
this.team = ["John Smith", "Mary Jones", "August McKendrick"]

this.replaceManager = new Function('newMgr', 'this.manager = newMgr || '+projDefMgr)
}

var geena = new Employee('Geena', 'Tungsten', 'x2322')

var houseOfFish = new Project('House Of Fish', null, '0%', 'alex')

Notice that the default manager (projDefMgr) is fed to the constructor as a string, and not as
an object, because the goal is to create a text argument for Function of:

this.manager = newMgr || alex

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Creating and using JavaScript objects Page 30

Passing projDefMgr as an object would cause the script to attempt to combine an object and
a string, which causes an error.

The end result is that the object now has a default manager to use if none is provided to the
replaceManager() method:

document.write(houseOfFish.manager.firstName + ' ')
document.write(houseOfFish.manager.lastName)
document.write(' (' + houseOfFish.manager.phone + ')')
document.write('

')

houseOfFish.replaceManager(geena)

document.write(houseOfFish.manager.firstName + ' ')
document.write(houseOfFish.manager.lastName)
document.write(' (' + houseOfFish.manager.phone + ')')
document.write('

')

houseOfFish.replaceManager()

document.write(houseOfFish.manager.firstName + ' ')
document.write(houseOfFish.manager.lastName)
document.write(' (' + houseOfFish.manager.phone + ')')

The houseOfFish object was created without a manager, so the default manager, alex, was
used. Later, replaceManager() changed the value of the manager property to point to the
geena object. Finally, replaceManager executed one more time, this time using the default
manager, alex.

Arrays of objects
Adding an array of objects as an object property is just like adding an array of strings or other
values. For example:

var alex = new Employee('Alex', 'Levine', 'x4535')
var geena = new Employee('Geena', 'Tungsten', 'x2322')
var art = new Employee('Art', 'Franklin', 'x4223')
var daniel = new Employee('Daniel', 'Gardst', 'x2234')

function Project(projName, projMgr, projStatus, projDefMgr) {

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Creating and using JavaScript objects Page 31

this.name = projName || "Miracle Preso"
this.manager = projMgr || alex
this.status = projStatus || "0%"
this.team = [geena, art, daniel]

this.replaceManager = new Function('newMgr', 'this.manager = newMgr || '+projDefMgr)
}

A script can also pass the array of objects directly:

function Project(projName, projMgr, projStatus, projDefMgr, projTeam) {
this.name = projName || "Miracle Preso"
this.manager = projMgr || alex
this.status = projStatus || "0%"
this.team = projTeam

this.replaceManager = new Function('newMgr', 'this.manager = newMgr || '+projDefMgr)
}

var houseOfFish = new Project('House Of Fish', null, '0%', 'alex', [geena, art, daniel])

Either way, the team property now consists of an array of objects.

Accessing an object in an array
To access an object that is part of an array, include the array index:

document.write(houseOfFish.team[0].firstName + ' ')
document.write(houseOfFish.team[0].lastName)
document.write(' (' + houseOfFish.team[0].phone + ')')

document.write('
')

document.write(houseOfFish.team[1].firstName + ' ')
document.write(houseOfFish.team[1].lastName)
document.write(' (' + houseOfFish.team[1].phone + ')')

document.write('
')

document.write(houseOfFish.team[2].firstName + ' ')
document.write(houseOfFish.team[2].lastName)
document.write(' (' + houseOfFish.team[2].phone + ')')

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Creating and using JavaScript objects Page 32

In this case, the team property represents an array of objects, so for example:

houseOfFish.team[1]

corresponds to the art object. That means:

houseOfFish.team[1].lastName

returns "Franklin," the lastName property of the art object.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Creating and using JavaScript objects Page 33

Section 7. JavaScript objects summary

Summary
Objects are, in many ways, the foundation of JavaScript. This prototype-based object oriented
language not only allows you to work with built-in objects such as document and the objects
that are its properties, but also custom objects.

Custom objects are created using constructors. Objects can inherit properties and methods
from each other by determining the prototype for an object. Properties can consist of simple
values, or of other objects, including functions.

Any object operation carried out during the course of working with the built-in objects, such as
executing methods, assigning objects to object properties, and assigning arrays of objects to
object properties, can be used with custom objects, allowing for a traditional object oriented
programming approach to client-side and server-side JavaScript programming.

Resources
For good information on object oriented programming in general and JavaScript in particular,
see these resources:

* Read What is Object-Oriented Software? , by Terry Montlick.
* Find object oriented programming information at Cetus Links: Architecture and Design .
* Read a JavaScript Tutorial for Programmers by Aaron Weiss.
* Read A Primer on JavaScript Arrays by Danny Goodman.
* Read Creating Robust Functions .
* Read Object Hierarchy and Inheritance in JavaScript , on the Netscape site.
* Read The prototype object of JavaScript 1.1 .
* Read Creating custom objects in JavaScript at Website Abstraction.
* Read All About JavaScript by Robert W. Husted for a look at how JavaScript on the client

compares to JavaScript on the server.
* For a variety of JavaScript documentation, including reference manuals for JavaScript

1.5, read Netscape's JavaScript Documentation .
* Explore a wealth of information at Cetus Links: Object-Oriented Language: JavaScript /

ECMAScript .

Downloads
* Download an HTML file with the sample code presented in this tutorial.
* Download IBM Web Browser for OS/2 .
* Download Microsoft Internet Explorer 5.5 , Internet Explorer 6 , or Internet Explorer 5.0 for

Macintosh .
* Download Netscape 6 , with improved compliance over earlier versions.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Creating and using JavaScript objects Page 34

http://catalog.com/softinfo/objects.html
http://catalog.com/softinfo/objects.html
http://catalog.com/softinfo/objects.html
http://catalog.com/softinfo/objects.html
http://www.cetus-links.org/oo_design.html
http://www.cetus-links.org/oo_design.html
http://www.cetus-links.org/oo_design.html
http://www.cetus-links.org/oo_design.html
http://www.cetus-links.org/oo_design.html
http://www.wdvl.com/Authoring/JavaScript/Tutorial/
http://www.wdvl.com/Authoring/JavaScript/Tutorial/
http://www.wdvl.com/Authoring/JavaScript/Tutorial/
http://www.wdvl.com/Authoring/JavaScript/Tutorial/
http://developer.netscape.com/viewsource/goodman_arrays.html
http://developer.netscape.com/viewsource/goodman_arrays.html
http://developer.netscape.com/viewsource/goodman_arrays.html
http://developer.netscape.com/viewsource/goodman_arrays.html
http://developer.netscape.com/viewsource/goodman_arrays.html
http://wsabstract.com/javatutors/rfunction.shtml
http://wsabstract.com/javatutors/rfunction.shtml
http://wsabstract.com/javatutors/rfunction.shtml
http://developer.netscape.com/docs/manuals/communicator/jsobj/index.htm
http://developer.netscape.com/docs/manuals/communicator/jsobj/index.htm
http://developer.netscape.com/docs/manuals/communicator/jsobj/index.htm
http://developer.netscape.com/docs/manuals/communicator/jsobj/index.htm
http://developer.netscape.com/docs/manuals/communicator/jsobj/index.htm
http://developer.netscape.com/docs/manuals/communicator/jsobj/index.htm
http://wsabstract.com/javatutors/proto.shtml
http://wsabstract.com/javatutors/proto.shtml
http://wsabstract.com/javatutors/proto.shtml
http://wsabstract.com/javatutors/proto.shtml
http://wsabstract.com/javatutors/proto.shtml
http://wsabstract.com/javatutors/proto.shtml
http://wsabstract.com/javatutors/object.shtml
http://wsabstract.com/javatutors/object.shtml
http://wsabstract.com/javatutors/object.shtml
http://wsabstract.com/javatutors/object.shtml
http://wsabstract.com/javatutors/object.shtml
http://developer.netscape.com/viewsource/index_frame.html?content=husted_js/husted_js.html
http://developer.netscape.com/viewsource/index_frame.html?content=husted_js/husted_js.html
http://developer.netscape.com/viewsource/index_frame.html?content=husted_js/husted_js.html
http://developer.netscape.com/docs/manuals/javascript.html
http://developer.netscape.com/docs/manuals/javascript.html
http://developer.netscape.com/docs/manuals/javascript.html
http://www.sente.ch/cetus/oo_javascript.html
http://www.sente.ch/cetus/oo_javascript.html
http://www.sente.ch/cetus/oo_javascript.html
http://www.sente.ch/cetus/oo_javascript.html
http://www.sente.ch/cetus/oo_javascript.html
http://www.sente.ch/cetus/oo_javascript.html
http://www.sente.ch/cetus/oo_javascript.html
samples.html
samples.html
samples.html
samples.html
samples.html
samples.html
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www-4.ibm.com/software/os/warp/browser/&origin=wa
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www-4.ibm.com/software/os/warp/browser/&origin=wa
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www-4.ibm.com/software/os/warp/browser/&origin=wa
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www-4.ibm.com/software/os/warp/browser/&origin=wa
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www-4.ibm.com/software/os/warp/browser/&origin=wa
http://www.microsoft.com/windows/ie/downloads/archive/default.asp
http://www.microsoft.com/windows/ie/downloads/archive/default.asp
http://www.microsoft.com/windows/ie/downloads/archive/default.asp
http://www.microsoft.com/windows/ie/downloads/archive/default.asp
http://www.microsoft.com/windows/ie/default.asp
http://www.microsoft.com/windows/ie/default.asp
http://www.microsoft.com/windows/ie/default.asp
http://www.microsoft.com/mac/products/ie/ie_default.asp?navid=s7
http://www.microsoft.com/mac/products/ie/ie_default.asp?navid=s7
http://www.microsoft.com/mac/products/ie/ie_default.asp?navid=s7
http://www.microsoft.com/mac/products/ie/ie_default.asp?navid=s7
http://www.microsoft.com/mac/products/ie/ie_default.asp?navid=s7
http://home.netscape.com/download/
http://home.netscape.com/download/

Feedback
We welcome your feedback on this tutorial -- let us know what you think. We look forward to
hearing from you!

Colophon

This tutorial was written entirely in XML, using the developerWorks Toot-O-Matic tutorial
generator. The Toot-O-Matic tool is a short Java program that uses XSLT stylesheets to
convert the XML source into a number of HTML pages, a zip file, JPEG heading graphics, and
two PDF files. Our ability to generate multiple text and binary formats from a single source file
illustrates the power and flexibility of XML.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Creating and using JavaScript objects Page 35

